This repository has been archived on 2021-05-17. You can view files and clone it, but cannot push or open issues or pull requests.
scientificComputing/statistics/exercises/descriptivestatistics-02.tex
2015-10-19 17:35:27 +02:00

164 lines
6.8 KiB
TeX

\documentclass[12pt,a4paper,pdftex]{exam}
\usepackage[german]{babel}
\usepackage{natbib}
\usepackage{graphicx}
\usepackage[small]{caption}
\usepackage{sidecap}
\usepackage{pslatex}
\usepackage{amsmath}
\usepackage{amssymb}
\setlength{\marginparwidth}{2cm}
\usepackage[breaklinks=true,bookmarks=true,bookmarksopen=true,pdfpagemode=UseNone,pdfstartview=FitH,colorlinks=true,citecolor=blue]{hyperref}
%%%%% text size %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\usepackage[left=20mm,right=20mm,top=25mm,bottom=25mm]{geometry}
\pagestyle{headandfoot}
\header{{\bfseries\large \"Ubung 2}}{{\bfseries\large Deskriptive Statistik}}{{\bfseries\large 19. Oktober, 2015}}
\firstpagefooter{Prof. Dr. Jan Benda}{Phone: 29 74573}{Email:
jan.grewe@uni-tuebingen.de}
\runningfooter{}{\thepage}{}
\setlength{\baselineskip}{15pt}
\setlength{\parindent}{0.0cm}
\setlength{\parskip}{0.3cm}
\renewcommand{\baselinestretch}{1.15}
\newcommand{\qt}[1]{\textbf{#1}\\}
\newcommand{\pref}[1]{(\ref{#1})}
\newcommand{\extra}{--- Zusatzaufgabe ---\ \mbox{}}
\newcommand{\code}[1]{\texttt{#1}}
\newcommand{\continue}{\ifprintanswers%
\else
\vfill\hspace*{\fill}$\rightarrow$\newpage%
\fi}
\newcommand{\continuepage}{\ifprintanswers%
\newpage
\else
\vfill\hspace*{\fill}$\rightarrow$\newpage%
\fi}
\newcommand{\newsolutionpage}{\ifprintanswers%
\newpage%
\else
\fi}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{document}
\vspace*{-6.5ex}
\begin{center}
\textbf{\Large Einf\"uhrung in die wissenschaftliche Datenverarbeitung}\\[1ex]
{\large Jan Grewe, Jan Benda}\\[-3ex]
Abteilung Neuroethologie \hfill --- \hfill Institut f\"ur Neurobiologie \hfill --- \hfill \includegraphics[width=0.28\textwidth]{UT_WBMW_Black_RGB} \\
\end{center}
% Die folgenden Aufgaben dienen der Wiederholung, \"Ubung und
% Selbstkontrolle und sollten eigenst\"andig bearbeitet und gel\"ost
% werden. Die L\"osung soll in Form eines einzelnen Skriptes (m-files)
% im ILIAS hochgeladen werden. Jede Aufgabe sollte in einer eigenen
% ``Zelle'' gel\"ost sein. Die Zellen \textbf{m\"ussen} unabh\"angig
% voneinander ausf\"uhrbar sein. Das Skript sollte nach dem Muster:
% ``variablen\_datentypen\_\{nachname\}.m'' benannt werden
% (z.B. variablen\_datentypen\_mueller.m).
\begin{itemize}
\item \"Uberzeuge dich von jeder einzelnen Zeile deines Codes, dass sie
auch wirklich das macht, was sie machen soll! Teste dies mit kleinen
Beispielen direkt in der Kommandozeile.
\item Versuche die L\"osungen der folgenden Aufgaben m\"oglichst in
sinnvolle kleine Funktionen herunterzubrechen.
\item Sobald etwas \"ahnliches mehr als einmal berechnet werden soll,
lohnt es sich eine Funktion daraus zu schreiben!
\item Teste rechenintensive \code{for} Schleifen zuerst mit einer kleinen
Anzahl von Wiederholungen, und benutze erst am Ende, wenn alles
stimmt, eine gro{\ss}e Anzahl von Wiederholungen, um eine gute
Statistik zu bekommen.
\item Benutze die Hilfsfunktion von matlab und das Internet, um
herauszufinden wie bestimmte \code{matlab} Funktionen zu verwenden
sind und was f\"ur M\"oglichkeiten sie bieten.
\item Auch zu inhaltlichen Konzepten bietet das Internet oft viele Antworten!
