This repository has been archived on 2021-05-17. You can view files and clone it, but cannot push or open issues or pull requests.
scientificComputing/pointprocesses/lecture/pointprocesses-slides.tex
2021-01-10 20:54:23 +01:00

412 lines
13 KiB
TeX

\documentclass{beamer}
%%%%% title %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\title[]{Scientific Computing --- Point Processes}
\author[]{Jan Benda}
\institute[]{Neuroethology}
\date[]{WS 14/15}
\titlegraphic{\includegraphics[width=0.3\textwidth]{UT_WBMW_Rot_RGB}}
%%%%% beamer %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\mode<presentation>
{
\usetheme{Singapore}
\setbeamercovered{opaque}
\usecolortheme{tuebingen}
\setbeamertemplate{navigation symbols}{}
\usefonttheme{default}
\useoutertheme{infolines}
% \useoutertheme{miniframes}
}
%\AtBeginSection[]
%{
% \begin{frame}<beamer>
% \begin{center}
% \Huge \insertsectionhead
% \end{center}
% \end{frame}
%}
\setbeamertemplate{blocks}[rounded][shadow=true]
\setcounter{tocdepth}{1}
%%%%% packages %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\usepackage[english]{babel}
\usepackage{amsmath}
\usepackage{bm}
\usepackage{pslatex} % nice font for pdf file
%\usepackage{multimedia}
\usepackage{dsfont}
\newcommand{\naZ}{\mathds{N}}
\newcommand{\gaZ}{\mathds{Z}}
\newcommand{\raZ}{\mathds{Q}}
\newcommand{\reZ}{\mathds{R}}
\newcommand{\reZp}{\mathds{R^+}}
\newcommand{\reZpN}{\mathds{R^+_0}}
\newcommand{\koZ}{\mathds{C}}
%%%% graphics %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\usepackage{graphicx}
%%%%% listings %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\usepackage{listings}
\lstset{
basicstyle=\ttfamily,
numbers=left,
showstringspaces=false,
language=Matlab,
commentstyle=\itshape\color{darkgray},
keywordstyle=\color{blue},
stringstyle=\color{green},
backgroundcolor=\color{blue!10},
breaklines=true,
breakautoindent=true,
columns=flexible,
frame=single,
captionpos=b,
xleftmargin=1em,
xrightmargin=1em,
aboveskip=10pt
}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{document}
\begin{frame}[plain]
\frametitle{}
\vspace{-1cm}
\titlepage % erzeugt Titelseite
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}
\frametitle{Content}
\tableofcontents
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section{Point processes}
\begin{frame}
\frametitle{Point process}
\vspace{-3ex}
\includegraphics{pointprocesssketch}
A point process is a stochastic (or random) process that generates a sequence of events
at times $\{t_i\}$, $t_i \in \reZ$.
For each point process there is an underlying continuous-valued
process evolving in time. The associated point process occurs when
the underlying continuous process crosses a threshold.
Examples:
\begin{itemize}
\item Spikes/heartbeat: generated by the dynamics of the membrane potential of neurons/heart cells.
\item Earth quakes: generated by the pressure dynamics between the tectonic plates on either side of a geological fault line.
\item Onset of cricket/frogs/birds/... songs: generated by the dynamics of the state of a nervous system.
\end{itemize}
\end{frame}
\begin{frame}
\frametitle{Point process}
\includegraphics{pointprocesssketch}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section{Homogeneous Poisson process}
\begin{frame}
\frametitle{Homogeneous Poisson process}
The probability $p(t)\delta t$ of an event occuring at time $t$
is independent of $t$ and independent of any previous event
(independent of event history).
The probability $P$ for an event occuring within a time bin of width $\Delta t$
is
\[ P=\lambda \cdot \Delta t \]
for a Poisson process with rate $\lambda$.
\includegraphics[width=1\textwidth]{poissonraster100hz}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section{Interval statistics}
\begin{frame}
\frametitle{Rate}
Rate of events $r$ (``spikes per time'') measured in Hertz.
\begin{itemize}
\item Number of events $N$ per observation time $W$: $r = \frac{N}{W}$
\item Without boundary effects: $r = \frac{N-1}{t_N-t_1}$
\item Inverse interval: $r = \frac{1}{\mu_{ISI}}$
\end{itemize}
\end{frame}
\begin{frame}
\frametitle{(Interspike) interval statistics}
\begin{itemize}
\item Histogram $p(T)$ of intervals $T$. Normalized to $\int_0^{\infty} p(T) \; dT = 1$
\item Mean interval $\mu_{ISI} = \langle T \rangle = \frac{1}{n}\sum\limits_{i=1}^n T_i$
\item Variance of intervals $\sigma_{ISI}^2 = \langle (T - \langle T \rangle)^2 \rangle$\vspace{1ex}
\item Coefficient of variation $CV_{ISI} = \frac{\sigma_{ISI}}{\mu_{ISI}}$
\item Diffusion coefficient $D_{ISI} = \frac{\sigma_{ISI}^2}{2\mu_{ISI}^3}$
\vfill
\end{itemize}
\includegraphics[width=0.45\textwidth]{poissonisih100hz}\hfill
\includegraphics[width=0.45\textwidth]{lifisih16}
\end{frame}
\begin{frame}
\frametitle{Interval statistics of homogeneous Poisson process}
\begin{itemize}
\item Exponential distribution of intervals $T$: $p(T) = \lambda e^{-\lambda T}$
\item Mean interval $\mu_{ISI} = \frac{1}{\lambda}$
\item Variance of intervals $\sigma_{ISI}^2 = \frac{1}{\lambda^2}$
\item Coefficient of variation $CV_{ISI} = 1$
\end{itemize}
\vfill
\includegraphics[width=0.45\textwidth]{poissonisihexp20hz}\hfill
\includegraphics[width=0.45\textwidth]{poissonisihexp100hz}
\end{frame}
\begin{frame}
\frametitle{Interval return maps}
Scatter plot between succeeding intervals separated by lag $k$.
