413 lines
13 KiB
TeX
413 lines
13 KiB
TeX
\documentclass{beamer}
|
|
|
|
%%%%% title %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
\title[]{Scientific Computing --- Point Processes}
|
|
\author[]{Jan Benda}
|
|
\institute[]{Neuroethology}
|
|
\date[]{WS 14/15}
|
|
\titlegraphic{\includegraphics[width=0.3\textwidth]{UT_WBMW_Rot_RGB}}
|
|
|
|
%%%%% beamer %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
\mode<presentation>
|
|
{
|
|
\usetheme{Singapore}
|
|
\setbeamercovered{opaque}
|
|
\usecolortheme{tuebingen}
|
|
\setbeamertemplate{navigation symbols}{}
|
|
\usefonttheme{default}
|
|
\useoutertheme{infolines}
|
|
% \useoutertheme{miniframes}
|
|
}
|
|
|
|
%\AtBeginSection[]
|
|
%{
|
|
% \begin{frame}<beamer>
|
|
% \begin{center}
|
|
% \Huge \insertsectionhead
|
|
% \end{center}
|
|
% \end{frame}
|
|
%}
|
|
|
|
\setbeamertemplate{blocks}[rounded][shadow=true]
|
|
\setcounter{tocdepth}{1}
|
|
|
|
%%%%% packages %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
\usepackage[english]{babel}
|
|
\usepackage{amsmath}
|
|
\usepackage{bm}
|
|
\usepackage{pslatex} % nice font for pdf file
|
|
%\usepackage{multimedia}
|
|
|
|
\usepackage{dsfont}
|
|
\newcommand{\naZ}{\mathds{N}}
|
|
\newcommand{\gaZ}{\mathds{Z}}
|
|
\newcommand{\raZ}{\mathds{Q}}
|
|
\newcommand{\reZ}{\mathds{R}}
|
|
\newcommand{\reZp}{\mathds{R^+}}
|
|
\newcommand{\reZpN}{\mathds{R^+_0}}
|
|
\newcommand{\koZ}{\mathds{C}}
|
|
|
|
%%%% graphics %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
\usepackage{graphicx}
|
|
\newcommand{\texpicture}[1]{{\sffamily\small\input{#1.tex}}}
|
|
|
|
%%%%% listings %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
\usepackage{listings}
|
|
\lstset{
|
|
basicstyle=\ttfamily,
|
|
numbers=left,
|
|
showstringspaces=false,
|
|
language=Matlab,
|
|
commentstyle=\itshape\color{darkgray},
|
|
keywordstyle=\color{blue},
|
|
stringstyle=\color{green},
|
|
backgroundcolor=\color{blue!10},
|
|
breaklines=true,
|
|
breakautoindent=true,
|
|
columns=flexible,
|
|
frame=single,
|
|
captionpos=b,
|
|
xleftmargin=1em,
|
|
xrightmargin=1em,
|
|
aboveskip=10pt
|
|
}
|
|
|
|
|
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
\begin{document}
|
|
|
|
\begin{frame}[plain]
|
|
\frametitle{}
|
|
\vspace{-1cm}
|
|
\titlepage % erzeugt Titelseite
|
|
\end{frame}
|
|
|
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
\begin{frame}
|
|
\frametitle{Content}
|
|
\tableofcontents
|
|
\end{frame}
|
|
|
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
\section{Point processes}
|
|
|
|
\begin{frame}
|
|
\frametitle{Point process}
|
|
\vspace{-3ex}
|
|
\texpicture{pointprocessscetchA}
|
|
|
|
A point process is a stochastic (or random) process that generates a sequence of events
|
|
at times $\{t_i\}$, $t_i \in \reZ$.
|
|
|
|
For each point process there is an underlying continuous-valued
|
|
process evolving in time. The associated point process occurs when
|
|
the underlying continuous process crosses a threshold.
|
|
Examples:
|
|
\begin{itemize}
|
|
\item Spikes/heartbeat: generated by the dynamics of the membrane potential of neurons/heart cells.
|
|
\item Earth quakes: generated by the pressure dynamics between the tectonic plates on either side of a geological fault line.
|
|
\item Onset of cricket/frogs/birds/... songs: generated by the dynamics of the state of a nervous system.
|
|
\end{itemize}
|
|
\end{frame}
|
|
|
|
\begin{frame}
|
|
\frametitle{Point process}
|
|
\texpicture{pointprocessscetchB}
|
|
\end{frame}
|
|
|
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
\section{Homogeneous Poisson process}
|
|
|
|
\begin{frame}
|
|
\frametitle{Homogeneous Poisson process}
|
|
The probability $p(t)\delta t$ of an event occuring at time $t$
|
|
is independent of $t$ and independent of any previous event
|
|
(independent of event history).
