This repository has been archived on 2021-05-17. You can view files and clone it, but cannot push or open issues or pull requests.
scientificComputing/pointprocesses/code/counthist.m

49 lines
1.6 KiB
Matlab

function [counts, bins] = counthist(spikes, w)
% computes count histogram and compare them with Poisson distribution
%
% [counts, bins] = counthist(spikes, w)
% spikes: a cell array of vectors of spike times in seconds
% w: observation window duration in seconds for computing the counts
% counts: the histogram of counts normalized to probabilities
% bins: the bin centers for the histogram
% collect spike counts:
tmax = spikes{1}(end);
n = [];
r = [];
for k = 1:length(spikes)
times = spikes{k};
% alternative 1: count the number of spikes in each window:
% for tk = 0:w:tmax-w
% nn = sum( ( times >= tk ) & ( times < tk+w ) );
% %nn = length( find( ( times >= tk ) & ( times < tk+w ) ) );
% n = [ n nn ];
% end
% alternative 2: use the hist function to do that!
tbins = 0.5*w:w:tmax-0.5*w;
nn = hist(times, tbins);
n = [ n nn ];
% the rate of the spikes:
rate = (length(times)-1)/(times(end) - times(1));
r = [ r rate ];
end
% histogram of spike counts:
maxn = max( n );
[counts, bins ] = hist( n, 0:1:maxn+10 );
% normalize to probabilities:
counts = counts / sum( counts );
if nargout == 0
bar( bins, counts );
hold on;
% Poisson distribution:
rate = mean( r );
x = 0:1:maxn+10;
a = rate*w;
y = a.^x.*exp(-a)./factorial(x);
plot( x, y, 'r', 'LineWidth', 3 );
hold off;
xlabel( 'counts k' );
ylabel( 'P(k)' );
end
end