64 lines
1.5 KiB
Python
64 lines
1.5 KiB
Python
import numpy as np
|
|
import scipy.stats as st
|
|
import scipy.optimize as opt
|
|
import matplotlib.pyplot as plt
|
|
from plotstyle import *
|
|
|
|
fig, (ax1, ax2) = plt.subplots(1, 2)
|
|
fig.subplots_adjust(**adjust_fs(fig, right=1.0))
|
|
|
|
# the data:
|
|
n = 100
|
|
shape = 2.0
|
|
scale = 1.0
|
|
rng = np.random.RandomState(4637281)
|
|
xd = rng.gamma(shape, scale, n)
|
|
|
|
# true pdf:
|
|
xx = np.arange(0.0, 10.1, 0.01)
|
|
rv = st.gamma(shape)
|
|
yy = rv.pdf(xx)
|
|
|
|
# mle fit:
|
|
a = st.gamma.fit(xd, 5.0)
|
|
yf = st.gamma.pdf(xx, *a)
|
|
|
|
# plot it:
|
|
ax1.set_xlim(0, 10.0)
|
|
ax1.set_ylim(0.0, 0.42)
|
|
ax1.set_xticks(np.arange(0, 11, 2))
|
|
ax1.set_yticks(np.arange(0, 0.42, 0.1))
|
|
ax1.set_xlabel('x')
|
|
ax1.set_ylabel('Prob. density')
|
|
ax1.plot(xx, yy, label='pdf', **lsB)
|
|
ax1.plot(xx, yf, label='mle', **lsCm)
|
|
kernel = st.gaussian_kde(xd)
|
|
x = kernel(xd)
|
|
x /= np.max(x)
|
|
sigma = 0.07
|
|
ax1.plot(xd, sigma*x*(rng.rand(len(xd))-0.5)+sigma, zorder=10, **psAm)
|
|
ax1.legend(loc='upper right')
|
|
|
|
# histogram:
|
|
h,b = np.histogram(xd, np.arange(0, 8.4, 0.5), density=True)
|
|
|
|
# fit histogram:
|
|
def gammapdf(x, n, l, s) :
|
|
return st.gamma.pdf(x, n, l, s)
|
|
popt, pcov = opt.curve_fit(gammapdf, b[:-1]+0.5*(b[1]-b[0]), h)
|
|
yc = st.gamma.pdf(xx, *popt)
|
|
|
|
# plot it:
|
|
ax2.set_xlim(0, 10.0)
|
|
ax2.set_xticks(np.arange(0, 11, 2))
|
|
ax2.set_xlabel('x')
|
|
ax2.set_ylim(0.0, 0.42)
|
|
ax2.set_yticks(np.arange(0, 0.42, 0.1))
|
|
ax2.set_ylabel('Prob. density')
|
|
ax2.plot(xx, yy, label='pdf', **lsB)
|
|
ax2.plot(xx, yc, label='fit', **lsCm)
|
|
ax2.bar(b[:-1], h, np.diff(b), **fsA)
|
|
ax2.legend(loc='upper right')
|
|
|
|
plt.savefig('mlepdf.pdf')
|