\vfill
Poisson process $\lambda=100$\,Hz:
\includegraphics[width=1\textwidth]{poissonreturnmap100hz}\hfill
\end{frame}
\begin{frame}
\frametitle{Serial interval correlations}
Correlation coefficients between succeeding intervals separated by lag $k$:
\[ \rho_k = \frac{\langle (T_{i+k} - \langle T \rangle)(T_i - \langle T \rangle) \rangle}{\langle (T_i - \langle T \rangle)^2\rangle} = \frac{{\rm cov}(T_{i+k}, T_i)}{{\rm var}(T_i)} \]
\begin{itemize}
\item $\rho_0=1$ (correlation of each interval with itself).
\item Poisson process: $\rho_k =0$ for $k>0$ (renewal process!)
\end{itemize}
\vfill
\includegraphics[width=0.7\textwidth]{poissonserial100hz}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section{Count statistics}
\begin{frame}
\frametitle{Count statistics}
Histogram of number of events $N$ (counts) within observation window of duration $W$.
\vfill
\includegraphics[width=0.48\textwidth]{poissoncounthist100hz10ms}\hfill
\includegraphics[width=0.48\textwidth]{poissoncounthist100hz100ms}
\end{frame}
\begin{frame}
\frametitle{Count statistics of Poisson process}
Poisson distribution:
\[ P(k) = \frac{(\lambda W)^ke^{\lambda W}}{k!} \]
\vfill
\includegraphics[width=0.48\textwidth]{poissoncounthistdist100hz10ms}\hfill
\includegraphics[width=0.48\textwidth]{poissoncounthistdist100hz100ms}
\end{frame}
\begin{frame}
\frametitle{Count statistics --- Fano factor}
Statistics of number of events $N$ within observation window of duration $W$.
\begin{itemize}
\item Mean count: $\mu_N = \langle N \rangle$
\item Count variance: $\sigma_N^2 = \langle (N - \langle N \rangle)^2 \rangle$
\item Fano factor (variance divided by mean): $F = \frac{\sigma_N^2}{\mu_N}$
\item Poisson process: $F=1$
\end{itemize}
\vfill
Poisson process $\lambda=100$\,Hz:
\includegraphics[width=1\textwidth]{poissonfano100hz}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section{Integrate-and-fire models}
\begin{frame}
\frametitle{Integrate-and-fire models}
Leaky integrate-and-fire model (LIF):
\[ \tau \frac{dV}{dt} = -V + RI + D\xi \]
Whenever membrane potential $V(t)$ crosses the firing threshold $\theta$, a spike is emitted and
$V(t)$ is reset to $V_{reset}$.
\begin{itemize}
\item $\tau$: membrane time constant (typically 10\,ms)
\item $R$: input resistance (here 1\,mV (!))
\item $D\xi$: additive Gaussian white noise of strength $D$
\item $\theta$: firing threshold (here 10\,mV)
\item $V_{reset}$: reset potential (here 0\,mV)
\end{itemize}
\end{frame}
\begin{frame}
\frametitle{Integrate-and-fire models}
Discretization with time step $\Delta t$: $V(t) \rightarrow V_i,\;t_i = i \Delta t$.\\
Euler integration:
\begin{eqnarray*}
\frac{dV}{dt} & \approx & \frac{V_{i+1} - V_i}{\Delta t} \\
\Rightarrow \quad V_{i+1} & = & V_i + \Delta t \frac{-V_i+RI_i+\sqrt{2D\Delta t}N_i}{\tau}
\end{eqnarray*}
$N_i$ are normally distributed random numbers (Gaussian with zero mean and unit variance)
--- the $\sqrt{\Delta t}$ is for white noise.
\includegraphics[width=0.82\textwidth]{lifraster16}
\end{frame}
\begin{frame}
\frametitle{Interval statistics of LIF}
Interval distribution approaches Inverse Gaussian for large $I$:
\[ p(T) = \frac{1}{\sqrt{4\pi D T^3}}\exp\left[-\frac{(T-\langle T \rangle)^2}{4DT\langle T \rangle^2}\right] \]
where $\langle T \rangle$ is the mean interspike interval and $D$
is the diffusion coefficient.
