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Preface to the Second Edition

In preparing this second edition, we have taken the opportunity to reshape
the book, partly in response to the further explosion of material on point
processes that has occurred in the last decade but partly also in the hope
of making some of the material in later chapters of the first edition more
accessible to readers primarily interested in models and applications. Topics
such as conditional intensities and spatial processes, which appeared relatively
advanced and technically difficult at the time of the first edition, have now
been so extensively used and developed that they warrant inclusion in the
earlier introductory part of the text. Although the original aim of the book—
to present an introduction to the theory in as broad a manner as we are
able—has remained unchanged, it now seems to us best accomplished in two
volumes, the first concentrating on introductory material and models and the
second on structure and general theory. The major revisions in this volume,
as well as the main new material, are to be found in Chapters 6–8. The rest
of the book has been revised to take these changes into account, to correct
errors in the first edition, and to bring in a range of new ideas and examples.

Even at the time of the first edition, we were struggling to do justice to
the variety of directions, applications and links with other material that the
theory of point processes had acquired. The situation now is a great deal
more daunting. The mathematical ideas, particularly the links to statistical
mechanics and with regard to inference for point processes, have extended
considerably. Simulation and related computational methods have developed
even more rapidly, transforming the range and nature of the problems under
active investigation and development. Applications to spatial point patterns,
especially in connection with image analysis but also in many other scien-
tific disciplines, have also exploded, frequently acquiring special language and
techniques in the different fields of application. Marked point processes, which
were clamouring for greater attention even at the time of the first edition, have
acquired a central position in many of these new applications, influencing both
the direction of growth and the centre of gravity of the theory.
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viii Preface to the Second Edition

We are sadly conscious of our inability to do justice to this wealth of new
material. Even less than at the time of the first edition can the book claim to
provide a comprehensive, up-to-the-minute treatment of the subject. Nor are
we able to provide more than a sketch of how the ideas of the subject have
evolved. Nevertheless, we hope that the attempt to provide an introduction
to the main lines of development, backed by a succinct yet rigorous treatment
of the theory, will prove of value to readers in both theoretical and applied
fields and a possible starting point for the development of lecture courses on
different facets of the subject. As with the first edition, we have endeavoured
to make the material as self-contained as possible, with references to back-
ground mathematical concepts summarized in the appendices, which appear
in this edition at the end of Volume I.

We would like to express our gratitude to the readers who drew our at-
tention to some of the major errors and omissions of the first edition and
will be glad to receive similar notice of those that remain or have been newly
introduced. Space precludes our listing these many helpers, but we would like
to acknowledge our indebtedness to Rick Schoenberg, Robin Milne, Volker
Schmidt, Günter Last, Peter Glynn, Olav Kallenberg, Martin Kalinke, Jim
Pitman, Tim Brown and Steve Evans for particular comments and careful
reading of the original or revised texts (or both). Finally, it is a pleasure to
thank John Kimmel of Springer-Verlag for his patience and encouragement,
and especially Eileen Dallwitz for undertaking the painful task of rekeying the
text of the first edition.

The support of our two universities has been as unflagging for this endeav-
our as for the first edition; we would add thanks to host institutions of visits
to the Technical University of Munich (supported by a Humboldt Foundation
Award), University College London (supported by a grant from the Engineer-
ing and Physical Sciences Research Council) and the Institute of Mathematics
and its Applications at the University of Minnesota.

Daryl Daley David Vere-Jones
Canberra, Australia Wellington, New Zealand



Preface to the First Edition

This book has developed over many years—too many, as our colleagues and
families would doubtless aver. It was conceived as a sequel to the review paper
that we wrote for the Point Process Conference organized by Peter Lewis in
1971. Since that time the subject has kept running away from us faster than
we could organize our attempts to set it down on paper. The last two decades
have seen the rise and rapid development of martingale methods, the surge
of interest in stochastic geometry following Rollo Davidson’s work, and the
forging of close links between point processes and equilibrium problems in
statistical mechanics.

Our intention at the beginning was to write a text that would provide a
survey of point process theory accessible to beginning graduate students and
workers in applied fields. With this in mind we adopted a partly historical
approach, starting with an informal introduction followed by a more detailed
discussion of the most familiar and important examples, and then moving
gradually into topics of increased abstraction and generality. This is still the
basic pattern of the book. Chapters 1–4 provide historical background and
treat fundamental special cases (Poisson processes, stationary processes on
the line, and renewal processes). Chapter 5, on finite point processes, has a
bridging character, while Chapters 6–14 develop aspects of the general theory.

