This repository has been archived on 2021-05-17. You can view files and clone it, but cannot push or open issues or pull requests.
scientificComputing/pointprocesses/lecture/pointprocesses.tex
Jan Benda 4bb0c77ac4 New design pattern chapter.
Next exercises for point processes.
2015-10-27 19:26:33 +01:00

165 lines
7.2 KiB
TeX

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\chapter{\tr{Point processes}{Punktprozesse}}
\begin{figure}[t]
\texpicture{pointprocessscetchB}
\caption{\label{pointprocessscetchfig}Ein Punktprozess ist eine
Abfolge von Zeitpunkten $t_i$ die auch durch die Intervalle
$T_i=t_{i+1}-t_i$ oder die Anzahl der Ereignisse $n_i$ beschrieben
werden kann. }
\end{figure}
Ein zeitlicher Punktprozess ist ein stochastischer Prozess, der eine
Abfolge von Ereignissen zu den Zeiten $\{t_i\}$, $t_i \in \reZ$,
generiert.
Jeder Punktprozess wird durch einen sich in der Zeit kontinuierlich
entwickelnden Prozess generiert. Wann immer dieser Prozess eine
Schwelle \"uberschreitet wird ein Ereigniss des Punktprozesses
erzeugt. Zum Beispiel:
\begin{itemize}
\item Aktionspotentiale/Herzschlag: wird durch die Dynamik des
Membranpotentials eines Neurons/Herzzelle erzeugt.
\item Erdbeben: wird durch die Dynamik des Druckes zwischen
tektonischen Platten auf beiden Seiten einer geologischen Verwerfung
erzeugt.
\item Zeitpunkt eines Grillen/Frosch/Vogelgesangs: wird durch die
Dynamik des Nervensystems und des Muskelapparates erzeugt.
\end{itemize}
\begin{figure}[t]
\includegraphics[width=1\textwidth]{rasterexamples}
\caption{\label{rasterexamplesfig}Raster-Plot von jeweils 10
Realisierungen eines station\"arenen Punktprozesses (homogener
Poisson Prozess mit Rate $\lambda=20$\;Hz, links) und eines
nicht-station\"aren Punktprozesses (perfect integrate-and-fire
Neuron getrieben mit Ohrnstein-Uhlenbeck Rauschen mit
Zeitkonstante $\tau=100$\,ms, rechts).}
\end{figure}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section{Intervall Statistik}
\begin{figure}[t]
\includegraphics[width=1\textwidth]{isihexamples}\hfill
\caption{\label{isihexamplesfig}Interspike-Intervall Histogramme der in
\figref{rasterexamplesfig} gezeigten Spikes.}
\end{figure}
\subsection{(Interspike) Intervall Statistik erster Ordnung}
\begin{itemize}
\item Histogramm $p(T)$ der Intervalle $T$. Normiert auf $\int_0^{\infty} p(T) \; dT = 1$.
\item Mittleres Intervall $\mu_{ISI} = \langle T \rangle = \frac{1}{n}\sum\limits_{i=1}^n T_i$.
\item Varianz der Intervalle $\sigma_{ISI}^2 = \langle (T - \langle T \rangle)^2 \rangle$\vspace{1ex}
\item Variationskoeffizient (``Coefficient of variation'') $CV_{ISI} = \frac{\sigma_{ISI}}{\mu_{ISI}}$.
\item Diffusions Koeffizient $D_{ISI} = \frac{\sigma_{ISI}^2}{2\mu_{ISI}^3}$.
\end{itemize}
\subsection{Korrelationen der Intervalle}
In ``return maps'' werden die um das ``Lag'' $k$ verz\"ogerten
Intervalle $T_{i+k}$ gegen die Intervalle $T_i$ geplottet. Dies macht
m\"ogliche Abh\"angigkeiten von aufeinanderfolgenden Intervallen
sichtbar.
\begin{figure}[t]
\includegraphics[width=1\textwidth]{returnmapexamples}
\includegraphics[width=1\textwidth]{serialcorrexamples}
\caption{\label{returnmapfig}Interspike-Intervall return maps und
serielle Korrelationen zwischen aufeinander folgenden Intervallen
im Abstand des Lags $k$.}
\end{figure}
Solche Ab\"angigkeiten werden durch die serielle Korrelation der
Intervalle quantifiziert. Das ist der Korrelationskoeffizient
zwischen aufeinander folgenden Intervallen getrennt durch ``Lag'' $k$:
\[ \rho_k = \frac{\langle (T_{i+k} - \langle T \rangle)(T_i - \langle T \rangle) \rangle}{\langle (T_i - \langle T \rangle)^2\rangle} = \frac{{\rm cov}(T_{i+k}, T_i)}{{\rm var}(T_i)}
= {\rm corr}(T_{i+k}, T_i) \]
\"Ublicherweise wird die Korrelation $\rho_k$ gegen den Lag $k$
aufgetragen (\figref{returnmapfig}). $\rho_0=1$ (Korrelation jedes
Intervalls mit sich selber).
