This repository has been archived on 2021-05-17. You can view files and clone it, but cannot push or open issues or pull requests.
scientificComputing/projects/project_populationvector/solution/populationvector.m

194 lines
4.9 KiB
Matlab

close all
datapath = '../data/';
files = dir(strcat(datapath, 'unit*.mat'));
% for file = files'
% a = load(strcat(datapath, file.name));
% spikes = a.spikes;
% angles = a.angles;
% figure()
% for k = 1:size(spikes, 1)
% subplot(3, 4, k)
% spikeraster(spikes(k,:), -0.2, 0.6);
% end
% end
%% tuning curves:
close all
cosine = @(p,xdata)0.5*p(1).*(1.0+cos(2.0*pi*(xdata-p(2))/180.0));
files = dir(strcat(datapath, 'unit*.mat'));
phases = zeros(length(files), 1);
gains = zeros(length(files), 1);
figure()
for j = 1:length(files)
file = files(j);
a = load(strcat(datapath, file.name));
spikes = a.spikes;
angles = a.angles;
rates = zeros(size(spikes, 1), 1);
for k = 1:size(spikes, 1)
r = firingrate(spikes(k,:), 0.0, 0.2);
rates(k) = r;
end
[mr, maxi] = max(rates);
p0 = [mr, angles(maxi)];
%p = p0;
p = lsqcurvefit(cosine, p0, angles, rates');
phase = p(2);
if phase > 180.0
phase = phase - 180.0;
end
if phase < 0.0
phase = phase + 180.0;
end
phases(j) = phase;
gains(j) = p(1);
subplot(2, 3, j);
plot(angles, rates, 'b');
hold on;
a = 0:0.1:180;
plot(a, cosine(p, a), 'r');
hold off;
xlim([0.0 180.0])
ylim([0.0 50.0])
title(sprintf('unit %d', j))
end
%% read out:
a = load(strcat(datapath, 'population04.mat'));
spikes = a.spikes;
angle = a.angle;
% unitphases = a.phases*180.0;
% unitphases(unitphases>180.0) = unitphases(unitphases>180.0) - 180.0;
figure();
subplot(2, 2, 1);
angleestimates1 = zeros(size(spikes, 2), 1);
angleestimates2 = zeros(size(spikes, 2), 1);
angleestimates3 = zeros(size(spikes, 2), 1);
[x, inx] = sort(phases);
% loop over trials:
for j = 1:size(spikes, 2)
rates = zeros(size(spikes, 1), 1);
for k = 1:size(spikes, 1)
r = firingrate(spikes(k, j), 0.0, 0.2);
rates(k) = r;
end
plot(phases(inx), rates(inx), '-o');
hold on;
angleestimates1(j) = popvecangle(phases, rates);
[m, i] = max(rates);
angleestimates2(j) = phases(i);
angleestimates3(j) = maxlikelihoodangle(phases, gains, rates);
end
xlabel('preferred angle')
ylabel('firing rate')
hold off;
subplot(2, 2, 2);
hist(angleestimates1);
xlabel('population vector angle')
subplot(2, 2, 3);
hist(angleestimates2);
xlabel('max. rate angle')
subplot(2, 2, 4);
hist(angleestimates3);
xlabel('max. likelihood angle')
angle
mean(angleestimates1)
mean(angleestimates2)
mean(angleestimates3)
%% read out robustness:
files = dir(strcat(datapath, 'population*.mat'));
angles = zeros(length(files), 1);
e1mm = zeros(length(files), 1);
e2mm = zeros(length(files), 1);
e3mm = zeros(length(files), 1);
e1sm = zeros(length(files), 1);
e1ss = zeros(length(files), 1);
e2sm = zeros(length(files), 1);
e2ss = zeros(length(files), 1);
e3sm = zeros(length(files), 1);
e3ss = zeros(length(files), 1);
for i = 1:length(files)
file = files(i);
a = load(strcat(datapath, file.name));
spikes = a.spikes;
angle = a.angle;
% multi trial estimates:
rates = zeros(size(spikes, 1), 1);
for k = 1:size(spikes, 1)
r = zeros(size(spikes, 2), 1);
for j = 1:size(spikes, 2)
r(j) = firingrate(spikes(k, j), 0.0, 0.2);
end
rates(k) = mean(r);
end
e1mm(i) = popvecangle(phases, rates);
[m, inx] = max(rates);
e2mm(i) = phases(inx);
e3mm(i) = maxlikelihoodangle(phases, gains, rates);
% single trial estimates:
angleestimates1 = zeros(size(spikes, 2), 1);
angleestimates2 = zeros(size(spikes, 2), 1);
angleestimates3 = zeros(size(spikes, 2), 1);
for j = 1:size(spikes, 2)
rates = zeros(size(spikes, 1), 1);
for k = 1:size(spikes, 1)
r = firingrate(spikes(k, j), 0.0, 0.2);
rates(k) = r;
end
angleestimates1(j) = popvecangle(phases, rates);
[m, inx] = max(rates);
angleestimates2(j) = phases(inx);
angleestimates3(j) = maxlikelihoodangle(phases, gains, rates);
end
angles(i) = angle;
e1sm(i) = mean(angleestimates1);
e1ss(i) = std(angleestimates1);
e2sm(i) = mean(angleestimates2);
e2ss(i) = std(angleestimates2);
e3sm(i) = mean(angleestimates3);
e3ss(i) = std(angleestimates3);
end
x = 0:180.0;
figure();
subplot(1, 3, 1);
hold on;
plot(x, x, 'k');
scatter(angles, e1mm);
xlabel('stimulus angle')
ylabel('estimated angle (population vector)')
subplot(1, 3, 2);
hold on;
plot(x, x, 'k');
scatter(angles, e2mm);
xlabel('stimulus angle')
ylabel('estimated angle (maximum firing rate)')
subplot(1, 3, 3);
hold on;
plot(x, x, 'k');
scatter(angles, e3mm);
xlabel('stimulus angle')
ylabel('estimated angle (maximum likelihood)')
figure();
subplot(1, 3, 1);
hold on;
plot(x, x, 'k');
scatter(angles, e1sm);
xlabel('stimulus angle')
ylabel('estimated angle (population vector)')
subplot(1, 3, 2);
hold on;
plot(x, x, 'k');
scatter(angles, e2sm);
xlabel('stimulus angle')
ylabel('estimated angle (maximum firing rate)')
subplot(1, 3, 3);
hold on;
plot(x, x, 'k');
scatter(angles, e3sm);
xlabel('stimulus angle')
ylabel('estimated angle (maximum likelihood)')