import numpy as np import matplotlib.pyplot as plt from plotstyle import * def hompoisson(rate, trials, duration) : spikes = [] for k in range(trials) : times = [] t = 0.0 while t < duration : t += np.random.exponential(1/rate) times.append( t ) spikes.append( times ) return spikes def inhompoisson(rate, trials, dt) : spikes = [] p = rate*dt for k in range(trials) : x = np.random.rand(len(rate)) times = dt*np.nonzero(x
= vthresh : v = vreset times.append(k*dt) spikes.append( times ) return spikes def isis( spikes ) : isi = [] for k in range(len(spikes)) : isi.extend(np.diff(spikes[k])) return np.array( isi ) def plotreturnmap(ax, isis, lag=1, max=None) : ax.set_xlabel(r'ISI$_i$', 'ms') ax.set_ylabel(r'ISI$_{i+1}$', 'ms') if max != None : ax.set_xlim(0.0, 1000.0*max) ax.set_ylim(0.0, 1000.0*max) ax.scatter(1000.0*isis[:-lag], 1000.0*isis[lag:], c=colors['blue']) # parameter: rate = 20.0 drate = 50.0 trials = 10 duration = 10.0 dt = 0.001 tau = 0.1; # homogeneous spike trains: homspikes = hompoisson(rate, trials, duration) # OU noise: rng = np.random.RandomState(54637281) time = np.arange(0.0, duration, dt) x = np.zeros(time.shape)+rate n = rng.randn(len(time))*drate*tau/np.sqrt(dt)+rate for k in range(1,len(x)) : x[k] = x[k-1] + (n[k]-x[k-1])*dt/tau x[x<0.0] = 0.0 # pif spike trains: inhspikes = pifspikes(x, trials, dt, D=0.3) fig, (ax1, ax2) = plt.subplots(1, 2) fig.subplots_adjust(**adjust_fs(fig, left=6.5, top=1.5)) ax1.set_title('stationary') plotreturnmap(ax1, isis(homspikes), 1, 0.3) ax2.set_title('non-stationary') plotreturnmap(ax2, isis(inhspikes), 1, 0.3) plt.savefig('returnmapexamples.pdf') plt.close()