\vfill
\includegraphics[width=0.45\textwidth]{lifisihdistr08}\hfill
\includegraphics[width=0.45\textwidth]{lifisihdistr16}
\end{frame}
\begin{frame}
\frametitle{Interval statistics of PIF}
For the perfect integrate-and-fire (PIF)
\[ \tau \frac{dV}{dt} = RI + D\xi \]
(the canonical model or supra-threshold firing on a limit cycle)\\
the Inverse Gaussian describes exactly the interspike interval distribution.
\vfill
\includegraphics[width=0.45\textwidth]{pifisihdistr01}\hfill
\includegraphics[width=0.45\textwidth]{pifisihdistr10}
\end{frame}
\begin{frame}
\frametitle{Interval return map of LIF}
LIF $I=15.7$:
\includegraphics[width=1\textwidth]{lifreturnmap16}
\end{frame}
\begin{frame}
\frametitle{Serial correlations of LIF}
LIF $I=15.7$:
\includegraphics[width=1\textwidth]{lifserial16}\\
Integrate-and-fire driven with white noise are still renewal processes!
\end{frame}
\begin{frame}
\frametitle{Count statistics of LIF}
LIF $I=15.7$:
\includegraphics[width=1\textwidth]{liffano16}\\
Fano factor is not one!
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}
\frametitle{Interval statistics of LIF with OU noise}
\begin{eqnarray*}
\tau \frac{dV}{dt} & = & -V + RI + U \\
\tau_{OU} \frac{dU}{dt} & = & - U + D\xi
\end{eqnarray*}
Ohrnstein-Uhlenbeck noise is lowpass filtered white noise.
\includegraphics[width=0.45\textwidth]{lifouisihdistr08-100ms}\hfill
\includegraphics[width=0.45\textwidth]{lifouisihdistr16-100ms}\\
More peaky than the inverse Gaussian!
\end{frame}
\begin{frame}
\frametitle{Interval return map of LIF with OU noise}
LIF $I=15.7$, $\tau_{OU}=100$\,ms:
\includegraphics[width=1\textwidth]{lifoureturnmap16-100ms}
\end{frame}
\begin{frame}
\frametitle{Serial correlations of LIF with OU noise}
LIF $I=15.7$, $\tau_{OU}=100$\,ms:
\includegraphics[width=1\textwidth]{lifouserial16-100ms}\\
OU-noise introduces positive interval correlations!
\end{frame}
\begin{frame}
\frametitle{Count statistics of LIF with OU noise}
LIF $I=15.7$, $\tau_{OU}=100$\,ms:
\includegraphics[width=1\textwidth]{lifoufano16-100ms}\\
Fano factor increases with count window duration.
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}
\frametitle{Interval statistics of LIF with adaptation}
\begin{eqnarray*}
\tau \frac{dV}{dt} & = & -V - A + RI + D\xi \\
\tau_{adapt} \frac{dA}{dt} & = & - A
\end{eqnarray*}
Adaptation $A$ with time constant $\tau_{adapt}$ and increment $\Delta A$ at spike.
\includegraphics[width=0.45\textwidth]{lifadaptisihdistr08-100ms}\hfill
\includegraphics[width=0.45\textwidth]{lifadaptisihdistr65-100ms}\\
Similar to LIF with white noise.
\end{frame}
\begin{frame}
\frametitle{Interval return map of LIF with adaptation}
LIF $I=10$, $\tau_{adapt}=100$\,ms:
\includegraphics[width=1\textwidth]{lifadaptreturnmap10-100ms}\\
Negative correlation at lag one.
\end{frame}
\begin{frame}
\frametitle{Serial correlations of LIF with adaptation}
LIF $I=10$, $\tau_{adapt}=100$\,ms:
\includegraphics[width=1\textwidth]{lifadaptserial10-100ms}\\
Adaptation with white noise introduces negative interval correlations!
\end{frame}
\begin{frame}
\frametitle{Count statistics of LIF with adaptation}
LIF $I=10$, $\tau_{adapt}=100$\,ms:
\includegraphics[width=1\textwidth]{lifadaptfano10-100ms}\\
Fano factor decreases with count window duration.
\end{frame}
\end{document}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section{Non stationary}
\subsection{Inhomogeneous Poisson process}
\subsection{Firing rate}
\subsection{Instantaneous rate}
\subsection{Autocorrelation}
\subsection{Crosscorrelation}
\subsection{Joint PSTH}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section{Renewal process}
\subsection{Superthreshold firing}
\subsection{Subthreshold firing}
\section{Non-renewal processes}
\subsection{Bursting}
\subsection{Resonator}
\subsection{Standard distributions}
\subsubsection{Gamma}
\subsubsection{How to read ISI histograms}
refractoriness, poisson tail, sub-, supra-threshold, missed spikes
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section{Correlation with stimulus}
\subsection{Tuning curve}
\subsection{Linear filter}
\subsection{Spatiotemporal receptive field}
\subsection{Generalized linear model}
\begin{frame}
\end{frame}