The main difficulty we had with this approach was to decide when and
how far to introduce the abstract concepts of functional analysis. With some
regret, we finally decided that it was idle to pretend that a general treatment of
point processes could be developed without this background, mainly because
the problems of existence and convergence lead inexorably to the theory of
measures on metric spaces. This being so, one might as well take advantage
of the metric space framework from the outset and let the point process itself
be defined on a space of this character: at least this obviates the tedium of
having continually to specify the dimensions of the Euclidean space, while in
the context of completely separable metric spaces—and this is the greatest
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x Preface to the First Edition

generality we contemplate—intuitive spatial notions still provide a reasonable
guide to basic properties. For these reasons the general results from Chapter
6 onward are couched in the language of this setting, although the examples
continue to be drawn mainly from the one- or two-dimensional Euclidean
spaces R

1 and R
2. Two appendices collect together the main results we need

from measure theory and the theory of measures on metric spaces. We hope
that their inclusion will help to make the book more readily usable by applied
workers who wish to understand the main ideas of the general theory without
themselves becoming experts in these fields. Chapter 13, on the martingale
approach, is a special case. Here the context is again the real line, but we
added a third appendix that attempts to summarize the main ideas needed
from martingale theory and the general theory of processes. Such special
treatment seems to us warranted by the exceptional importance of these ideas
in handling the problems of inference for point processes.

In style, our guiding star has been the texts of Feller, however many light-
years we may be from achieving that goal. In particular, we have tried to
follow his format of motivating and illustrating the general theory with a
range of examples, sometimes didactical in character, but more often taken
from real applications of importance. In this sense we have tried to strike
a mean between the rigorous, abstract treatments of texts such as those by
Matthes, Kerstan and Mecke (1974/1978/1982) and Kallenberg (1975, 1983),
and practically motivated but informal treatments such as Cox and Lewis
(1966) and Cox and Isham (1980).

Numbering Conventions. Each chapter is divided into sections, with con-
secutive labelling within each of equations, statements (encompassing Defini-
tions, Conditions, Lemmas, Propositions, Theorems), examples, and the ex-
ercises collected at the end of each section. Thus, in Section 1.2, (1.2.3) is the
third equation, Statement 1.2.III is the third statement, Example 1.2(c)
is the third example, and Exercise 1.2.3 is the third exercise. The exercises
are varied in both content and intention and form a significant part of the
text. Usually, they indicate extensions or applications (or both) of the theory
and examples developed in the main text, elaborated by hints or references
intended to help the reader seeking to make use of them. The symbol de-
notes the end of a proof. Instead of a name index, the listed references carry
page number(s) where they are cited. A general outline of the notation used
has been included before the main text.

It remains to acknowledge our indebtedness to many persons and institu-
tions. Any reader familiar with the development of point process theory over
the last two decades will have no difficulty in appreciating our dependence on
the fundamental monographs already noted by Matthes, Kerstan and Mecke
in its three editions (our use of the abbreviation MKM for the 1978 English
edition is as much a mark of respect as convenience) and Kallenberg in its
two editions. We have been very conscious of their generous interest in our
efforts from the outset and are grateful to Olav Kallenberg in particular for
saving us from some major blunders. A number of other colleagues, notably



Preface to the First Edition xi

David Brillinger, David Cox, Klaus Krickeberg, Robin Milne, Dietrich Stoyan,
Mark Westcott, and Deng Yonglu, have also provided valuable comments and
advice for which we are very grateful. Our two universities have responded
generously with seemingly unending streams of requests to visit one another
at various stages during more intensive periods of writing the manuscript. We
also note visits to the University of California at Berkeley, to the Center for
Stochastic Processes at the University of North Carolina at Chapel Hill, and
to Zhongshan University at Guangzhou. For secretarial assistance we wish
to thank particularly Beryl Cranston, Sue Watson, June Wilson, Ann Milli-
gan, and Shelley Carlyle for their excellent and painstaking typing of difficult
manuscript.

Finally, we must acknowledge the long-enduring support of our families,
and especially our wives, throughout: they are not alone in welcoming the
speed and efficiency of Springer-Verlag in completing this project.

Daryl Daley David Vere-Jones
Canberra, Australia Wellington, New Zealand
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Principal Notation

Very little of the general notation used in Appendices 1–3 is given below. Also,
notation that is largely confined to one or two sections of the same chapter
is mostly excluded, so that neither all the symbols used nor all the uses of
the symbols shown are given. The repeated use of some symbols occurs as a
result of point process theory embracing a variety of topics from the theory of
stochastic processes. Where they are given, page numbers indicate the first
or significant use of the notation. Generally, the particular interpretation of
symbols with more than one use is clear from the context.

