33 lines
1.1 KiB
Python
33 lines
1.1 KiB
Python
import numpy as np
|
|
import matplotlib.pyplot as plt
|
|
|
|
# normal distribution:
|
|
x = np.arange( -4.0, 4.0, 0.01 )
|
|
g = np.exp(-0.5*x*x)/np.sqrt(2.0*np.pi)
|
|
|
|
plt.xkcd()
|
|
fig = plt.figure( figsize=(6,4) )
|
|
ax = fig.add_subplot( 1, 1, 1 )
|
|
ax.spines['right'].set_visible(False)
|
|
ax.spines['top'].set_visible(False)
|
|
ax.yaxis.set_ticks_position('left')
|
|
ax.xaxis.set_ticks_position('bottom')
|
|
ax.set_xlabel( 'x' )
|
|
ax.set_ylabel( 'Probability density p(x)' )
|
|
ax.set_ylim( 0.0, 0.46 )
|
|
ax.set_yticks( np.arange( 0.0, 0.45, 0.1 ) )
|
|
ax.text(-1.0, 0.1, '50%', ha='center' )
|
|
ax.text(+1.0, 0.1, '50%', ha='center' )
|
|
ax.annotate('Median',
|
|
xy=(0.1, 0.3), xycoords='data',
|
|
xytext=(1.6, 0.35), textcoords='data', ha='left',
|
|
arrowprops=dict(arrowstyle="->", relpos=(0.0,0.5),
|
|
connectionstyle="angle3,angleA=10,angleB=40") )
|
|
ax.fill_between( x[x<0], 0.0, g[x<0], color='#ffcc00' )
|
|
ax.fill_between( x[x>0], 0.0, g[x>0], color='#99ff00' )
|
|
ax.plot(x,g, 'b', lw=4)
|
|
ax.plot([0.0, 0.0], [0.0, 0.45], 'k', lw=2 )
|
|
plt.tight_layout()
|
|
fig.savefig( 'median.pdf' )
|
|
#plt.show()
|