This repository has been archived on 2021-05-17. You can view files and clone it, but cannot push or open issues or pull requests.
scientificComputing/projects/project_random_walk/solution/random_walk.py

117 lines
4.0 KiB
Python

import numpy as np
import matplotlib.pyplot as plt
import matplotlib.mlab as mlab
import scipy.io as scio
from IPython import embed
def create_food_blotch(size_x=51, size_y=51, noise=0.01, threshold=0.008):
x = np.arange(-np.round(size_x/2), np.round(size_x/2)+1)
y = np.arange(-np.round(size_y/2), np.round(size_y/2)+1)
X, Y = np.meshgrid(x, y)
Z = mlab.bivariate_normal(X, Y, sigmax=10, sigmay=10)
food = (np.random.rand(size_x, size_y) * noise) + Z
return food
def create_world(width=100, height=100, d=0.1, food_sources=100, noise=0.01):
my_world = np.zeros((int(width/d), int(height/d)))
print("placing food sources ...")
for i in range(food_sources):
x = np.random.randint(0, width/d)
y = np.random.randint(0, height/d)
food = create_food_blotch(noise=noise)
if (x + food.shape[1]) > my_world.shape[1]:
x -= food.shape[1]
if (y + food.shape[0]) > my_world.shape[0]:
y -= food.shape[0]
my_world[y:y+food.shape[0], x:x+food.shape[1]] += food
return my_world
def get_step():
options = [-1, 1]
step = np.asarray([options[np.random.randint(0, 2)], options[np.random.randint(0, 2)]])
return step
def is_valid_step(pos, step, max_x, max_y):
new_pos = pos + step
if (new_pos[0] < max_y) & (new_pos[1] < max_x) & (new_pos[0] >= 0) & (new_pos[1] >= 0):
return True
return False
def do_valid_step(pos, max_x, max_y):
valid = False
while not valid:
step = get_step()
valid = is_valid_step(pos, step, max_x, max_y)
new_pos = pos + step
return new_pos, step
def random_walk(world, steps=10000):
x_positions = np.zeros(steps)
y_positions = np.zeros(steps)
start_x = np.random.randint(0, world.shape[1])
start_y = np.random.randint(0, world.shape[0])
eaten_food = 0
new_pos = np.asarray([start_y, start_x])
for i in range(steps):
new_pos, step = do_valid_step(new_pos, world.shape[1], world.shape[0])
x_positions[i] = new_pos[1]
y_positions[i] = new_pos[0]
eaten_food += world[new_pos[0], new_pos[1]]
world[new_pos[0], new_pos[1]] = 0.0
return x_positions, y_positions, eaten_food
def not_so_random_walk(world, steps=10000):
x_positions = np.zeros(steps)
y_positions = np.zeros(steps)
start_x = np.random.randint(0, world.shape[1])
start_y = np.random.randint(0, world.shape[0])
previous_food = 0.0
current_food = 0.0
eaten_food = 0
pos = np.asarray([start_y, start_x])
step = None
for i in range(steps):
gradient = current_food - previous_food
if (gradient <= 0) or ((step is not None) and \
(not is_valid_step(pos, step, world.shape[1], world.shape[0]))):
pos, step = do_valid_step(pos, world.shape[1], world.shape[0])
else:
pos += step
x_positions[i] = pos[1]
y_positions[i] = pos[0]
previous_food = current_food
current_food = world[pos[0], pos[1]]
eaten_food += current_food
world[pos[0], pos[1]] -= current_food
return x_positions, y_positions, eaten_food
if __name__ == '__main__':
print("create world... ")
world = create_world(noise=0.0, food_sources=50)
trials = 10
gain_random = np.zeros(trials)
gain_nsr = np.zeros(trials)
print("run")
for i in range(trials):
x, y, gain_random[i] = random_walk(world.copy(), 100000)
x2, y2, gain_nsr[i] = not_so_random_walk(world.copy(), 100000)
print("random walk yields: %.2f +- %.2f food per 100000 steps" % (np.mean(gain_random),
np.std(gain_random)))
print("not so random walk yields: %.2f +- %.2f food per 100000 steps" % (np.mean(gain_nsr),
np.std(gain_nsr)))
scio.savemat('random_world.mat', {'world': world})
plt.imshow(world)
plt.scatter(x[::2], y[::2], s=0.5, color='red')
plt.scatter(x2[::2], y2[::2], s=0.5, color='green')
plt.show()