import numpy as np import matplotlib.pyplot as plt import matplotlib.gridspec as gridspec from plotstyle import * fig_size = cm_size(figure_width, figure_height) def create_spikes(nspikes=11, duration=0.5, seed=1000): rng = np.random.RandomState(seed) x = np.linspace(0.0, 1.0, nspikes) # double gaussian rate profile: rate = np.exp(-0.5*((x-0.35)/0.25)**2.0) rate += 1.*np.exp(-0.5*((x-0.9)/0.05)**2.0) isis = 1.0/rate isis += rng.randn(len(isis))*0.2 times = np.cumsum(isis) times *= 1.05*duration/times[-1] times += 0.01 return times def gaussian(sigma, dt): x = np.arange(-4*sigma, 4*sigma, dt) y = np.exp(-0.5 * (x / sigma)**2)/np.sqrt(2*np.pi)/sigma; return x, y def setup_axis(spikes_ax, rate_ax): spikes_ax.show_spines('') spikes_ax.set_yticks([]) spikes_ax.set_ylim(-0.2, 1.0) spikes_ax.text(-0.11, 0.5, 'Spikes', transform=spikes_ax.transAxes, rotation='vertical', va='center') spikes_ax.set_xlim(-1, 500) spikes_ax.set_xticklabels([]) #spikes_ax.set_xticklabels(np.arange(0., 600, 100)) spikes_ax.show_spines('lb') rate_ax.set_xlabel('Time', 'ms') #rate_ax.set_ylabel('Firing rate', 'Hz') rate_ax.text(-0.11, 0.5, axis_label('Rate', 'Hz'), transform=rate_ax.transAxes, rotation='vertical', va='center') rate_ax.set_xlim(0, 500) #rate_ax.set_xticklabels(np.arange(0., 600, 100)) rate_ax.set_ylim(0, 60) rate_ax.set_yticks(np.arange(0,65,20)) def plot_bin_method(): dt = 1e-5 duration = 0.5 spike_times = create_spikes() t = np.arange(0., duration, dt) bins = np.arange(0, 0.55, 0.05) count, _ = np.histogram(spike_times, bins) fig = plt.figure(figsize=fig_size) spec = gridspec.GridSpec(nrows=2, ncols=1, height_ratios=[3, 4], hspace=0.2, **adjust_fs(fig, left=5.5, right=1.5, top=1.5)) spikes_ax = fig.add_subplot(spec[0, 0]) rate_ax = fig.add_subplot(spec[1, 0]) setup_axis(spikes_ax, rate_ax) for ti in spike_times: ti *= 1000.0 spikes_ax.plot([ti, ti], [0., 1.], color=colors['blue'], lw=2) for tb in 1000.0*bins : spikes_ax.plot([tb, tb], [-2.0, 0.75], '-', color="#777777", lw=1, clip_on=False) for i,c in enumerate(count): spikes_ax.text(1000.0*(bins[i]+0.5*bins[1]), 1.1, str(c), color=colors['red'], ha='center') rate = count / 0.05 rate_ax.step(1000.0*bins, np.hstack((rate, rate[-1])), color=colors['orange'], lw=2, where='post') fig.savefig("binmethod.pdf") plt.close() def plot_conv_method(): dt = 1e-5 duration = 0.5 spike_times = create_spikes() kernel_time, kernel = gaussian(0.015, dt) t = np.arange(0., duration, dt) rate = np.zeros(t.shape) rate[np.asarray(np.round(spike_times[:-1]/dt), dtype=int)] = 1 rate = np.convolve(rate, kernel, mode='same') rate = np.roll(rate, -1) fig = plt.figure(figsize=fig_size) spec = gridspec.GridSpec(nrows=2, ncols=1, height_ratios=[3, 4], hspace=0.2, **adjust_fs(fig, left=5.5, right=1.5, top=1.5)) spikes_ax = fig.add_subplot(spec[0, 0]) rate_ax = fig.add_subplot(spec[1, 0]) setup_axis(spikes_ax, rate_ax) for ti in spike_times: ti *= 1000.0 spikes_ax.plot([ti, ti], [0., 1.], color=colors['blue'], lw=2) spikes_ax.plot(1000*kernel_time + ti, kernel/np.max(kernel), color=colors['red'], lw=1, zorder=1) rate_ax.plot(1000.0*t, rate, color=colors['orange'], lw=2, zorder=2) rate_ax.fill_between(1000.0*t, rate, np.zeros(len(rate)), color=colors['yellow']) fig.savefig("convmethod.pdf") def plot_isi_method(): spike_times = create_spikes() fig = plt.figure(figsize=fig_size) spec = gridspec.GridSpec(nrows=2, ncols=1, height_ratios=[3, 4], hspace=0.2, **adjust_fs(fig, left=5.5, right=1.5, top=1.5)) spikes_ax = fig.add_subplot(spec[0, 0]) rate_ax = fig.add_subplot(spec[1, 0]) setup_axis(spikes_ax, rate_ax) spike_times = np.hstack((0.005, spike_times)) for i in range(1, len(spike_times)): t_start = 1000*spike_times[i-1] t = 1000*spike_times[i] spikes_ax.plot([t_start, t_start], [0., 1.], color=colors['blue'], lw=2) spikes_ax.annotate('', xy=(t_start, 0.5), xytext=(t,0.5), arrowprops=dict(arrowstyle='<->'), color=colors['red']) spikes_ax.text(0.5*(t_start+t), 1.05, "{0:.0f}".format((t - t_start)), color=colors['red'], ha='center') #spike_times = np.hstack((0, spike_times)) i_rate = 1./np.diff(spike_times) rate_ax.step(1000*spike_times, np.hstack((i_rate, i_rate[-1])),color=colors['orange'], lw=2, where="post") fig.savefig("isimethod.pdf") if __name__ == '__main__': plot_isi_method() plot_conv_method() plot_bin_method()