|
|
|
|
The probability $P$ for an event occuring within a time bin of width $\Delta t$
|
|
is
|
|
\[ P=\lambda \cdot \Delta t \]
|
|
for a Poisson process with rate $\lambda$.
|
|
\includegraphics[width=1\textwidth]{poissonraster100hz}
|
|
\end{frame}
|
|
|
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
\section{Interval statistics}
|
|
|
|
\begin{frame}
|
|
\frametitle{Rate}
|
|
Rate of events $r$ (``spikes per time'') measured in Hertz.
|
|
\begin{itemize}
|
|
\item Number of events $N$ per observation time $W$: $r = \frac{N}{W}$
|
|
\item Without boundary effects: $r = \frac{N-1}{t_N-t_1}$
|
|
\item Inverse interval: $r = \frac{1}{\mu_{ISI}}$
|
|
\end{itemize}
|
|
\end{frame}
|
|
|
|
\begin{frame}
|
|
\frametitle{(Interspike) interval statistics}
|
|
\begin{itemize}
|
|
\item Histogram $p(T)$ of intervals $T$. Normalized to $\int_0^{\infty} p(T) \; dT = 1$
|
|
\item Mean interval $\mu_{ISI} = \langle T \rangle = \frac{1}{n}\sum\limits_{i=1}^n T_i$
|
|
\item Variance of intervals $\sigma_{ISI}^2 = \langle (T - \langle T \rangle)^2 \rangle$\vspace{1ex}
|
|
\item Coefficient of variation $CV_{ISI} = \frac{\sigma_{ISI}}{\mu_{ISI}}$
|
|
\item Diffusion coefficient $D_{ISI} = \frac{\sigma_{ISI}^2}{2\mu_{ISI}^3}$
|
|
\vfill
|
|
\end{itemize}
|
|
\includegraphics[width=0.45\textwidth]{poissonisih100hz}\hfill
|
|
\includegraphics[width=0.45\textwidth]{lifisih16}
|
|
\end{frame}
|
|
|
|
\begin{frame}
|
|
\frametitle{Interval statistics of homogeneous Poisson process}
|
|
\begin{itemize}
|
|
\item Exponential distribution of intervals $T$: $p(T) = \lambda e^{-\lambda T}$
|
|
\item Mean interval $\mu_{ISI} = \frac{1}{\lambda}$
|
|
\item Variance of intervals $\sigma_{ISI}^2 = \frac{1}{\lambda^2}$
|
|
\item Coefficient of variation $CV_{ISI} = 1$
|
|
\end{itemize}
|
|
\vfill
|
|
\includegraphics[width=0.45\textwidth]{poissonisihexp20hz}\hfill
|
|
\includegraphics[width=0.45\textwidth]{poissonisihexp100hz}
|
|
\end{frame}
|
|
|
|
\begin{frame}
|
|
\frametitle{Interval return maps}
|
|
Scatter plot between succeeding intervals separated by lag $k$.
|
|
\vfill
|
|
Poisson process $\lambda=100$\,Hz:
|
|
\includegraphics[width=1\textwidth]{poissonreturnmap100hz}\hfill
|
|
\end{frame}
|
|
|
|
\begin{frame}
|
|
\frametitle{Serial interval correlations}
|
|
Correlation coefficients between succeeding intervals separated by lag $k$:
|
|
\[ \rho_k = \frac{\langle (T_{i+k} - \langle T \rangle)(T_i - \langle T \rangle) \rangle}{\langle (T_i - \langle T \rangle)^2\rangle} = \frac{{\rm cov}(T_{i+k}, T_i)}{{\rm var}(T_i)} \]
|
|
\begin{itemize}
|
|
\item $\rho_0=1$ (correlation of each interval with itself).
|
|
\item Poisson process: $\rho_k =0$ for $k>0$ (renewal process!)
|
|
\end{itemize}
|
|
\vfill
|
|
\includegraphics[width=0.7\textwidth]{poissonserial100hz}
|
|
\end{frame}
|
|
|
|
|
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
\section{Count statistics}
|
|
|
|
\begin{frame}
|
|
\frametitle{Count statistics}
|
|
Histogram of number of events $N$ (counts) within observation window of duration $W$.
|
|
|
|
\vfill
|
|
\includegraphics[width=0.48\textwidth]{poissoncounthist100hz10ms}\hfill
|
|
\includegraphics[width=0.48\textwidth]{poissoncounthist100hz100ms}
|
|
\end{frame}
|
|
|
|
\begin{frame}
|
|
\frametitle{Count statistics of Poisson process}
|
|
Poisson distribution:
|
|
\[ P(k) = \frac{(\lambda W)^ke^{\lambda W}}{k!} \]
|
|
|
|
\vfill
|
|
\includegraphics[width=0.48\textwidth]{poissoncounthistdist100hz10ms}\hfill
|
|
\includegraphics[width=0.48\textwidth]{poissoncounthistdist100hz100ms}
|
|
\end{frame}
|
|
|
|
\begin{frame}
|
|
\frametitle{Count statistics --- Fano factor}
|
|
Statistics of number of events $N$ within observation window of duration $W$.
