520 lines
23 KiB
TeX
520 lines
23 KiB
TeX
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
\chapter{Spiketrain analysis}
|
|
|
|
\selectlanguage{english}
|
|
|
|
\enterm[Actionspotentials]{Actionspotentials} (\enterm{spikes}) are
|
|
the carriers of information in the nervous system. Thereby it is
|
|
mainly the time at which the spikes are generated that is of
|
|
importance. The waveform of the action potential is largely
|
|
stereotyped and does not carry information.
|
|
|
|
The result of the processing of electrophysiological recordings are
|
|
series of spike times, which are then termed \enterm{spiketrains}. If
|
|
measurements are repeated we yield several \enterm{trials} of
|
|
spiketrains (\figref{rasterexamplesfig}).
|
|
|
|
Spiketrains are times of events, the action potentials. The analysis
|
|
of these leads into the realm of the so called \enterm[point
|
|
process]{point processes}.
|
|
|
|
\begin{figure}[ht]
|
|
\includegraphics[width=1\textwidth]{rasterexamples}
|
|
\titlecaption{\label{rasterexamplesfig}Raster-plot.}{Raster-plot of
|
|
ten realizations of a stationary point process (homogeneous point
|
|
process with a rate $\lambda=20$\;Hz, left) and an inhomogeneous
|
|
point process (perfect integrate-and-fire neuron dirven by
|
|
Ohrnstein-Uhlenbeck noise with a time-constant $\tau=100$\,ms,
|
|
right). Each vertical dash illustrates the time at which the
|
|
action potential was observed. Each line represents the event of
|
|
each trial.}
|
|
\end{figure}
|
|
|
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
\section{Point processes}
|
|
|
|
A temporal \enterm{point process} is a stochastic process that
|
|
generates a sequence of events at times $\{t_i\}$, $t_i \in
|
|
\reZ$.
|
|
|
|
\begin{ibox}{Examples of point processes}
|
|
Every point process is generated by a temporally continuously
|
|
developing process. An event is generated whenever this process
|
|
reaches a certain threshold. For example:
|
|
\begin{itemize}
|
|
\item Action potentials/heart beat: created by the dynamics of the
|
|
neuron/sinoatrial node
|
|
\item Earthquake: defined by the dynamics of the pressure between
|
|
tectonical plates.
|
|
\item Evoked communication calls in crickets/frogs/birds: shaped by
|
|
the dynamics of nervous system and the muscle appartus.
|
|
\end{itemize}
|
|
\end{ibox}
|
|
|
|
\begin{figure}[t]
|
|
\texpicture{pointprocessscetch}
|
|
\titlecaption{\label{pointprocessscetchfig} Statistics of point
|
|
processes.}{A point process is a sequence of instances in time
|
|
$t_i$ that can be characterized through the inter-event-intervals
|
|
$T_i=t_{i+1}-t_i$ and the number of events $n_i$. }
|
|
\end{figure}
|
|
|
|
In the neurosciences, the statistics of point processes is of
|
|
importance since the timing of the neuronal events (the action
|
|
potentials) is crucial for information transmission and can be treated
|
|
as such a process.
|
|
|
|
Point processes can be described using the intervals between
|
|
successive events $T_i=t_{i+1}-t_i$ and the number of observed events
|
|
within a certain time window $n_i$ (\figref{pointprocessscetchfig}).
|
|
|
|
The events originating from a point process can be illustrated in form
|
|
of a scatter- or raster plot in which each vertical line indicates the
|
|
time of an event. The event from two different point processes are
|
|
shown in \figref{rasterexamplesfig}.
|
|
|
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
\section{Intervalstatistics}
|
|
|
|
The intervals $T_i=t_{i+1}-t_i$ between successive events are real
|
|
positive numbers. In the context of action potentials they are
|
|
referred to as \enterm{interspike intervals}. The statistics of these
|
|
are described using the common measures.
