This repository has been archived on 2021-05-17. You can view files and clone it, but cannot push or open issues or pull requests.
scientificComputing/pointprocesses/code/lifouadaptspikes.m
2014-11-12 18:39:02 +01:00

65 lines
1.8 KiB
Matlab

function spikes = lifouadaptspikes( trials, input, tmaxdt, D, Dou, outau, tauadapt, adaptincr )
% Generate spike times of a leaky integrate-and-fire neuron
% with colored noise and an adaptation current
% trials: the number of trials to be generated
% input: the stimulus either as a single value or as a vector
% tmaxdt: in case of a single value stimulus the duration of a trial
% in case of a vector as a stimulus the time step
% D: the strength of additive noise
% Dou: the strength of additive colored noise
% outau: time constant of the colored noise
% tauadapt: adaptation time constant
% adaptincr: adaptation strength
tau = 0.01;
if nargin < 4
D = 1e0;
end
if nargin < 5
Dou = 1e0;
end
if nargin < 6
outau = 1.0;
end
if nargin < 7
tauadapt = 0.1;
end
if nargin < 8
adaptincr = 1.0;
end
vreset = 0.0;
vthresh = 10.0;
dt = 1e-4;
if max( size( input ) ) == 1
input = input * ones( ceil( tmaxdt/dt ), 1 );
else
dt = tmaxdt;
end
spikes = cell( trials, 1 );
for k=1:trials
times = [];
j = 1;
v = vreset;
n = 0.0;
a = 0.0;
noise = sqrt(2.0*D)*randn( length( input ), 1 )/sqrt(dt);
noiseou = sqrt(2.0*Dou)*randn( length( input ), 1 )/sqrt(dt);
for i=1:length( noise )
n = n + ( - n + noiseou(i))*dt/outau;
v = v + ( - v - a + noise(i) + n + input(i))*dt/tau;
a = a + ( - a )*dt/tauadapt;
if v >= vthresh
v = vreset;
a = a + adaptincr;
spiketime = i*dt;
if spiketime > 4.0*tauadapt
times(j) = spiketime - 4.0*tauadapt;
j = j + 1;
end
end
end
spikes{k} = times;
end
end