|
|
\begin{itemize}
|
|
\item Mean count: $\mu_N = \langle N \rangle$
|
|
\item Count variance: $\sigma_N^2 = \langle (N - \langle N \rangle)^2 \rangle$
|
|
\item Fano factor (variance divided by mean): $F = \frac{\sigma_N^2}{\mu_N}$
|
|
\item Poisson process: $F=1$
|
|
\end{itemize}
|
|
\vfill
|
|
Poisson process $\lambda=100$\,Hz:
|
|
\includegraphics[width=1\textwidth]{poissonfano100hz}
|
|
\end{frame}
|
|
|
|
|
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
\section{Integrate-and-fire models}
|
|
|
|
\begin{frame}
|
|
\frametitle{Integrate-and-fire models}
|
|
Leaky integrate-and-fire model (LIF):
|
|
\[ \tau \frac{dV}{dt} = -V + RI + D\xi \]
|
|
Whenever membrane potential $V(t)$ crosses the firing threshold $\theta$, a spike is emitted and
|
|
$V(t)$ is reset to $V_{reset}$.
|
|
\begin{itemize}
|
|
\item $\tau$: membrane time constant (typically 10\,ms)
|
|
\item $R$: input resistance (here 1\,mV (!))
|
|
\item $D\xi$: additive Gaussian white noise of strength $D$
|
|
\item $\theta$: firing threshold (here 10\,mV)
|
|
\item $V_{reset}$: reset potential (here 0\,mV)
|
|
\end{itemize}
|
|
\end{frame}
|
|
|
|
\begin{frame}
|
|
\frametitle{Integrate-and-fire models}
|
|
Discretization with time step $\Delta t$: $V(t) \rightarrow V_i,\;t_i = i \Delta t$.\\
|
|
Euler integration:
|
|
\begin{eqnarray*}
|
|
\frac{dV}{dt} & \approx & \frac{V_{i+1} - V_i}{\Delta t} \\
|
|
\Rightarrow \quad V_{i+1} & = & V_i + \Delta t \frac{-V_i+RI_i+\sqrt{2D\Delta t}N_i}{\tau}
|
|
\end{eqnarray*}
|
|
$N_i$ are normally distributed random numbers (Gaussian with zero mean and unit variance)
|
|
--- the $\sqrt{\Delta t}$ is for white noise.
|
|
|
|
\includegraphics[width=0.82\textwidth]{lifraster16}
|
|
\end{frame}
|
|
|
|
\begin{frame}
|
|
\frametitle{Interval statistics of LIF}
|
|
Interval distribution approaches Inverse Gaussian for large $I$:
|
|
\[ p(T) = \frac{1}{\sqrt{4\pi D T^3}}\exp\left[-\frac{(T-\langle T \rangle)^2}{4DT\langle T \rangle^2}\right] \]
|
|
where $\langle T \rangle$ is the mean interspike interval and $D$
|
|
is the diffusion coefficient.
|
|
\vfill
|
|
\includegraphics[width=0.45\textwidth]{lifisihdistr08}\hfill
|
|
\includegraphics[width=0.45\textwidth]{lifisihdistr16}
|
|
\end{frame}
|
|
|
|
\begin{frame}
|
|
\frametitle{Interval statistics of PIF}
|
|
For the perfect integrate-and-fire (PIF)
|
|
\[ \tau \frac{dV}{dt} = RI + D\xi \]
|
|
(the canonical model or supra-threshold firing on a limit cycle)\\
|
|
the Inverse Gaussian describes exactly the interspike interval distribution.
|
|
\vfill
|
|
\includegraphics[width=0.45\textwidth]{pifisihdistr01}\hfill
|
|
\includegraphics[width=0.45\textwidth]{pifisihdistr10}
|
|
\end{frame}
|
|
|
|
\begin{frame}
|
|
\frametitle{Interval return map of LIF}
|
|
LIF $I=15.7$:
|
|
\includegraphics[width=1\textwidth]{lifreturnmap16}
|
|
\end{frame}
|
|
|
|
\begin{frame}
|
|
\frametitle{Serial correlations of LIF}
|
|
LIF $I=15.7$:
|
|
\includegraphics[width=1\textwidth]{lifserial16}\\
|
|
Integrate-and-fire driven with white noise are still renewal processes!
|
|
\end{frame}
|
|
|
|
\begin{frame}
|
|
\frametitle{Count statistics of LIF}
|
|
LIF $I=15.7$:
|
|
\includegraphics[width=1\textwidth]{liffano16}\\
|
|
Fano factor is not one!