|
|
|
|
\begin{figure}[t]
|
|
\includegraphics[width=0.96\textwidth]{isihexamples}\vspace{-2ex}
|
|
\titlecaption{\label{isihexamplesfig}Interspike interval
|
|
histogram}{of the spikes depicted in \figref{rasterexamplesfig}.}
|
|
\end{figure}
|
|
|
|
\begin{exercise}{isis.m}{}
|
|
Implement a function \code{isis()} that calculates the interspike
|
|
intervals from several spike trains. The function should return a
|
|
single vector of intervals. The action potentials recorded in the
|
|
individual trials are stored as vectors of spike times within a
|
|
\codeterm{cell-array}. Spike times are given in seconds.
|
|
\end{exercise}
|
|
|
|
\subsection{First order interval statistics}
|
|
\begin{itemize}
|
|
\item Probability density $p(T)$ of the intervals $T$
|
|
(\figref{isihexamplesfig}). Normalized to $\int_0^{\infty} p(T) \; dT
|
|
= 1$.
|
|
\item Average interval: $\mu_{ISI} = \langle T \rangle =
|
|
\frac{1}{n}\sum\limits_{i=1}^n T_i$.
|
|
\item Standard deviation of the interspike intervals: $\sigma_{ISI} = \sqrt{\langle (T - \langle T
|
|
\rangle)^2 \rangle}$\vspace{1ex}
|
|
\item \enterm{Coefficient of variation}: $CV_{ISI} =
|
|
\frac{\sigma_{ISI}}{\mu_{ISI}}$.
|
|
\item \enterm{Diffusion coefficient}): $D_{ISI} =
|
|
\frac{\sigma_{ISI}^2}{2\mu_{ISI}^3}$.
|
|
\end{itemize}
|
|
|
|
\begin{exercise}{isihist.m}{}
|
|
Implement a function \code{isiHist()} that calculates the normalized
|
|
interspike interval histogram. The function should take two input
|
|
arguments; (i) a vector of interspike intervals and (ii) the width
|
|
of the bins used for the histogram. It further returns the
|
|
probability density as well as the centers of the bins.
|
|
\end{exercise}
|
|
|
|
\begin{exercise}{plotisihist.m}{}
|
|
Implement a function that takes the return values of
|
|
\code{isiHist()} as input arguments and then plots the data. The
|
|
plot should show the histogram with the x-axis scaled to
|
|
milliseconds and should be annotated with the average ISI, the
|
|
standard deviation and the coefficient of variation.
|
|
\end{exercise}
|
|
|
|
\subsection{Interval correlations}
|
|
So called \enterm{return maps} are used to illustrate
|
|
interdependencies between successive interspike intervals. The return
|
|
map plots the delayed interval $T_{i+k}$ against the interval
|
|
$T_i$. The parameter $k$ is called the \enterm{lag} $k$. Stationary
|
|
and non-stationary return maps are distinctly different
|
|
\figref{returnmapfig}.
|
|
|
|
\begin{figure}[t]
|
|
\includegraphics[width=1\textwidth]{returnmapexamples}
|
|
\includegraphics[width=1\textwidth]{serialcorrexamples}
|
|
\titlecaption{\label{returnmapfig}Interspike interval analyses of a
|
|
stationary and a non-stationary pointprocess.}{Upper plots show the
|
|
return maps and the lower panels depict the serial correlation of
|
|
successive intervals separated by the lag $k$.}
|
|
\end{figure}
|
|
|
|
Such dependencies can be further quantified using the \enterm{serial
|
|
correlations} \figref{returnmapfig}. The serial correlation is the
|
|
correlation coefficient of the intervals $T_i$ and the intervals
|
|
delayed by the lag $T_{i+k}$:
|
|
\[ \rho_k = \frac{\langle (T_{i+k} - \langle T \rangle)(T_i - \langle T \rangle) \rangle}{\langle (T_i - \langle T \rangle)^2\rangle} = \frac{{\rm cov}(T_{i+k}, T_i)}{{\rm var}(T_i)}
|
|
= {\rm corr}(T_{i+k}, T_i) \] The resulting correlation coefficient
|
|
$\rho_k$ is usually plotted against the lag $k$
|
|
\figref{returnmapfig}. $\rho_0=1$ is the correlation of each interval
|
|
with itself and is always 1.
