This repository has been archived on 2021-05-17. You can view files and clone it, but cannot push or open issues or pull requests.
scientificComputing/statistics/lecture/pdfprobabilities.py

29 lines
1.0 KiB
Python

import numpy as np
import matplotlib.pyplot as plt
from plotstyle import *
# normal distribution:
x = np.arange(-3.0, 5.0, 0.01)
g = np.exp(-0.5*x*x)/np.sqrt(2.0*np.pi)
x1=0.0
x2=1.0
fig, ax = plt.subplots(figsize=cm_size(figure_width, 1.2*figure_height))
ax.set_xlabel('x')
ax.set_ylabel('Probability density p(x)')
ax.set_ylim(0.0, 0.46)
ax.set_yticks(np.arange(0.0, 0.45, 0.1))
ax.annotate('Gaussian',
xy=(-1.0, 0.28), xycoords='data',
xytext=(-2.5, 0.35), textcoords='data', ha='left',
arrowprops=dict(arrowstyle="->", relpos=(0.5,0.0),
connectionstyle="angle3,angleA=10,angleB=110"))
ax.annotate('$P(0<x<1) = \int_0^1 p(x) \, dx$',
xy=(0.5, 0.24), xycoords='data',
xytext=(1.2, 0.4), textcoords='data', ha='left',
arrowprops=dict(arrowstyle="->", relpos=(0.0,0.5),
connectionstyle="angle3,angleA=10,angleB=80"))
ax.fill_between(x[(x>x1)&(x<x2)], 0.0, g[(x>x1)&(x<x2)], **fsBs)
ax.plot(x,g, **lsA)
fig.savefig('pdfprobabilities.pdf')