|
|
\end{frame}
|
|
|
|
|
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
\begin{frame}
|
|
\frametitle{Interval statistics of LIF with OU noise}
|
|
\begin{eqnarray*}
|
|
\tau \frac{dV}{dt} & = & -V + RI + U \\
|
|
\tau_{OU} \frac{dU}{dt} & = & - U + D\xi
|
|
\end{eqnarray*}
|
|
Ohrnstein-Uhlenbeck noise is lowpass filtered white noise.
|
|
\includegraphics[width=0.45\textwidth]{lifouisihdistr08-100ms}\hfill
|
|
\includegraphics[width=0.45\textwidth]{lifouisihdistr16-100ms}\\
|
|
More peaky than the inverse Gaussian!
|
|
\end{frame}
|
|
|
|
\begin{frame}
|
|
\frametitle{Interval return map of LIF with OU noise}
|
|
LIF $I=15.7$, $\tau_{OU}=100$\,ms:
|
|
\includegraphics[width=1\textwidth]{lifoureturnmap16-100ms}
|
|
\end{frame}
|
|
|
|
\begin{frame}
|
|
\frametitle{Serial correlations of LIF with OU noise}
|
|
LIF $I=15.7$, $\tau_{OU}=100$\,ms:
|
|
\includegraphics[width=1\textwidth]{lifouserial16-100ms}\\
|
|
OU-noise introduces positive interval correlations!
|
|
\end{frame}
|
|
|
|
\begin{frame}
|
|
\frametitle{Count statistics of LIF with OU noise}
|
|
LIF $I=15.7$, $\tau_{OU}=100$\,ms:
|
|
\includegraphics[width=1\textwidth]{lifoufano16-100ms}\\
|
|
Fano factor increases with count window duration.
|
|
\end{frame}
|
|
|
|
|
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
\begin{frame}
|
|
\frametitle{Interval statistics of LIF with adaptation}
|
|
\begin{eqnarray*}
|
|
\tau \frac{dV}{dt} & = & -V - A + RI + D\xi \\
|
|
\tau_{adapt} \frac{dA}{dt} & = & - A
|
|
\end{eqnarray*}
|
|
Adaptation $A$ with time constant $\tau_{adapt}$ and increment $\Delta A$ at spike.
|
|
\includegraphics[width=0.45\textwidth]{lifadaptisihdistr08-100ms}\hfill
|
|
\includegraphics[width=0.45\textwidth]{lifadaptisihdistr65-100ms}\\
|
|
Similar to LIF with white noise.
|
|
\end{frame}
|
|
|
|
\begin{frame}
|
|
\frametitle{Interval return map of LIF with adaptation}
|
|
LIF $I=10$, $\tau_{adapt}=100$\,ms:
|
|
\includegraphics[width=1\textwidth]{lifadaptreturnmap10-100ms}\\
|
|
Negative correlation at lag one.
|
|
\end{frame}
|
|
|
|
\begin{frame}
|
|
\frametitle{Serial correlations of LIF with adaptation}
|
|
LIF $I=10$, $\tau_{adapt}=100$\,ms:
|
|
\includegraphics[width=1\textwidth]{lifadaptserial10-100ms}\\
|
|
Adaptation with white noise introduces negative interval correlations!
|
|
\end{frame}
|
|
|
|
\begin{frame}
|
|
\frametitle{Count statistics of LIF with adaptation}
|
|
LIF $I=10$, $\tau_{adapt}=100$\,ms:
|
|
\includegraphics[width=1\textwidth]{lifadaptfano10-100ms}\\
|
|
Fano factor decreases with count window duration.
|
|
\end{frame}
|
|
|
|
|
|
\end{document}
|
|
|
|
|
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
\section{Non stationary}
|
|
\subsection{Inhomogeneous Poisson process}
|
|
\subsection{Firing rate}
|
|
\subsection{Instantaneous rate}
|
|
\subsection{Autocorrelation}
|
|
\subsection{Crosscorrelation}
|
|
\subsection{Joint PSTH}
|
|
|
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
\section{Renewal process}
|
|
\subsection{Superthreshold firing}
|
|
\subsection{Subthreshold firing}
|
|
\section{Non-renewal processes}
|
|
\subsection{Bursting}
|
|
\subsection{Resonator}
|
|
|
|
|
|
\subsection{Standard distributions}
|
|
\subsubsection{Gamma}
|
|
\subsubsection{How to read ISI histograms}
|
|
refractoriness, poisson tail, sub-, supra-threshold, missed spikes
|
|
|
|
|
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
\section{Correlation with stimulus}
|
|
\subsection{Tuning curve}
|
|
\subsection{Linear filter}
|
|
\subsection{Spatiotemporal receptive field}
|
|
\subsection{Generalized linear model}
|
|
|
|
\begin{frame}
|
|
\end{frame}
|