This repository has been archived on 2021-05-17. You can view files and clone it, but cannot push or open issues or pull requests.
scientificComputing/regression/lecture/cubicgradient.py

90 lines
2.7 KiB
Python

import numpy as np
import matplotlib.pyplot as plt
import matplotlib.ticker as mt
from plotstyle import *
def create_data():
# wikipedia:
# Generally, males vary in total length from 250 to 390 cm and
# weigh between 90 and 306 kg
c = 6
x = np.arange(2.2, 3.9, 0.05)
y = c * x**3.0
rng = np.random.RandomState(32281)
noise = rng.randn(len(x))*50
y += noise
return x, y, c
def gradient_descent(x, y):
n = 20
dc = 0.01
eps = 0.0001
cc = 1.1
cs = []
mses = []
for k in range(n):
m0 = np.mean((y-(cc*x**3.0))**2.0)
m1 = np.mean((y-((cc+dc)*x**3.0))**2.0)
dmdc = (m1 - m0)/dc
cs.append(cc)
mses.append(m0)
cc -= eps*dmdc
return cs, mses
def plot_gradient(ax, x, y, c):
ccs = np.linspace(0.5, 10.0, 200)
mses = np.zeros(len(ccs))
for i, cc in enumerate(ccs):
mses[i] = np.mean((y-(cc*x**3.0))**2.0)
cmin = ccs[np.argmin(mses)]
gradient = np.diff(mses)/(ccs[1]-ccs[0])
ax.plot([cmin, cmin], [-10000, 10000], **lsSpine)
ax.plot([ccs[0], ccs[-1]], [0, 0], **lsSpine)
ax.plot(ccs[:-1], gradient, **lsBm)
ax.set_xlabel('c')
ax.set_ylabel('Derivative')
ax.set_xlim(0, 10)
ax.set_ylim(-10000, 10000)
ax.set_xticks(np.arange(0.0, 10.1, 2.0))
ax.set_yticks(np.arange(-10000, 10001, 10000))
ax.set_yticklabels(['', '0', ''])
def plot_mse(ax, x, y, c):
ccs = np.linspace(0.5, 10.0, 200)
mses = np.zeros(len(ccs))
for i, cc in enumerate(ccs):
mses[i] = np.mean((y-(cc*x**3.0))**2.0)
cmin = ccs[np.argmin(mses)]
gradient = np.diff(mses)/(ccs[1]-ccs[0])
ay = 1500.0
asB = dict(arrowprops=dict(arrowstyle="->", shrinkA=0, shrinkB=0,
color=lsB['color'], lw=2))
ax.annotate('', xy=(3.0, ay), xytext=(1.0, ay), **asB)
ax.annotate('', xy=(5.0, ay), xytext=(3.8, ay), **asB)
ax.annotate('', xy=(6.2, ay), xytext=(7.4, ay), **asB)
ax.annotate('', xy=(8.0, ay), xytext=(10.0, ay), **asB)
ax.plot([cmin, cmin], [0, 30000], **lsSpine)
ax.plot(ccs, mses, zorder=10, **lsAm)
ax.set_xlabel('c')
ax.set_ylabel('Mean squared error')
ax.set_xlim(0, 10)
ax.set_ylim(0, 25000)
ax.set_xticks(np.arange(0.0, 10.1, 2.0))
ax.set_yticks(np.arange(0, 30001, 10000))
ax.set_yticklabels(['0', '', '', ''])
if __name__ == "__main__":
x, y, c = create_data()
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=cm_size(figure_width, 1.1*figure_height))
fig.subplots_adjust(wspace=0.5, **adjust_fs(left=5.0, right=1.2))
plot_gradient(ax1, x, y, c)
plot_mse(ax2, x, y, c)
fig.savefig("cubicgradient.pdf")
plt.close()