This repository has been archived on 2021-05-17. You can view files and clone it, but cannot push or open issues or pull requests.
scientificComputing/pointprocesses/lecture/serialcorrexamples.py

94 lines
2.3 KiB
Python

import numpy as np
import matplotlib.pyplot as plt
from plotstyle import *
def hompoisson(rate, trials, duration) :
spikes = []
for k in range(trials) :
times = []
t = 0.0
while t < duration :
t += np.random.exponential(1/rate)
times.append( t )
spikes.append( times )
return spikes
def inhompoisson(rate, trials, dt) :
spikes = []
p = rate*dt
for k in range(trials) :
x = np.random.rand(len(rate))
times = dt*np.nonzero(x<p)[0]
spikes.append( times )
return spikes
def pifspikes(input, trials, dt, D=0.1) :
vreset = 0.0
vthresh = 1.0
tau = 1.0
spikes = []
for k in range(trials) :
times = []
v = vreset
noise = np.sqrt(2.0*D)*np.random.randn(len(input))/np.sqrt(dt)
for k in range(len(noise)) :
v += (input[k]+noise[k])*dt/tau
if v >= vthresh :
v = vreset
times.append(k*dt)
spikes.append( times )
return spikes
def isis( spikes ) :
isi = []
for k in range(len(spikes)) :
isi.extend(np.diff(spikes[k]))
return np.array( isi )
def plotserialcorr(ax, isis, maxlag=10) :
lags = np.arange(maxlag+1)
corr = [1.0]
for lag in lags[1:] :
corr.append(np.corrcoef(isis[:-lag], isis[lag:])[0,1])
ax.set_xlabel(r'lag $k$')
ax.set_ylabel(r'ISI correlation $\rho_k$')
ax.set_xlim(0.0, maxlag)
ax.set_ylim(-1.0, 1.0)
ax.plot(lags, corr, '.-', markersize=15, c=colors['blue'])
# parameter:
rate = 20.0
drate = 50.0
trials = 10
duration = 500.0
dt = 0.001
tau = 0.1;
# homogeneous spike trains:
homspikes = hompoisson(rate, trials, duration)
# OU noise:
rng = np.random.RandomState(54637281)
time = np.arange(0.0, duration, dt)
x = np.zeros(time.shape)+rate
n = rng.randn(len(time))*drate*tau/np.sqrt(dt)+rate
for k in range(1,len(x)) :
x[k] = x[k-1] + (n[k]-x[k-1])*dt/tau
x[x<0.0] = 0.0
# pif spike trains:
inhspikes = pifspikes(x, trials, dt, D=0.3)
fig, (ax1, ax2) = plt.subplots(1, 2)
fig.subplots_adjust(**adjust_fs(fig, left=7.0, right=1.0))
plotserialcorr(ax1, isis(homspikes))
ax1.set_ylim(-0.2, 1.0)
plotserialcorr(ax2, isis(inhspikes))
ax2.set_ylim(-0.2, 1.0)
plt.savefig('serialcorrexamples.pdf')
plt.close()