This repository has been archived on 2021-05-17. You can view files and clone it, but cannot push or open issues or pull requests.
scientificComputing/pointprocesses/exercises/iafisistats.tex
2014-11-12 18:39:02 +01:00

143 lines
5.3 KiB
TeX

\documentclass[addpoints,10pt]{exam}
\usepackage{url}
\usepackage{color}
\usepackage{hyperref}
\usepackage{graphicx}
\pagestyle{headandfoot}
\runningheadrule
\firstpageheadrule
\firstpageheader{Scientific Computing}{Integrate-and-fire models}{Oct 28, 2014}
%\runningheader{Homework 01}{Page \thepage\ of \numpages}{23. October 2014}
\firstpagefooter{}{}{}
\runningfooter{}{}{}
\pointsinmargin
\bracketedpoints
%\printanswers
\shadedsolutions
\usepackage[mediumspace,mediumqspace,Gray]{SIunits} % \ohm, \micro
%%%%% listings %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\usepackage{listings}
\lstset{
basicstyle=\ttfamily,
numbers=left,
showstringspaces=false,
language=Matlab,
breaklines=true,
breakautoindent=true,
columns=flexible,
frame=single,
captionpos=t,
xleftmargin=2em,
xrightmargin=1em,
aboveskip=10pt,
%title=\lstname,
title={\protect\filename@parse{\lstname}\protect\filename@base.\protect\filename@ext}
}
\begin{document}
\sffamily
%%%%%%%%%%%%%% Questions %%%%%%%%%%%%%%%%%%%%%%%%%
\begin{questions}
\question \textbf{Statistics of integrate-and-fire neurons}
For the following use different variants of the leaky integrate-and-fire models provided in \texttt{lifspikes.m},
\texttt{lifouspikes.m}, and \texttt{lifadaptspikes.m} do generate some spike train data.
Use the functions you wrote for the Poisson process to analyze the statistics of the spike trains.
\begin{parts}
\part Generate a few trials of the two models for two different inputs
that result in qualitatively different spike trains and display
them in a raster plot. Decide for a noise strength (good values to try are 0.001, 0.01, 0.1, 1).
\begin{solution}
\begin{lstlisting}
spikes = pifspikes( 10, 1.0, 0.5, 0.01 );
%spikes = pifspikes( 10, 10.0, 0.5, 0.01 );
%spikes = lifspikes( 10, 11.0, 0.5, 0.001 );
%spikes = lifspikes( 10, 15.0, 0.5, 0.001 );
spikeraster( spikes )
\end{lstlisting}
\mbox{}\\[-3ex]
\colorbox{white}{\includegraphics[width=0.48\textwidth]{pifraster02}}
\colorbox{white}{\includegraphics[width=0.48\textwidth]{pifraster10}}\\
\colorbox{white}{\includegraphics[width=0.48\textwidth]{lifraster10}}
\colorbox{white}{\includegraphics[width=0.48\textwidth]{lifraster15}}
\end{solution}
\part The inverse Gaussian describes the interspike interval distribution of a PIF driven with white noise:
\[ p(T) = \frac{1}{\sqrt{4\pi D T^3}}\exp\left[-\frac{(T-\langle T \rangle)^2}{4DT\langle T \rangle^2}\right] \]
where $\langle T \rangle$ is the mean interspike interval and
\[ D = \frac{\langle(T - \langle T \rangle)^2\rangle}{2 \langle T \rangle^3} \]
is the diffusion coefficient (variance of the interspike intervals
$T$ divided by two times the mean cubed). Show in two plots how
this distribution depends on $\langle T \rangle$ and $D$.
\begin{solution}
\lstinputlisting{simulations/inversegauss.m}
\lstinputlisting{simulations/inversegaussplot.m}
\colorbox{white}{\includegraphics[width=0.98\textwidth]{inversegauss}}
\end{solution}
\part Extent your function plotting an interspike interval histogram
to also report the diffusion coefficient $D$.
\begin{solution}
\begin{lstlisting}
...
% annotation:
misi = mean( isis );
sdisi = std( isis );
disi = sdisi^2.0/2.0/misi^3;
text( 0.6, 0.7, sprintf( 'mean=%.1f ms', 1000.0*misi ), 'Units', 'normalized' )
text( 0.6, 0.6, sprintf( 'std=%.1f ms', 1000.0*sdisi ), 'Units', 'normalized' )
text( 0.6, 0.5, sprintf( 'CV=%.2f', sdisi/misi ), 'Units', 'normalized' )
text( 0.6, 0.4, sprintf( 'D=%.1f Hz', disi ), 'Units', 'normalized' )
...
\end{lstlisting}
\end{solution}
\part Compare intersike interval histograms obtained from the LIF and PIF models with the inverse Gaussian.
\begin{solution}
\lstinputlisting{simulations/lifisih.m}
\colorbox{white}{\includegraphics[width=0.48\textwidth]{pifisih01}}
\colorbox{white}{\includegraphics[width=0.48\textwidth]{pifisih10}}\\
\colorbox{white}{\includegraphics[width=0.48\textwidth]{lifisih08}}
\colorbox{white}{\includegraphics[width=0.48\textwidth]{lifisih16}}
\end{solution}
\part Plot the firing rate (inverse mean interspike interval),
mean interspike interval, the corresponding standard deviation,
CV, and diffusion coefficient as a function of the input to the LIF
and the PIF with noise strength set to 0.01.
\begin{solution}
\lstinputlisting{simulations/lifisistats.m}
Leaky integrate-and-fire:\\
\colorbox{white}{\includegraphics[width=0.8\textwidth]{lifisistats}}\\
Perfect integrate-and-fire:\\
\colorbox{white}{\includegraphics[width=0.8\textwidth]{pifisistats}}
\end{solution}
\part Plot the firing rate as a function of input of the LIF and the PIF for various values
of the noise strength.
\begin{solution}
\lstinputlisting{simulations/lifficurves.m}
Leaky integrate-and-fire:\\
\colorbox{white}{\includegraphics[width=0.7\textwidth]{lifficurves}}\\
Perfect integrate-and-fire:\\
\colorbox{white}{\includegraphics[width=0.7\textwidth]{pifficurves}}
\end{solution}
\part Use the functions for computing serial correlations, count statistics and fano factors
to further explore the statistics of the integrate-and-fire models!
\end{parts}
\end{questions}
\end{document}