\documentclass{beamer} %%%%% title %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \title[]{Scientific Computing --- Point Processes} \author[]{Jan Benda} \institute[]{Neuroethology} \date[]{WS 14/15} \titlegraphic{\includegraphics[width=0.3\textwidth]{UT_WBMW_Rot_RGB}} %%%%% beamer %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \mode { \usetheme{Singapore} \setbeamercovered{opaque} \usecolortheme{tuebingen} \setbeamertemplate{navigation symbols}{} \usefonttheme{default} \useoutertheme{infolines} % \useoutertheme{miniframes} } %\AtBeginSection[] %{ % \begin{frame} % \begin{center} % \Huge \insertsectionhead % \end{center} % \end{frame} %} \setbeamertemplate{blocks}[rounded][shadow=true] \setcounter{tocdepth}{1} %%%%% packages %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \usepackage[english]{babel} \usepackage{amsmath} \usepackage{bm} \usepackage{pslatex} % nice font for pdf file %\usepackage{multimedia} \usepackage{dsfont} \newcommand{\naZ}{\mathds{N}} \newcommand{\gaZ}{\mathds{Z}} \newcommand{\raZ}{\mathds{Q}} \newcommand{\reZ}{\mathds{R}} \newcommand{\reZp}{\mathds{R^+}} \newcommand{\reZpN}{\mathds{R^+_0}} \newcommand{\koZ}{\mathds{C}} %%%% graphics %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \usepackage{graphicx} %%%%% listings %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \usepackage{listings} \lstset{ basicstyle=\ttfamily, numbers=left, showstringspaces=false, language=Matlab, commentstyle=\itshape\color{darkgray}, keywordstyle=\color{blue}, stringstyle=\color{green}, backgroundcolor=\color{blue!10}, breaklines=true, breakautoindent=true, columns=flexible, frame=single, captionpos=b, xleftmargin=1em, xrightmargin=1em, aboveskip=10pt } %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \begin{document} \begin{frame}[plain] \frametitle{} \vspace{-1cm} \titlepage % erzeugt Titelseite \end{frame} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \begin{frame} \frametitle{Content} \tableofcontents \end{frame} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \section{Point processes} \begin{frame} \frametitle{Point process} \vspace{-3ex} \includegraphics{pointprocesssketch} A point process is a stochastic (or random) process that generates a sequence of events at times $\{t_i\}$, $t_i \in \reZ$. For each point process there is an underlying continuous-valued process evolving in time. The associated point process occurs when the underlying continuous process crosses a threshold. Examples: \begin{itemize} \item Spikes/heartbeat: generated by the dynamics of the membrane potential of neurons/heart cells. \item Earth quakes: generated by the pressure dynamics between the tectonic plates on either side of a geological fault line. \item Onset of cricket/frogs/birds/... songs: generated by the dynamics of the state of a nervous system. \end{itemize} \end{frame} \begin{frame} \frametitle{Point process} \includegraphics{pointprocesssketch} \end{frame} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \section{Homogeneous Poisson process} \begin{frame} \frametitle{Homogeneous Poisson process} The probability $p(t)\delta t$ of an event occuring at time $t$ is independent of $t$ and independent of any previous event (independent of event history). The probability $P$ for an event occuring within a time bin of width $\Delta t$ is \[ P=\lambda \cdot \Delta t \] for a Poisson process with rate $\lambda$. \includegraphics[width=1\textwidth]{poissonraster100hz} \end{frame} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \section{Interval statistics} \begin{frame} \frametitle{Rate} Rate of events $r$ (``spikes per time'') measured in Hertz. \begin{itemize} \item Number of events $N$ per observation time $W$: $r = \frac{N}{W}$ \item Without boundary effects: $r = \frac{N-1}{t_N-t_1}$ \item Inverse interval: $r = \frac{1}{\mu_{ISI}}$ \end{itemize} \end{frame} \begin{frame} \frametitle{(Interspike) interval statistics} \begin{itemize} \item Histogram $p(T)$ of intervals $T$. Normalized to $\int_0^{\infty} p(T) \; dT = 1$ \item Mean interval $\mu_{ISI} = \langle T \rangle = \frac{1}{n}\sum\limits_{i=1}^n T_i$ \item Variance of intervals $\sigma_{ISI}^2 = \langle (T - \langle T \rangle)^2 \rangle$\vspace{1ex} \item Coefficient of variation $CV_{ISI} = \frac{\sigma_{ISI}}{\mu_{ISI}}$ \item Diffusion coefficient $D_{ISI} = \frac{\sigma_{ISI}^2}{2\mu_{ISI}^3}$ \vfill \end{itemize} \includegraphics[width=0.45\textwidth]{poissonisih100hz}\hfill \includegraphics[width=0.45\textwidth]{lifisih16} \end{frame} \begin{frame} \frametitle{Interval statistics of homogeneous Poisson process} \begin{itemize} \item Exponential distribution of intervals $T$: $p(T) = \lambda e^{-\lambda T}$ \item Mean interval $\mu_{ISI} = \frac{1}{\lambda}$ \item Variance of intervals $\sigma_{ISI}^2 = \frac{1}{\lambda^2}$ \item Coefficient of variation $CV_{ISI} = 1$ \end{itemize} \vfill \includegraphics[width=0.45\textwidth]{poissonisihexp20hz}\hfill \includegraphics[width=0.45\textwidth]{poissonisihexp100hz} \end{frame} \begin{frame} \frametitle{Interval return maps} Scatter plot between succeeding intervals separated by lag $k$. \vfill Poisson process $\lambda=100$\,Hz: \includegraphics[width=1\textwidth]{poissonreturnmap100hz}\hfill \end{frame} \begin{frame} \frametitle{Serial interval correlations} Correlation coefficients between succeeding intervals separated by lag $k$: \[ \rho_k = \frac{\langle (T_{i+k} - \langle T \rangle)(T_i - \langle T \rangle) \rangle}{\langle (T_i - \langle T \rangle)^2\rangle} = \frac{{\rm cov}(T_{i+k}, T_i)}{{\rm var}(T_i)} \] \begin{itemize} \item $\rho_0=1$ (correlation of each interval with itself). \item Poisson process: $\rho_k =0$ for $k>0$ (renewal process!) \end{itemize} \vfill \includegraphics[width=0.7\textwidth]{poissonserial100hz} \end{frame} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \section{Count statistics} \begin{frame} \frametitle{Count statistics} Histogram of number of events $N$ (counts) within observation window of duration $W$. \vfill \includegraphics[width=0.48\textwidth]{poissoncounthist100hz10ms}\hfill \includegraphics[width=0.48\textwidth]{poissoncounthist100hz100ms} \end{frame} \begin{frame} \frametitle{Count statistics of Poisson process} Poisson distribution: \[ P(k) = \frac{(\lambda W)^ke^{\lambda W}}{k!} \] \vfill \includegraphics[width=0.48\textwidth]{poissoncounthistdist100hz10ms}\hfill \includegraphics[width=0.48\textwidth]{poissoncounthistdist100hz100ms} \end{frame} \begin{frame} \frametitle{Count statistics --- Fano factor} Statistics of number of events $N$ within observation window of duration $W$. \begin{itemize} \item Mean count: $\mu_N = \langle N \rangle$ \item Count variance: $\sigma_N^2 = \langle (N - \langle N \rangle)^2 \rangle$ \item Fano factor (variance divided by mean): $F = \frac{\sigma_N^2}{\mu_N}$ \item Poisson process: $F=1$ \end{itemize} \vfill Poisson process $\lambda=100$\,Hz: \includegraphics[width=1\textwidth]{poissonfano100hz} \end{frame} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \section{Integrate-and-fire models} \begin{frame} \frametitle{Integrate-and-fire models} Leaky integrate-and-fire model (LIF): \[ \tau \frac{dV}{dt} = -V + RI + D\xi \] Whenever membrane potential $V(t)$ crosses the firing threshold $\theta$, a spike is emitted and $V(t)$ is reset to $V_{reset}$. \begin{itemize} \item $\tau$: membrane time constant (typically 10\,ms) \item $R$: input resistance (here 1\,mV (!)) \item $D\xi$: additive Gaussian white noise of strength $D$ \item $\theta$: firing threshold (here 10\,mV) \item $V_{reset}$: reset potential (here 0\,mV) \end{itemize} \end{frame} \begin{frame} \frametitle{Integrate-and-fire models} Discretization with time step $\Delta t$: $V(t) \rightarrow V_i,\;t_i = i \Delta t$.\\ Euler integration: \begin{eqnarray*} \frac{dV}{dt} & \approx & \frac{V_{i+1} - V_i}{\Delta t} \\ \Rightarrow \quad V_{i+1} & = & V_i + \Delta t \frac{-V_i+RI_i+\sqrt{2D\Delta t}N_i}{\tau} \end{eqnarray*} $N_i$ are normally distributed random numbers (Gaussian with zero mean and unit variance) --- the $\sqrt{\Delta t}$ is for white noise. \includegraphics[width=0.82\textwidth]{lifraster16} \end{frame} \begin{frame} \frametitle{Interval statistics of LIF} Interval distribution approaches Inverse Gaussian for large $I$: \[ p(T) = \frac{1}{\sqrt{4\pi D T^3}}\exp\left[-\frac{(T-\langle T \rangle)^2}{4DT\langle T \rangle^2}\right] \] where $\langle T \rangle$ is the mean interspike interval and $D$ is the diffusion coefficient. \vfill \includegraphics[width=0.45\textwidth]{lifisihdistr08}\hfill \includegraphics[width=0.45\textwidth]{lifisihdistr16} \end{frame} \begin{frame} \frametitle{Interval statistics of PIF} For the perfect integrate-and-fire (PIF) \[ \tau \frac{dV}{dt} = RI + D\xi \] (the canonical model or supra-threshold firing on a limit cycle)\\ the Inverse Gaussian describes exactly the interspike interval distribution. \vfill \includegraphics[width=0.45\textwidth]{pifisihdistr01}\hfill \includegraphics[width=0.45\textwidth]{pifisihdistr10} \end{frame} \begin{frame} \frametitle{Interval return map of LIF} LIF $I=15.7$: \includegraphics[width=1\textwidth]{lifreturnmap16} \end{frame} \begin{frame} \frametitle{Serial correlations of LIF} LIF $I=15.7$: \includegraphics[width=1\textwidth]{lifserial16}\\ Integrate-and-fire driven with white noise are still renewal processes! \end{frame} \begin{frame} \frametitle{Count statistics of LIF} LIF $I=15.7$: \includegraphics[width=1\textwidth]{liffano16}\\ Fano factor is not one! \end{frame} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \begin{frame} \frametitle{Interval statistics of LIF with OU noise} \begin{eqnarray*} \tau \frac{dV}{dt} & = & -V + RI + U \\ \tau_{OU} \frac{dU}{dt} & = & - U + D\xi \end{eqnarray*} Ohrnstein-Uhlenbeck noise is lowpass filtered white noise. \includegraphics[width=0.45\textwidth]{lifouisihdistr08-100ms}\hfill \includegraphics[width=0.45\textwidth]{lifouisihdistr16-100ms}\\ More peaky than the inverse Gaussian! \end{frame} \begin{frame} \frametitle{Interval return map of LIF with OU noise} LIF $I=15.7$, $\tau_{OU}=100$\,ms: \includegraphics[width=1\textwidth]{lifoureturnmap16-100ms} \end{frame} \begin{frame} \frametitle{Serial correlations of LIF with OU noise} LIF $I=15.7$, $\tau_{OU}=100$\,ms: \includegraphics[width=1\textwidth]{lifouserial16-100ms}\\ OU-noise introduces positive interval correlations! \end{frame} \begin{frame} \frametitle{Count statistics of LIF with OU noise} LIF $I=15.7$, $\tau_{OU}=100$\,ms: \includegraphics[width=1\textwidth]{lifoufano16-100ms}\\ Fano factor increases with count window duration. \end{frame} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \begin{frame} \frametitle{Interval statistics of LIF with adaptation} \begin{eqnarray*} \tau \frac{dV}{dt} & = & -V - A + RI + D\xi \\ \tau_{adapt} \frac{dA}{dt} & = & - A \end{eqnarray*} Adaptation $A$ with time constant $\tau_{adapt}$ and increment $\Delta A$ at spike. \includegraphics[width=0.45\textwidth]{lifadaptisihdistr08-100ms}\hfill \includegraphics[width=0.45\textwidth]{lifadaptisihdistr65-100ms}\\ Similar to LIF with white noise. \end{frame} \begin{frame} \frametitle{Interval return map of LIF with adaptation} LIF $I=10$, $\tau_{adapt}=100$\,ms: \includegraphics[width=1\textwidth]{lifadaptreturnmap10-100ms}\\ Negative correlation at lag one. \end{frame} \begin{frame} \frametitle{Serial correlations of LIF with adaptation} LIF $I=10$, $\tau_{adapt}=100$\,ms: \includegraphics[width=1\textwidth]{lifadaptserial10-100ms}\\ Adaptation with white noise introduces negative interval correlations! \end{frame} \begin{frame} \frametitle{Count statistics of LIF with adaptation} LIF $I=10$, $\tau_{adapt}=100$\,ms: \includegraphics[width=1\textwidth]{lifadaptfano10-100ms}\\ Fano factor decreases with count window duration. \end{frame} \end{document} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \section{Non stationary} \subsection{Inhomogeneous Poisson process} \subsection{Firing rate} \subsection{Instantaneous rate} \subsection{Autocorrelation} \subsection{Crosscorrelation} \subsection{Joint PSTH} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \section{Renewal process} \subsection{Superthreshold firing} \subsection{Subthreshold firing} \section{Non-renewal processes} \subsection{Bursting} \subsection{Resonator} \subsection{Standard distributions} \subsubsection{Gamma} \subsubsection{How to read ISI histograms} refractoriness, poisson tail, sub-, supra-threshold, missed spikes %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \section{Correlation with stimulus} \subsection{Tuning curve} \subsection{Linear filter} \subsection{Spatiotemporal receptive field} \subsection{Generalized linear model} \begin{frame} \end{frame}