\end{itemize}
\begin{questions}
\question \qt{Zentraler Grenzwertsatz}
Der Zentrale Grenzwertsatz besagt, dass die Summe von unabh\"angigen
und identisch verteilten (i.i.d. = independent and identically
distributed) Zufallsvariablen gegen die Normalverteilung konvergiert.
Den Zentralen Grenzwertsatz wollen wir uns im Folgenden veranschaulichen.
\begin{parts}
\part Versuche dir klar zu machen, was der Zentrale Grenzwertsatz
bedeutet, und wie du vorgehen k\"onntest ein Programm zu
schreiben, das den Grenzwertsatz illustriert.
\part Erzeuge 10000 zwischen 0 und 1 gleichverteilte Zufallszahlen
(Funktion \code{rand}).
\part Plotte deren Wahrscheinlichkeitsdichte (normiertes Histogram).
\part Erzeuge weitere 10000 gleichverteilte Zufallszahlen und
addiere diese zu den bereits vorhandenen auf.
\part Plotte die Wahrscheinlichkeitsdichte der aufsummierten
Zufallszahlen.
\part Wiederhole Schritt (d) und (e) viele Male.
\part Vergleiche in einer Grafik die Wahrscheinlichkeitsdichte der
aufsummierten Zufallszahlen mit der Gaussfunktion
\[ p_g(x) =
\frac{1}{\sqrt{2\pi\sigma^2}}e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}\]
mit dem Mittelwert $\mu$ und der Standardabweichung $\sigma$ der
aufsummierten Zufallszahlen.
\part Wie \"andert sich der Mittelwert und die
Standardabweichung/Varianz
der aufsummierten Zufallszahlen?\\
Wie h\"angen diese mit den Werten der urspr\"unglichen Verteilung
zusammen?
\part \extra \"Uberpr\"ufe den Grenzwertsatz in gleicher Weise mit exponentiell
verteilten Zufallszahlen (Funktion \code{rande}).
\end{parts}
\question \qt{Random Walk}
Im folgenden wollen wir einige Eigenschaften des Random Walks bestimmen.
\begin{parts}
\part Schreibe eine Funktion, die einen einzelnen Random Walk mit
Startwert 0 f\"ur $n$ Schritte und Wahrscheinlichkeit $p$ f\"ur
einen positiven Schritt als Vektor zur\"uckgibt.
\part Visualisiere jeweils 10 Random Walks mit $p=0.5$ zusammen in einem Plot
f\"ur $n=100$, $n=1000$ und $n=10000$ (drei Plots).\\
Sch\"atze aus den Abbildungen ab, wie sich der Mittelwert und die Standardabweichung
des Random Walks mit der Zeit (Schritte) sich entwickelt.
\part \"Uberpr\"uefe deine Hypothese zum Mittelwert und zur
Standardabweichung, indem du von $m$ Random Walks ($m \ge 10$) f\"ur
jeden z.B. zehnten Schritt den Mittelwert und die Standardabweichung
\"uber die Positionen der $m$ Random Walks berechnest.\\
Wie h\"angt also die Standardabweichung von der Anzahl der Schritte
ab? Wie entwickelt sich die Standardabweichung f\"ur eine sehr
gro{\ss}e Anzahl von Schritten?
\part \extra Erstelle eine Grafik, die die Verteilung der Position eines Random Walkers
zu drei verschiedenen Zeitpunkten zeigt.
\end{parts}
\question \qt{\extra 2D Random Walk}
Bisher hat sich unser Random Walker nur in einer Dimension bewegt
(nur vorw\"arts oder r\"uckw\"arts). Er kann aber auch in mehreren Dimensionen laufen!\\
In zwei Dimensionen wird dazu in jedem Schritt eine weitere
Zufallszahl gezogen, die bestimmt ob er einen Schritt nach links oder
rechts gemacht hat. Die Bewegung nach vorne/hinten bzw. links/rechts
sind unabh\"angig voneinander.
\begin{parts}
\part Wie kann unter Verwendung unserer Funktion f\"ur den
eindimensionalen Random Walk ein zweidimensionaler Random Walk
simuliert werden?
\part Erstelle h\"ubsche Bilder, die zweidimensionalen Random
Walks verschiedener L\"ange (bis zu mindestens $n=1000000$) illustrieren.
\part Animationen sind auch sch\"on! z.B. mit dem \code{pause} Befehl.
\part Anstatt einfach den Weg des Random Walks zu zeichnen, kann man
sich auch merken, wie oft er an jeder Stelle vorbeigekommen ist und
mit einem Farbcode plotten.
\end{parts}
\end{questions}
\end{document}