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section{Z\"ahlstatistik}
% \begin{figure}[t]
% \includegraphics[width=0.48\textwidth]{poissoncounthist100hz10ms}\hfill
% \includegraphics[width=0.48\textwidth]{poissoncounthist100hz100ms}
% \caption{\label{countstatsfig}Count Statistik.}
% \end{figure}
Statistik der Anzahl der Ereignisse $N_i$ innerhalb von Beobachtungsfenstern $i$ der Breite $W$.
\begin{itemize}
\item Histogramm der counts $N_i$.
\item Mittlere Anzahl von Ereignissen: $\mu_N = \langle N \rangle$.
\item Varianz der Anzahl: $\sigma_N^2 = \langle (N - \langle N \rangle)^2 \rangle$.
\item Fano Faktor (Varianz geteilt durch Mittelwert): $F = \frac{\sigma_N^2}{\mu_N}$.
\end{itemize}
Insbesondere ist die mittlere Rate der Ereignisse $r$ (``Spikes pro Zeit'', Feuerrate) gemessen in Hertz
\[ r = \frac{\langle N \rangle}{W} \; . \]
% \begin{figure}[t]
% \begin{minipage}[t]{0.49\textwidth}
% Poisson process $\lambda=100$\,Hz:\\
% \includegraphics[width=1\textwidth]{poissonfano100hz}
% \end{minipage}
% \hfill
% \begin{minipage}[t]{0.49\textwidth}
% LIF $I=10$, $\tau_{adapt}=100$\,ms:\\
% \includegraphics[width=1\textwidth]{lifadaptfano10-100ms}
% \end{minipage}
% \caption{\label{fanofig}Fano factor.}
% \end{figure}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section{Homogener Poisson Prozess}
F\"ur kontinuierliche Me{\ss}gr\"o{\ss}en ist die Normalverteilung
u.a. wegem dem Zentralen Grenzwertsatz die Standardverteilung. Eine
\"ahnliche Rolle spilet bei Punktprozessen der ``Poisson Prozess''.
Beim homogenen Poisson Prozess treten Ereignisse mit einer festen Rate
$\lambda=\text{const.}$ auf und sind unabh\"angig von der Zeit $t$ und
unabh\"angig von den Zeitpunkten fr\"uherer Ereignisse. Die
Wahrscheinlichkeit zu irgendeiner Zeit ein Ereigniss in einem kleinen
Zeitfenster der Breite $\Delta t$ zu bekommen ist
\[ P = \lambda \cdot \Delta t \; . \]
\begin{figure}[t]
\includegraphics[width=1\textwidth]{poissonraster100hz}
\caption{\label{hompoissonfig}Rasterplot von Spikes eine homogenen
Poisson Prozesse mit $\lambda=100$\,Hz.}
\end{figure}
Beim inhomogenen Poisson Prozess h\"angt die Rate $\lambda$ von der
Zeit ab: $\lambda = \lambda(t)$.
\begin{figure}[t]
\includegraphics[width=0.45\textwidth]{poissonisihexp20hz}\hfill
\includegraphics[width=0.45\textwidth]{poissonisihexp100hz}
\caption{\label{hompoissonisihfig}Interspikeintervallverteilungen
zweier Poissonprozesse.}
\end{figure}
Der homogne Poissonprozess hat folgende Eigenschaften:
\begin{itemize}
\item Die Intervalle $T$ sind exponentiell verteilt: $p(T) = \lambda e^{-\lambda T}$ .
\item Das mittlere Intervall ist $\mu_{ISI} = \frac{1}{\lambda}$ .
\item Die Varianz der Intervalle ist $\sigma_{ISI}^2 = \frac{1}{\lambda^2}$ .
\item Der Variationskoeffizient ist also immer $CV_{ISI} = 1$ .
\item Die seriellen Korrelationen $\rho_k =0$ for $k>0$, da das
Auftreten der Ereignisse unabh\"angig von der Vorgeschichte ist. Ein
solcher Prozess wird auch Erneuerungsprozess genannt (``renewal
process'').
\item Die Anzahl der Ereignisse $k$ innerhalb eines Fensters der L\"ange W ist Poissonverteilt:
\[ P(k) = \frac{(\lambda W)^ke^{\lambda W}}{k!} \]
\item Der Fano Faktor ist immer $F=1$ .
\end{itemize}
\begin{figure}[t]
\includegraphics[width=0.48\textwidth]{poissoncounthistdist100hz10ms}\hfill
\includegraphics[width=0.48\textwidth]{poissoncounthistdist100hz100ms}
\caption{\label{hompoissoncountfig}Z\"ahlstatistik von Poisson Spikes.}
\end{figure}