|
|
|
|
\begin{exercise}{isiserialcorr.m}{}
|
|
Implement a function \code{isiserialcorr()} that takes a vector of
|
|
interspike intervals as input argument and calculates the serial
|
|
correlation. The function should further plot the serial
|
|
correlation. \pagebreak[4]
|
|
\end{exercise}
|
|
|
|
|
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
\section{Count statistics}
|
|
|
|
% \begin{figure}[t]
|
|
% \includegraphics[width=0.48\textwidth]{poissoncounthist100hz10ms}\hfill
|
|
% \includegraphics[width=0.48\textwidth]{poissoncounthist100hz100ms}
|
|
% \titlecaption{\label{countstatsfig}Count Statistik.}{}
|
|
% \end{figure}
|
|
The number of events $n_i$ (counts) in a time window $i$ of the duration $W$
|
|
yields positive integer random numbers that are commonly quantified
|
|
using the following measures:
|
|
\begin{itemize}
|
|
\item Histogram of the counts $n_i$.
|
|
\item Average number of events: $\mu_N = \langle n \rangle$.
|
|
\item Variance of the counts: $\sigma_n^2 = \langle (n - \langle n \rangle)^2 \rangle$.
|
|
\item \determ{Fano Faktor} (The variance divided by the average): $F = \frac{\sigma_n^2}{\mu_n}$.
|
|
\end{itemize}
|
|
And in particular the average firing rate $r$ (spike count per time interval
|
|
, \determ{Feuerrate}) that is given in Hertz \sindex[term]{Feuerrate!mittlere Rate}
|
|
\begin{equation}
|
|
\label{firingrate}
|
|
r = \frac{\langle n \rangle}{W} \; .
|
|
\end{equation}
|
|
|
|
% \begin{figure}[t]
|
|
% \begin{minipage}[t]{0.49\textwidth}
|
|
% Poisson process $\lambda=100$\,Hz:\\
|
|
% \includegraphics[width=1\textwidth]{poissonfano100hz}
|
|
% \end{minipage}
|
|
% \hfill
|
|
% \begin{minipage}[t]{0.49\textwidth}
|
|
% LIF $I=10$, $\tau_{adapt}=100$\,ms:\\
|
|
% \includegraphics[width=1\textwidth]{lifadaptfano10-100ms}
|
|
% \end{minipage}
|
|
% \titlecaption{\label{fanofig}Fano factor.}{}
|
|
% \end{figure}
|
|
|
|
\begin{exercise}{counthist.m}{}
|
|
Implement a function \code{counthist()} that calculates and plots
|
|
the distribution of spike counts observed in a certain time
|
|
window. The function should take two input arguments: (i) a
|
|
\codeterm{cell-array} of vectors containing the spike times in
|
|
seconds observed in a number of trials and (ii) the duration of the
|
|
time window that is used to evaluate the counts.
|
|
\end{exercise}
|
|
|
|
|
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
\section{Homogeneous Poisson process}
|
|
|
|
The Gaussian distribution is, due to the central limit theorem, the
|
|
standard for continuous measures. The equivalent in the realm of point
|
|
processes is the \enterm{Poisson distribution}.
|
|
|
|
In a \enterm[Poisson process!homogeneous]{homogeneous Poisson process}
|
|
the events occur at a fixed rate $\lambda=\text{const.}$ and are
|
|
independent of both the time $t$ and occurrence of previous events
|
|
(\figref{hompoissonfig}). The probability of observing an even within a
|
|
small time window of width $\Delta t$ is given by
|
|
\begin{equation}
|
|
\label{hompoissonprob}
|
|
P = \lambda \cdot \Delta t \; .