Throughout the lists below, N denotes a point process and ξ denotes a
random measure.

Spaces

C complex numbers
R
d d-dimensional Euclidean space

R = R
1 real line

R+ nonnegative numbers
S circle group and its representation as (0, 2π]
U
d
2α d-dimensional cube of side length 2α and

vertices (±α, . . . ,±α)
Z, Z+ integers of R, R+
X state space of N or ξ; often X = R

d; always X is
c.s.m.s. (complete separable metric space)

Ω space of probability elements ω
∅, ∅(·) null set, null measure
E measurable sets in probability space
(Ω, E ,P) basic probability space on which N and ξ are defined 158
X (n) n-fold product space X × · · · × X 123
X∪ = X (0) ∪ X (1) ∪ · · · 129

xvii



xviii Principal Notation

B(X ) Borel σ-field generated by open spheres of
c.s.m.s. X 34

BX = B(X ), B = BR = B(R) 34, 374
B(n)

X = B(X (n)) product σ-field on product space X (n) 129
BM(X ) measurable functions of bounded support 161
BM+(X ) measurable nonnegative functions of bounded

support 161
K mark space for marked point process (MPP) 194
MX (NX ) totally finite (counting) measures on c.s.m.s. X 158, 398
M#

X boundedly finite measures on c.s.m.s. X 158, 398
N#

X boundedly finite counting measures on c.s.m.s. X 131
P+ p.p.d. (positive positive-definite) measures 359
S infinitely differentiable functions of rapid decay 357
U complex-valued Borel measurable functions on X

of modulus ≤ 1 144
U ⊗ V product topology on product space X × Y of

topological spaces (X ,U), (Y,V) 378
V = V(X ) [0, 1]-valued measurable functions h(x) with

1− h(x) of bounded support in X 149, 152

General

Unless otherwise specified, A ∈ BX , k and n ∈ Z+, t and x ∈ R,
h ∈ V(X ), and z ∈ C.

˜ ν̃, F̃ = Fourier–Stieltjes transforms of
measure ν or d.f. F 411–412

φ̃ = Fourier transform of Lebesgue integrable
function φ for counting measures 357

˘ reduced (ordinary or factorial) (moment or
cumulant) measure 160

# extension of concept from totally finite to
boundedly finite measure space 158

‖µ‖ variation norm of measure µ 374
a.e. µ, µ-a.e. almost everywhere with respect to measure µ 376
a.s., P-a.s. almost sure, P-almost surely 376
A(n) n-fold product set A× · · · ×A 130
A family of sets generating B; semiring of

bounded Borel sets generating BX 31, 368
Bu (Tu) backward (forward) recurrence time at u 58, 76
ck, c[k] kth cumulant, kth factorial cumulant,

of distribution {pn} 116
c(x) = c(y, y + x)

covariance density of stationary mean square
continuous process on R

d 160, 358



Principal Notation xix

C[k](·), c[k](·) factorial cumulant measure and density 147
C̆2(·), c̆(·) reduced covariance measure of stationary N or ξ 292
c̆(·) reduced covariance density of stationary N or ξ 160, 292
δ(·) Dirac delta function
δx(A) Dirac measure, =

∫
A
δ(u− x) du = IA(x) 382

∆F (x) = F (x)− F (x−)
jump at x in right-continuous function F 107

eλ(x) = ( 1
2λ)d exp

(
− λ
∑d
i=1 |xi|

)
two-sided exponential density in R

d 359
F renewal process lifetime d.f. 67
Fn∗ n-fold convolution power of measure or d.f. F 55
F (· ; ·) finite-dimensional (fidi) distribution 158–161
F history 236, 240
Φ(·) characteristic functional 15
G[h] probability generating functional (p.g.fl.) of N , 15, 144
G[h | x] member of measurable family of p.g.fl.s 166
Gc[·], Gm[· | x] p.g.fl.s of cluster centre and cluster member

processes Nc and Nm(· | x) 178
G, GI expected information gain (per interval) of

stationary N on R 280, 285
Γ(·), γ(·) Bartlett spectrum, its density when it exists 304
H(P;µ) generalized entropy 277, 283
H, H∗ internal history of ξ on R+, R 236
IA(x) = δx(A) indicator function of element x in set A
In(x) modified Bessel function of order n 72
Jn(A1 × · · · ×An)

