This repository has been archived on 2021-05-17. You can view files and clone it, but cannot push or open issues or pull requests.
scientificComputing/pointprocesses/lecture/rasterexamples.py

94 lines
2.4 KiB
Python

import numpy as np
import matplotlib.pyplot as plt
from plotstyle import *
rate = 20.0
trials = 10
duration = 2.0
dt = 0.001
drate = 50.0
tau = 0.1;
def hompoisson(rate, trials, duration) :
spikes = []
for k in range(trials) :
times = []
t = 0.0
while t < duration :
t += np.random.exponential(1/rate)
times.append(t)
spikes.append(times)
return spikes
def inhompoisson(rate, trials, dt) :
spikes = []
p = rate*dt
for k in range(trials) :
x = np.random.rand(len(rate))
times = dt*np.nonzero(x<p)[0]
spikes.append(times)
return spikes
def pifspikes(input, trials, dt, D=0.1) :
vreset = 0.0
vthresh = 1.0
tau = 1.0
spikes = []
for k in range(trials) :
times = []
v = vreset
noise = np.sqrt(2.0*D)*np.random.randn(len(input))/np.sqrt(dt)
for k in range(len(noise)) :
v += (input[k]+noise[k])*dt/tau
if v >= vthresh :
v = vreset
times.append(k*dt)
spikes.append(times)
return spikes
def oupifspikes(rate, trials, duration, dt, D, drate, tau):
# OU noise:
rng = np.random.RandomState(54637281)
time = np.arange(0.0, duration, dt)
x = np.zeros(time.shape)+rate
n = rng.randn(len(time))*drate*tau/np.sqrt(dt) + rate
for k in range(1,len(x)) :
x[k] = x[k-1] + (n[k]-x[k-1])*dt/tau
x[x<0.0] = 0.0
spikes = pifspikes(x, trials, dt, D)
return spikes
def plot_homogeneous_spikes(ax):
homspikes = hompoisson(rate, trials, duration)
ax.set_title('stationary')
ax.set_xlim(0.0, duration)
ax.set_ylim(-0.5, trials-0.5)
ax.set_xlabel('Time [s]')
ax.set_ylabel('Trial')
ax.eventplot(homspikes, colors=[lsA['color']], linelength=0.8, lw=1)
def plot_inhomogeneous_spikes(ax):
inhspikes = oupifspikes(rate, trials, duration, dt, 0.3, drate, tau)
ax.set_title('non-stationary')
ax.set_xlim(0.0, duration)
ax.set_ylim(-0.5, trials-0.5)
ax.set_xlabel('Time [s]')
ax.set_ylabel('Trial')
ax.eventplot(inhspikes, colors=[lsA['color']], linelength=0.8, lw=1)
if __name__ == "__main__":
fig, (ax1, ax2) = plt.subplots(1, 2)
fig.subplots_adjust(**adjust_fs(fig, left=4.0, right=1.0, top=1.2))
plot_homogeneous_spikes(ax1)
plot_inhomogeneous_spikes(ax2)
plt.savefig('rasterexamples.pdf')
plt.close()