|
|
\end{equation}
|
|
|
|
In an \enterm[Poisson process!inhomogeneous]{inhomogeneous Poisson
|
|
process}, however, the rate $\lambda$ depends on the time: $\lambda =
|
|
\lambda(t)$.
|
|
|
|
\begin{exercise}{poissonspikes.m}{}
|
|
Implement a function \code{poissonspikes()} that uses a homogeneous
|
|
Poisson process to generate events at a given rate for a certain
|
|
duration and a number of trials. The rate should be given in Hertz
|
|
and the duration of the trials is given in seconds. The function
|
|
should return the event times in a cell-array. Each entry in this
|
|
array represents the events observed in one trial. Apply
|
|
\eqnref{hompoissonprob} to generate the event times.
|
|
\end{exercise}
|
|
|
|
\begin{figure}[t]
|
|
\includegraphics[width=1\textwidth]{poissonraster100hz}
|
|
\titlecaption{\label{hompoissonfig}Rasterplot of spikes of a
|
|
homogeneous Poisson process with a rate $\lambda=100$\,Hz.}{}
|
|
\end{figure}
|
|
|
|
\begin{figure}[t]
|
|
\includegraphics[width=0.45\textwidth]{poissonisihexp20hz}\hfill
|
|
\includegraphics[width=0.45\textwidth]{poissonisihexp100hz}
|
|
\titlecaption{\label{hompoissonisihfig}Distribution of interspike intervals of two Poisson processes.}{}
|
|
\end{figure}
|
|
|
|
The homogeneous Poisson process has the following properties:
|
|
\begin{itemize}
|
|
\item Intervals $T$ are exponentially distributed (\figref{hompoissonisihfig}):
|
|
\begin{equation}
|
|
\label{poissonintervals}
|
|
p(T) = \lambda e^{-\lambda T} \; .
|
|
\end{equation}
|
|
\item The average interval is $\mu_{ISI} = \frac{1}{\lambda}$ .
|
|
\item The variance of the intervals is $\sigma_{ISI}^2 = \frac{1}{\lambda^2}$ .
|
|
\item Thus, the coefficient of variation is always $CV_{ISI} = 1$ .
|
|
\item The serial correlation is $\rho_k =0$ for $k>0$, since the
|
|
occurrence of an event is independent of all previous events. Such a
|
|
process is also called a \enterm{renewal process}.
|
|
\item The number of events $k$ within a temporal window of duration
|
|
$W$ is Poisson distributed:
|
|
\[ P(k) = \frac{(\lambda W)^ke^{\lambda W}}{k!} \]
|
|
(\figref{hompoissoncountfig})
|
|
\item The Fano Faktor is always $F=1$ .
|
|
\end{itemize}
|
|
|
|
\begin{exercise}{hompoissonspikes.m}{}
|
|
Implement a function \code{hompoissonspikes()} that uses a
|
|
homogeneous Poisson process to generate spike events at a given rate
|
|
for a certain duration and a number of trials. The rate should be
|
|
given in Hertz and the duration of the trials is given in
|
|
seconds. The function should return the event times in a
|
|
cell-array. Each entry in this array represents the events observed
|
|
in one trial. Apply \eqnref{poissonintervals} to generate the event
|
|
times.
|
|
\end{exercise}
|
|
|
|
\begin{figure}[t]
|
|
\includegraphics[width=0.48\textwidth]{poissoncounthistdist100hz10ms}\hfill
|
|
\includegraphics[width=0.48\textwidth]{poissoncounthistdist100hz100ms}
|
|
\titlecaption{\label{hompoissoncountfig}Count statistics of Poisson
|
|
spiketrains.}{}
|
|
\end{figure}
|
|
|
|
|
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
\section{Time-dependent firing rate}
|
|
|
|
So far we discussed stationary spiketrains. The statistical properties
|
|
of these did not change within the observation time (stationary point
|
|
processes. Most commonly, however, this is not the case. A sensory
|
|
neuron, for example, might respond to a stimulus by modulating its
|
|
firing rate (non-stationary point process).
