93 lines
3.5 KiB
Python
93 lines
3.5 KiB
Python
import numpy as np
|
|
import matplotlib.pyplot as plt
|
|
import matplotlib.cm as cm
|
|
import matplotlib.gridspec as gridspec
|
|
from plotstyle import *
|
|
|
|
rng = np.random.RandomState(4637281)
|
|
lmarg=0.1
|
|
rmarg=0.1
|
|
|
|
fig = plt.figure(figsize=cm_size(figure_width, 2.8*figure_height))
|
|
spec = gridspec.GridSpec(nrows=4, ncols=1, height_ratios=[4, 4, 1, 3], hspace=0.2,
|
|
**adjust_fs(fig, left=4.0))
|
|
ax = fig.add_subplot(spec[0, 0])
|
|
ax.set_xlim(0.0, np.pi)
|
|
ax.set_xticks(np.arange(0.125*np.pi, 1.*np.pi, 0.125*np.pi))
|
|
ax.set_xticklabels([])
|
|
ax.set_ylim(0.0, 3.5)
|
|
ax.yaxis.set_major_locator(plt.NullLocator())
|
|
ax.text(-0.2, 0.5*3.5, 'Activity', rotation='vertical', va='center')
|
|
ax.annotate('Tuning curve',
|
|
xy=(0.42*np.pi, 2.5), xycoords='data',
|
|
xytext=(0.3*np.pi, 3.2), textcoords='data', ha='right',
|
|
arrowprops=dict(arrowstyle="->", relpos=(1.0,0.5),
|
|
connectionstyle="angle3,angleA=-10,angleB=110") )
|
|
ax.annotate('',
|
|
xy=(0.5*np.pi, 0.1), xycoords='data',
|
|
xytext=(0.5*np.pi, 2.6), textcoords='data',
|
|
arrowprops=dict(arrowstyle="->", relpos=(0.5,0.5),
|
|
connectionstyle="angle3,angleA=80,angleB=90") )
|
|
ax.text(0.52*np.pi, 0.7, 'preferred\norientation')
|
|
xx = np.arange(0.0, 2.0*np.pi, 0.01)
|
|
pp = 0.5*np.pi
|
|
yy = np.exp(np.cos(2.0*(xx+pp)))
|
|
ax.fill_between(xx, yy+0.25*yy, yy-0.25*yy, **fsBa)
|
|
ax.plot(xx, yy, **lsB)
|
|
|
|
ax = fig.add_subplot(spec[1, 0])
|
|
ax.set_xlim(0.0, np.pi)
|
|
ax.set_xticks(np.arange(0.125*np.pi, 1.*np.pi, 0.125*np.pi))
|
|
ax.set_xticklabels([])
|
|
ax.set_ylim(0.0, 3.0)
|
|
ax.yaxis.set_major_locator(plt.NullLocator())
|
|
ax.text(-0.2, 0.5*3.5, 'Activity', rotation='vertical', va='center')
|
|
xx = np.arange(0.0, 1.0*np.pi, 0.01)
|
|
prefphases = np.arange(0.125*np.pi, 1.*np.pi, 0.125*np.pi)
|
|
responses = []
|
|
xresponse = 0.475*np.pi
|
|
for pp, ls, ps in zip(prefphases, [lsE, lsC, lsD, lsB, lsD, lsC, lsE],
|
|
[psE, psC, psD, psB, psD, psC, psE]) :
|
|
yy = np.exp(np.cos(2.0*(xx+pp)))
|
|
#ax.plot(xx, yy, color=cm.autumn(2.0*np.abs(pp/np.pi-0.5), 1))
|
|
ax.plot(xx, yy, **ls)
|
|
y = np.exp(np.cos(2.0*(xresponse+pp)))
|
|
responses.append(y + rng.randn()*0.25*y)
|
|
ax.plot(xresponse, y, **ps)
|
|
responses = np.array(responses)
|
|
|
|
ax = fig.add_subplot(spec[2, 0])
|
|
ax.show_spines('')
|
|
r = 0.3
|
|
ax.set_ylim(-1.1*r, 1.1*r)
|
|
for pp in prefphases:
|
|
ax.plot([pp-0.5*r*np.cos(pp), pp+0.5*r*np.cos(pp)], [-r*np.sin(pp), r*np.sin(pp)],
|
|
colors['black'], lw=6, clip_on=False)
|
|
|
|
ax = fig.add_subplot(spec[3, 0])
|
|
ax.set_xlim(0.0, np.pi)
|
|
ax.set_xticks(np.arange(0.125*np.pi, 1.*np.pi, 0.125*np.pi))
|
|
ax.set_xticklabels([])
|
|
ax.set_ylim(-1600, 0)
|
|
ax.yaxis.set_major_locator(plt.NullLocator())
|
|
ax.set_xlabel('Orientation')
|
|
ax.text(-0.2, -800, 'Log-Likelihood', rotation='vertical', va='center')
|
|
phases = np.linspace(0.0, 1.1*np.pi, 100)
|
|
probs = np.zeros((len(responses), len(phases)))
|
|
for k, (pp, r) in enumerate(zip(prefphases, responses)) :
|
|
y = np.exp(np.cos(2.0*(phases+pp)))
|
|
sigma = 0.1*y
|
|
probs[k,:] = np.exp(-0.5*((r-y)/sigma)**2.0)/np.sqrt(2.0*np.pi)/sigma
|
|
loglikelihood = np.sum(np.log(probs), 0)
|
|
maxl = np.max(loglikelihood)
|
|
maxp = phases[np.argmax(loglikelihood)]
|
|
ax.annotate('',
|
|
xy=(maxp, -1600), xycoords='data',
|
|
xytext=(maxp, -30), textcoords='data',
|
|
arrowprops=dict(arrowstyle="->", relpos=(0.5,0.5),
|
|
connectionstyle="angle3,angleA=80,angleB=90") )
|
|
ax.text(maxp+0.05, -1100, 'most likely\norientation\ngiven the responses')
|
|
ax.plot(phases, loglikelihood, **lsA)
|
|
|
|
plt.savefig('mlecoding.pdf')
|