import matplotlib.pyplot as plt import numpy as np from IPython import embed time = np.arange(0.,10., 0.001) x = np.random.randn(len(time)) f = np.ones(300)/300 x = np.convolve(x, f, mode='same') selection = x[(time > 5.) & (time < 6.)] fig = plt.figure() fig.set_facecolor("white") fig.set_size_inches(5.5, 2.5) ax = fig.add_subplot(111) ax.plot(time, x, label="data", lw=.5) ax.plot(time[(time > 5.) & (time < 6.)], selection, color='r', lw=0.5, label="selection") ax.spines["right"].set_visible(False) ax.spines["top"].set_visible(False) ax.yaxis.set_ticks_position('left') ax.xaxis.set_ticks_position('bottom') ax.xaxis.linewidth=1.5 ax.yaxis.linewidth=1.5 ax.tick_params(direction="out", width=1.25) ax.tick_params(direction="out", width=1.25) ax.set_xlabel("time [s]") ax.set_ylabel("intensity") ax.legend(fontsize=8) fig.tight_layout() fig.savefig("images/logicalIndexingTime.pdf")