|
|
|
|
How the firing rate $r(t)$ changes over time is the most important
|
|
measure, when analyzing non-stationary spike trains. The unit of the
|
|
firing rate is Hertz, i.e. the number of action potentials per
|
|
second. There are different ways to estimate the firing rate and three
|
|
of these methods will are illustrated in \figref{psthfig}. All of
|
|
these have their own justifications and pros- and cons. In the
|
|
following we will discuss the methods shown in \figref{psthfig} more
|
|
closely.
|
|
|
|
\begin{figure}[tp]
|
|
\includegraphics[width=\columnwidth]{firingrates}
|
|
\titlecaption{Bestimmung der zeitabh\"angigen
|
|
Feuerrate.}{\textbf{A)} Rasterplot eines Spiketrains. \textbf{B)}
|
|
Feurerrate aus der instantanen Feuerrate bestimmt. \textbf{C)}
|
|
klassisches PSTH mit der Binning Methode. \textbf{D)} Feuerrate
|
|
durch Faltung mit einem Gauss Kern bestimmt.}\label{psthfig}
|
|
\end{figure}
|
|
|
|
|
|
\subsection{Instantane Feuerrate}
|
|
|
|
\begin{figure}[tp]
|
|
\includegraphics[width=\columnwidth]{isimethod}
|
|
\titlecaption{Instantane Feuerrate.}{Skizze eines Spiketrains
|
|
(oben). Die Pfeile zwischen aufeinanderfolgenden
|
|
Aktionspotentialen mit den Zahlen in Millisekunden illustrieren
|
|
die Interspikeintervalle. Der Kehrwert des Interspikeintervalle
|
|
ergibt die instantane Feuerrate.}\label{instrate}
|
|
\end{figure}
|
|
|
|
Ein sehr einfacher Weg, die zeitabh\"angige Feuerrate zu bestimmen ist
|
|
die sogenannte \determ[Feuerrate!instantane]{instantane Feuerrate}
|
|
(\enterm[firing rate!instantaneous]{instantaneous firing rate}). Dabei
|
|
wird die Feuerrate aus dem Kehrwert der Interspikeintervalle, der Zeit
|
|
zwischen zwei aufeinander folgenden Aktionspotentialen
|
|
(\figref{instrate} A), bestimmt. Die abgesch\"atzte Feuerrate
|
|
(\figref{instrate} B) ist g\"ultig f\"ur das gesammte
|
|
Interspikeintervall. Diese Methode hat den Vorteil, dass sie sehr
|
|
einfach zu berechnen ist und keine Annahme \"uber eine relevante
|
|
Zeitskala (der Kodierung oder des Auslesemechanismus der
|
|
postsynaptischen Zelle) macht. $r(t)$ ist allerdings keine
|
|
kontinuierliche Funktion, die Spr\"unge in der Feuerrate k\"onnen
|
|
f\"ur manche Analysen nachteilig sein. Au{\ss}erdem wird die Feuerrate
|
|
nie gleich Null, auch wenn lange keine Aktionspotentiale generiert
|
|
wurden.
|
|
|
|
\begin{exercise}{instantaneousRate.m}{}
|
|
Implementiere die Absch\"atzung der Feuerrate auf Basis der
|
|
instantanen Feuerrate. Plotte die Feuerrate als Funktion der Zeit.
