This repository has been archived on 2021-05-17. You can view files and clone it, but cannot push or open issues or pull requests.
scientificComputing/statistics/code/gaussiankerneldensity.m

49 lines
1.9 KiB
Matlab

data = randn(100, 1); % generate some data
sigma = 0.2; % std. dev. of Gaussian kernel
xmin = -4.0; % minimum x value for kernel density
xmax = 4.0; % maximum x value for kernel density
dx = 0.05*sigma; % step size for kernel density
xg = [-4.0*sigma:dx:4.0*sigma]; % x-axis for single Gaussian kernel
% single Gaussian kernel:
kernel = exp(-0.5*(xg/sigma).^2)/sqrt(2.0*pi)/sigma;
ng = floor((length(kernel)-1)/2); % half the length of the Gaussian
x = [xmin:dx:xmax+0.5*dx]; % x-axis for kernel density
kd = zeros(1, length(x)); % vector for kernel density
for i = 1:length(data) % for every data value ...
xd = data(i);
% index of data value in kernel density vector:
inx = round((xd-xmin)/dx)+1;
% start index for Gaussian in kernel density vector:
k0 = inx-ng;
% end index for Gaussian in kernel density vector:
k1 = inx+ng;
g0 = 1; % start index in Gaussian
g1 = length(kernel); % end index in Gaussian
% check whether left side of Gaussian extends below xmin:
if inx < ng+1
% adjust start indices accordingly:
k0 = 1;
g0 = ng-inx+2;
end
% check whether right side of Gaussian extends above xmax:
if inx > length(kd)-ng
% adjust end indices accordingly:
k1 = length(kd);
g1 = length(kernel)-(inx+ng-length(kd));
end
% add Gaussian on kernel density:
kd(k0:k1) = kd(k0:k1) + kernel(g0:g1);
end
kd = kd/length(data); % normalize by number of data points
% plot the computed kernel density:
plot(x, kd, 'b', 'linewidth', 4, 'displayname', 'manual')
hold on
% use the ksdensity() function instead:
[kd, x] = ksdensity(data, x, 'Bandwidth', sigma);
plot(x, kd, '--r', 'linewidth', 4, 'displayname', 'ksdensity()')
hold off
xlabel('x')
ylabel('Probability density')
legend('show')