n = 200; corrs = [ 1.0, 0.6, 0.0, -0.9 ]; for k = [1:length(corrs)] r = corrs(k); x = randn(n, 1); y = r*x; % linear dependence of y on x % add noise to destroy perfect correlations: y = y + sqrt(1.0-r*r)*randn(n, 1); % compute correlation coefficient of data: rho = corr(x, y); subplot(2, 2, k) scatter( x, y ) text( -2, 2.5, sprintf('r=%.1f', rho) ) xlabel('x') ylabel('y') xlim([-3.0, 3.0]) ylim([-3.0, 3.0]) end