|
|
\end{exercise}
|
|
|
|
|
|
\subsection{Peri-Stimulus-Zeit-Histogramm}
|
|
W\"ahrend die Instantane Rate den Kehrwert der Zeit von einem bis zum
|
|
n\"achsten Aktionspotential misst, sch\"atzt das sogenannte
|
|
\determ{Peri-Stimulus-Zeit-Histogramm} (\enterm{peri stimulus time
|
|
histogram}, \determ[PSTH|see{Peri-Stimulus-Zeit-Histogramm}]{PSTH})
|
|
die Wahrscheinlichkeit ab, zu einem Zeitpunkt Aktionspotentiale
|
|
anzutreffen. Es wird versucht die mittlere Rate \eqnref{firingrate} im
|
|
Grenzwert kleiner Beobachtungszeiten abzusch\"atzen:
|
|
\begin{equation}
|
|
\label{psthrate}
|
|
r(t) = \lim_{W \to 0} \frac{\langle n \rangle}{W} \; ,
|
|
\end{equation}
|
|
wobei die Anzahl $n$ der Aktionspotentiale, die im Zeitintervall
|
|
$(t,t+W)$ aufgetreten sind, \"uber trials gemittelt wird. Eine solche
|
|
Rate enspricht der zeitabh\"angigen Rate $\lambda(t)$ des inhomogenen
|
|
Poisson-Prozesses.
|
|
|
|
Das PSTH \eqnref{psthrate} kann entweder \"uber die Binning-Methode
|
|
oder durch Verfaltung mit einem Kern bestimmt werden. Beiden Methoden
|
|
gemeinsam ist die Notwendigkeit der Wahl einer zus\"atzlichen Zeitskala,
|
|
die der Beobachtungszeit $W$ in \eqnref{psthrate} entspricht.
|
|
|
|
\subsubsection{Binning-Methode}
|
|
|
|
\begin{figure}[tp]
|
|
\includegraphics[width=\columnwidth]{binmethod}
|
|
\titlecaption{Bestimmung des PSTH mit der Binning Methode.}{Der
|
|
gleiche Spiketrain wie in \figref{instrate}. Die grauen Linien
|
|
markieren die Grenzen der Bins und die Zahlen geben die Anzahl der Spikes
|
|
in jedem Bin an (oben). Die Feuerrate ergibt sich aus dem
|
|
mit der Binbreite normierten Zeithistogramm (unten).}\label{binpsth}
|
|
\end{figure}
|
|
|
|
Bei der Binning-Methode wird die Zeitachse in gleichm\"aßige
|
|
Abschnitte (Bins) eingeteilt und die Anzahl Aktionspotentiale, die in
|
|
die jeweiligen Bins fallen, gez\"ahlt (\figref{binpsth} A). Um diese
|
|
Z\"ahlungen in die Feuerrate umzurechnen muss noch mit der Binweite
|
|
normiert werden. Das ist \"aquivalent zur Absch\"atzung einer
|
|
Wahrscheinlichkeitsdichte. Es kann auch die \code{hist()} Funktion zur
|
|
Bestimmung des PSTHs verwendet werden. \sindex[term]{Feuerrate!Binningmethode}
|
|
|
|
Die bestimmte Feuerrate gilt f\"ur das gesamte Bin (\figref{binpsth}
|
|
B). Das so berechnete PSTH hat wiederum eine stufige Form, die von der
|
|
Wahl der Binweite anh\"angt. $r(t)$ ist also keine stetige
|
|
Funktion. Die Binweite bestimmt die zeitliche Aufl\"osung der
|
|
Absch\"atzung. \"Anderungen in der Feuerrate, die innerhalb eines Bins
|
|
vorkommen k\"onnen nicht aufgl\"ost werden. Mit der Wahl der Binweite
|
|
wird somit eine Annahme \"uber die relevante Zeitskala des Spiketrains
|
|
gemacht.
|
|
|
|
\pagebreak[4]
|
|
\begin{exercise}{binnedRate.m}{}
|
|
Implementiere die Absch\"atzung der Feuerrate mit der ``binning''
|
|
Methode. Plotte das PSTH.
