This repository has been archived on 2021-05-17. You can view files and clone it, but cannot push or open issues or pull requests.
scientificComputing/spike_trains/code/sta.py

82 lines
2.8 KiB
Python

import numpy as np
import matplotlib.pyplot as plt
import scipy.io as scio
import seaborn as sb
from IPython import embed
sb.set_context("paper")
def plot_sta(times, stim, dt, t_min=-0.1, t_max=.1):
count = 0
sta = np.zeros((abs(t_min) + abs(t_max))/dt)
time = np.arange(t_min, t_max, dt)
if len(stim.shape) > 1 and stim.shape[1] > 1:
stim = stim[:,1]
for i in range(len(times[0])):
times = np.squeeze(spike_times[0][i])
for t in times:
if (int((t + t_min)/dt) < 0) or ((t + t_max)/dt > len(stim)):
continue;
min_index = int(np.round((t+t_min)/dt))
max_index = int(np.round((t+t_max)/dt))
snippet = np.squeeze(stim[ min_index : max_index])
sta += snippet
count += 1
sta /= count
fig = plt.figure()
fig.set_size_inches(5, 5)
fig.subplots_adjust(left=0.15, bottom=0.125, top=0.95, right=0.95, )
fig.set_facecolor("white")
ax = fig.add_subplot(111)
ax.plot(time, sta, color="darkblue")
ax.set_xlabel("time [s]")
ax.set_ylabel("stimulus")
ax.xaxis.grid('off')
ylim = ax.get_ylim()
xlim = ax.get_xlim()
ax.plot(list(xlim), [0., 0.], zorder=1, color='darkgray', ls='--')
ax.plot([0., 0.], list(ylim), zorder=1, color='darkgray', ls='--')
ax.set_xlim(list(xlim))
ax.set_ylim(list(ylim))
fig.savefig("../lecture/images/sta.pdf")
plt.close()
return sta
def reconstruct_stimulus(spike_times, sta, stimulus, t_max=30., dt=1e-4):
s_est = np.zeros((spike_times.shape[1], len(stimulus)))
for i in range(10):
times = np.squeeze(spike_times[0][i])
indices = np.asarray((np.round(times/dt)), dtype=int)
y = np.zeros(len(stimulus))
y[indices] = 1
s_est[i, :] = np.convolve(y, sta, mode='same')
plt.plot(np.arange(0, t_max, dt), stimulus[:,1], label='stimulus', color='darkblue', lw=2.)
plt.plot(np.arange(0, t_max, dt), np.mean(s_est, axis=0), label='reconstruction', color='silver', lw=1.5)
plt.xlabel('time[s]')
plt.ylabel('stimulus')
plt.xlim([0.0, 0.25])
plt.ylim([-1., 1.])
plt.legend()
plt.plot([0.0, 0.25], [0., 0.], color="darkgray", lw=1, ls='--', zorder=1)
fig = plt.gcf()
fig.set_size_inches(7.5, 5)
fig.subplots_adjust(left=0.15, bottom=0.125, top=0.95, right=0.95, )
fig.set_facecolor("white")
fig.savefig('../lecture/images/reconstruction.pdf')
plt.close()
if __name__ == "__main__":
punit_data = scio.loadmat('../../programming/exercises/p-unit_spike_times.mat')
punit_stim = scio.loadmat('../../programming/exercises/p-unit_stimulus.mat')
spike_times = punit_data["spike_times"]
stimulus = punit_stim["stimulus"]
sta = plot_sta(spike_times, stimulus, 5e-5, -0.05, 0.05)
reconstruct_stimulus(spike_times, sta, stimulus, 10, 5e-5)