This repository has been archived on 2021-05-17. You can view files and clone it, but cannot push or open issues or pull requests.
scientificComputing/pointprocesses/lecture/fanoexamples.py

144 lines
4.6 KiB
Python

import os
import json
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.ticker as mpt
from plotstyle import *
rate = 20.0
trials = 20
duration = 500.0
dt = 0.001
drate = 50.0
tau = 0.1;
def hompoisson(rate, trials, duration) :
spikes = []
for k in range(trials) :
times = []
t = 0.0
while t < duration :
t += np.random.exponential(1/rate)
times.append(t)
spikes.append(times)
return spikes
def inhompoisson(rate, trials, dt) :
spikes = []
p = rate*dt
for k in range(trials) :
x = np.random.rand(len(rate))
times = dt*np.nonzero(x<p)[0]
spikes.append(times)
return spikes
def pifspikes(input, trials, dt, D=0.1) :
vreset = 0.0
vthresh = 1.0
tau = 1.0
spikes = []
for k in range(trials) :
times = []
v = vreset
noise = np.sqrt(2.0*D)*np.random.randn(len(input))/np.sqrt(dt)
for k in range(len(noise)) :
v += (input[k]+noise[k])*dt/tau
if v >= vthresh :
v = vreset
times.append(k*dt)
spikes.append(times)
return spikes
def oupifspikes(rate, trials, duration, dt, D, drate, tau):
# OU noise:
rng = np.random.RandomState(54637281)
time = np.arange(0.0, duration, dt)
x = np.zeros(time.shape)+rate
n = rng.randn(len(time))*drate*tau/np.sqrt(dt) + rate
for k in range(1,len(x)) :
x[k] = x[k-1] + (n[k]-x[k-1])*dt/tau
x[x<0.0] = 0.0
spikes = pifspikes(x, trials, dt, D)
return spikes
def count_stats(spikes, wins):
mean_counts = np.zeros(len(wins))
var_counts = np.zeros(len(wins))
for k, win in enumerate(wins):
counts = []
for times in spikes:
c, _ = np.histogram(times, np.arange(0.0, duration, win))
counts.extend(c)
mean_counts[k] = np.mean(counts)
var_counts[k] = np.var(counts)
return mean_counts, var_counts
def plot_count_fano(ax1, ax2, wins, mean_counts, var_counts):
ax1.plot(mean_counts, var_counts, zorder=100, **lsA)
ax1.set_xlabel('Mean count')
ax1.set_xlim(0.0, 20.0)
ax1.set_ylim(0.0, 20.0)
ax1.set_xticks(np.arange(0.0, 21.0, 10.0))
ax1.set_yticks(np.arange(0.0, 21.0, 10.0))
ax2.plot(1000.0*wins, var_counts/mean_counts, **lsB)
ax2.set_xlabel('Window', 'ms')
ax2.set_ylim(0.0, 1.2)
ax2.set_xscale('log')
ax2.set_xticks([10, 100, 1000])
ax2.set_xticklabels(['10', '100', '1000'])
ax2.xaxis.set_minor_locator(mpt.NullLocator())
ax2.set_yticks(np.arange(0.0, 1.2, 0.5))
def plot_fano(ax, wins, mean_counts, var_counts):
ax.plot(1000.0*wins, var_counts/mean_counts, **lsB)
ax.set_xlabel('Window', 'ms')
ax.set_ylim(0.0, 1.2)
ax.set_xscale('log')
ax.set_xticks([1, 10, 100, 1000])
ax.set_xticklabels(['1', '10', '100', '1000'])
ax.xaxis.set_minor_locator(mpt.NullLocator())
ax.set_yticks(np.arange(0.0, 1.2, 0.5))
if __name__ == "__main__":
if not os.path.exists('fanoexamples.json'):
homspikes = hompoisson(rate, trials, duration)
inhspikes = oupifspikes(rate, trials, duration, dt, 0.3, drate, tau)
wins = np.logspace(-3, 0.0, 100)
hom_mean_counts, hom_var_counts = count_stats(homspikes, wins)
inh_mean_counts, inh_var_counts = count_stats(inhspikes, wins)
with open('fanoexamples.json', 'w') as df:
json.dump({'wins': wins.tolist(),
'hom_mean_counts': hom_mean_counts.tolist(),
'hom_var_counts': hom_var_counts.tolist(),
'inh_mean_counts': inh_mean_counts.tolist(),
'inh_var_counts': inh_var_counts.tolist()}, df, indent=4)
else:
with open('fanoexamples.json', 'r') as sf:
data = json.load(sf)
wins = np.array(data['wins'])
hom_mean_counts = np.array(data['hom_mean_counts'])
hom_var_counts = np.array(data['hom_var_counts'])
inh_mean_counts = np.array(data['inh_mean_counts'])
inh_var_counts = np.array(data['inh_var_counts'])
fig, (ax1, ax2) = plt.subplots(1, 2)
fig.subplots_adjust(**adjust_fs(fig, top=0.5, right=2.0))
plot_fano(ax1, wins, hom_mean_counts, hom_var_counts)
ax1.set_ylabel('Fano factor')
ax1.text(0.1, 0.95, 'Poisson', transform=ax1.transAxes)
ax2.axhline(1.0, **lsGrid)
plot_fano(ax2, wins, inh_mean_counts, inh_var_counts)
ax2.annotate('', xy=(45.0, 0.0), xytext=(45.0, 0.4), arrowprops=dict(arrowstyle="->"))
ax2.text(60.0, 0.25, 'most\nreliable', va='center')
ax2.text(0.1, 0.95, 'OU noise', transform=ax2.transAxes)
plt.savefig('fanoexamples.pdf')
plt.close()