|
|
\end{exercise}
|
|
|
|
\subsubsection{Faltungsmethode}
|
|
|
|
\begin{figure}[tp]
|
|
\includegraphics[width=\columnwidth]{convmethod}
|
|
\titlecaption{Bestimmung des PSTH mit der Faltungsmethode.}{Der
|
|
gleiche Spiketrain wie in \figref{instrate}. Bei der Verfaltung
|
|
des Spiketrains mit einem Faltungskern wird jeder Spike durch den
|
|
Faltungskern ersetzt (oben). Bei korrekter Normierung des
|
|
Kerns ergibt sich die Feuerrate direkt aus der \"Uberlagerung der
|
|
Kerne.}\label{convrate}
|
|
\end{figure}
|
|
|
|
Bei der Faltungsmethode werden die harten Kanten der Bins der
|
|
Binning-Methode vermieden. Der Spiketrain wird mit einem Kern
|
|
verfaltet, d.h. jedes Aktionspotential wird durch den Kern ersetzt.
|
|
Zur Berechnung wird die Aktionspotentialfolge zun\"achst
|
|
``bin\"ar'' dargestellt. Dabei wird ein Spiketrain als
|
|
(Zeit-)Vektor dargestellt, in welchem die Zeitpunkte der
|
|
Aktionspotentiale als 1 notiert werden. Alle anderen Elemente des
|
|
Vektors sind 0. Anschlie{\ss}end wir dieser bin\"are Spiketrain mit
|
|
einem Gau{\ss}-Kern bestimmter Breite verfaltet:
|
|
\[r(t) = \int_{-\infty}^{\infty} \omega(\tau) \, \rho(t-\tau) \, {\rm d}\tau \; , \]
|
|
wobei $\omega(\tau)$ der Filterkern und $\rho(t)$ die bin\"are Antwort
|
|
ist. Bildlich geprochen wird jede 1 in $\rho(t)$ durch den Filterkern
|
|
ersetzt (Abbildung \ref{convrate} A). Wenn der Kern richtig normiert
|
|
wurde (Integral gleich Eins), ergibt sich die Feuerrate direkt aus der
|
|
\"Uberlagerung der Kerne (Abb. \ref{convrate} B). \sindex[term]{Feuerrate!Faltungsmethode}
|
|
|
|
Die Faltungsmethode f\"uhrt, anders als die anderen Methoden, zu einer
|
|
stetigen Funktion was insbesondere f\"ur spektrale Analysen von
|
|
Vorteil sein kann. Die Wahl der Kernbreite bestimmt, \"ahnlich zur
|
|
Binweite, die zeitliche Aufl\"osung von $r(t)$. Die Breite des Kerns
|
|
macht also auch wieder eine Annahme \"uber die relevante Zeitskala des
|
|
Spiketrains.
|
|
|
|
\pagebreak[4]
|
|
\begin{exercise}{convolutionRate.m}{}
|
|
Verwende die Faltungsmethode um die Feuerrate zu bestimmen. Plotte
|
|
das Ergebnis.
|
|
\end{exercise}
|
|
|
|
\section{Spike-triggered Average}
|
|
Die graphischer Darstellung der Feuerrate allein reicht nicht aus um
|
|
den Zusammenhang zwischen neuronaler Antwort und einem Stimulus zu
|
|
analysieren. Eine Methode um mehr \"uber diesen Zusammenhang zu
|
|
erfahren, ist der \enterm{spike-triggered average}
|
|
(\enterm[STA|see{spike-triggered average}]{STA}). Der STA
|
|
\begin{equation}
|
|
STA(\tau) = \langle s(t - \tau) \rangle = \frac{1}{N} \sum_{i=1}^{N} s(t_i - \tau)
|
|
\end{equation}
|
|
der $N$ Aktionspotentiale zu den Zeiten $t_i$ in Anwort auf den
|
|
Stimulus $s(t)$ ist der mittlere Stimulus, der zu einem
|
|
Aktionspotential in der neuronalen Antwort f\"uhrt.
