This repository has been archived on 2021-05-17. You can view files and clone it, but cannot push or open issues or pull requests.
scientificComputing/statistics/lecture/pdfhistogram.py

32 lines
839 B
Python

import numpy as np
import matplotlib.pyplot as plt
from plotstyle import *
# normal distribution:
rng = np.random.RandomState(6281)
x = np.arange(-4.0, 4.0, 0.01)
g = np.exp(-0.5*x*x)/np.sqrt(2.0*np.pi)
r = rng.randn(100)
fig, (ax1, ax2) = plt.subplots(1, 2)
ax1.set_xlabel('x')
ax1.set_xlim(-3.2, 3.2)
ax1.set_xticks(np.arange(-3.0, 3.1, 1.0))
ax1.set_ylabel('Frequency')
ax1.set_yticks(np.arange(0.0, 41.0, 10.0))
ax1.hist(r, 5, zorder=-10, **fsB)
ax1.hist(r, 20, zorder=-5, **fsC)
ax2.set_xlabel('x')
ax2.set_xlim(-3.2, 3.2)
ax2.set_xticks(np.arange(-3.0, 3.1, 1.0))
ax2.set_ylabel('Probab. density p(x)')
ax2.set_ylim(0.0, 0.44)
ax2.set_yticks(np.arange(0.0, 0.41, 0.1))
ax2.plot(x, g, zorder=-1, **lsA)
ax2.hist(r, 5, normed=True, zorder=-10, **fsB)
ax2.hist(r, 20, normed=True, zorder=-5, **fsC)
fig.savefig('pdfhistogram.pdf')