|
|
|
|
Der STA l\"a{\ss}t sich relativ einfach berechnen, indem aus dem
|
|
Stimulus f\"ur jeden beobachteten Spike ein entsprechender Abschnitt
|
|
ausgeschnitten wird und diese dann gemittelt werde (\figref{stafig}).
|
|
|
|
\begin{figure}[t]
|
|
\includegraphics[width=\columnwidth]{sta}
|
|
\titlecaption{Spike-triggered Average eines P-Typ Elektrorezeptors
|
|
und Stimulusrekonstruktion.}{Der STA (links): der Rezeptor
|
|
wurde mit einem ``white-noise'' Stimulus getrieben. Zeitpunkt 0
|
|
ist der Zeitpunkt des beobachteten Aktionspotentials. Die Kurve
|
|
ergibt sich aus dem gemittelten Stimulus je 50\,ms vor und nach
|
|
einem Aktionspotential. Stimulusrekonstruktion mittels
|
|
STA (rechts). Die Zellantwort wird mit dem STA gefaltet um eine
|
|
Rekonstruktion des Stimulus zu erhalten.}\label{stafig}
|
|
\end{figure}
|
|
|
|
Aus dem STA k\"onnen verschiedene Informationen \"uber den
|
|
Zusammenhang zwischen Stimulus und neuronaler Antwort gewonnen
|
|
werden. Die Breite des STA repr\"asentiert die zeitliche Pr\"azision,
|
|
mit der Stimulus und Antwort zusammenh\"angen und wie weit das Neuron
|
|
zeitlich integriert. Die Amplitude des STA (gegeben in der gleichen
|
|
Einheit wie der Stimulus) deutet auf die Empfindlichkeit des Neurons
|
|
bez\"uglich des Stimulus hin. Eine hohe Amplitude besagt, dass es
|
|
einen starken Stimulus ben\"otigt, um ein Aktionspotential
|
|
hervorzurufen. Aus dem zeitlichen Versatz des STA kann die Zeit
|
|
abgelesen werden, die das System braucht, um auf den Stimulus zu
|
|
antworten.
|
|
|
|
Der STA kann auch dazu benutzt werden, aus den Antworten der Zelle den
|
|
Stimulus zu rekonstruieren (\figref{stafig} B). Bei der
|
|
\determ[invertierte Rekonstruktion]{invertierten Rekonstruktion} wird
|
|
die Zellantwort mit dem STA verfaltet.
|
|
|
|
\begin{exercise}{spikeTriggeredAverage.m}{}
|
|
Implementiere eine Funktion, die den STA ermittelt. Verwende dazu
|
|
den Datensatz \file{sta\_data.mat}. Die Funktion sollte folgende
|
|
R\"uckgabewerte haben:
|
|
\vspace{-1ex}
|
|
\begin{itemize}
|
|
\setlength{\itemsep}{0ex}
|
|
\item den Spike-Triggered-Average.
|
|
\item die Standardabweichung der individuellen STAs.
|
|
\item die Anzahl Aktionspotentiale, die zur Berechnung des STA verwendet wurden.
|
|
\vspace{-2ex}
|
|
\end{itemize}
|
|
\end{exercise}
|
|
|
|
\begin{exercise}{reconstructStimulus.m}{}
|
|
Rekonstruiere den Stimulus mithilfe des STA und der Spike
|
|
Zeiten. Die Funktion soll Vektor als R\"uckgabewert haben, der
|
|
genauso gro{\ss} ist wie der Originalstimulus aus der Datei
|
|
\file{sta\_data.mat}.
|
|
\end{exercise}
|
|
|
|
\selectlanguage{english}
|