Janossy measure 124
jn(x1, . . . , xn) Janossy density 125
Jn(· | A) local Janossy measure 137
K compact set 371
Kn(·), kn(·) Khinchin measure and density 146
�(·) Lebesgue measure in B(Rd), 31

Haar measure on σ-group 408–409
Lu = Bu + Tu current lifetime of point process on R 58, 76
L[f ] (f ∈ BM+(X ))

Laplace functional of ξ 161
Lξ[1− h] p.g.fl. of Cox process directed by ξ 170
L2(ξ0), L2(Γ) Hilbert spaces of square integrable r.v.s ξ0, and

of functions square integrable w.r.t. measure Γ 332
LA(x1, . . . , xn), = jN (x1, . . . , xN | A)

likelihood, local Janossy density, N ≡ N(A) 22, 212
λ rate of N , especially intensity of stationary N 46
λ∗(t) conditional intensity function 231
mk (m[k]) kth (factorial) moment of distribution {pn} 115



xx Principal Notation

m̆2, M̆2 reduced second-order moment density, measure,
of stationary N 289

mg mean density of ground process Ng of MPP N 198, 323
N(A) number of points in A 42
N(a, b] number of points in half-open interval (a, b], 19

= N((a, b]) 42
N(t) = N(0, t] = N((0, t]) 42
Nc cluster centre process 176
N(· | x) cluster member or component process 176
{(pn,Πn)} elements of probability measure for

finite point process 123
P (z) probability generating function (p.g.f.) of

distribution {pn} 10, 115
P (x,A) Markov transition kernel 92
P0(A) avoidance function 31, 135
Pjk set of j-partitions of {1, . . . , k} 121
P probability measure of stationary N on R, 53

probability measure of N or ξ on c.s.m.s. X 158
{πk} batch-size distribution 28, 51
q(x) = f(x)/[1− F (x)]

hazard function for lifetime d.f. F 2, 106
Q(z) = − logP (z) 27
Q(·), Q(t) hazard measure, integrated hazard function (IHF) 109
ρ(x, y) metric for x, y in metric space 370
{Sn} random walk, sequence of partial sums 66
S(x) = 1− F (x) survivor function of d.f. F 2, 109
Sr(x) sphere of radius r, centre x, in metric space X 35, 371
t(x) =

∏d
i=1(1− |xi|)+

triangular density in R
d 359

Tu forward recurrence time at u 58, 75
T = {S1(T ), . . . , Sj(T )}

a j-partition of k 121
T = {Tn} = {{Ani}}

dissecting system of nested partitions 382
U(A) = E[N(A)] renewal measure 67
U(x) = U([0, x]), expectation function, 61

renewal function (U(x) = 1 + U0(x)) 67
V (A) = varN(A), variance function 295
V (x) = V ((0, x]) variance function for stationary N or ξ on R 80, 301
{Xn} components of random walk {Sn}, 66

intervals of Wold process 92
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CHAPTER 1

Early History

The ancient origins of the modern theory of point processes are not easy to
trace, nor is it our aim to give here an account with claims to being definitive.
But any retrospective survey of a subject must inevitably give some focus on
those past activities that can be seen to embody concepts in common with the
modern theory. Accordingly, this first chapter is a historical indulgence but
with the added benefit of describing certain fundamental concepts informally
and in a heuristic fashion prior to possibly obscuring them with a plethora of
mathematical jargon and techniques. These essentially simple ideas appear
to have emerged from four distinguishable strands of enquiry—although our
division of material may sometimes be a little arbitrary. These are

(i) life tables and the theory of self-renewing aggregates;
(ii) counting problems;

(iii) particle physics and population processes; and
(iv) communication engineering.

The first two of these strands could have been discerned in centuries past
and are discussed in the first two sections. The remaining two essentially
belong to the twentieth century, and our comments are briefer in the remaining
section.

1.1. Life Tables and Renewal Theory

Of all the threads that are woven into the modern theory of point processes,
the one with the longest history is that associated with intervals between
events. This includes, in particular, renewal theory, which could be defined
in a narrow sense as the study of the sequence of intervals between successive
replacements of a component that is liable to failure and is replaced by a new

1



2 1. Early History

component every time a failure occurs. As such, it is a subject that devel-
oped during the 1930s and reached a definitive stage with the work of Feller,
Smith, and others in the period following World War II. But its roots extend
back much further than this, through the study of ‘self-renewing aggregates’
to problems of statistical demography, insurance, and mortality tables—in
short, to one of the founding impulses of probability theory itself. It is not
easy to point with confidence to any intermediate stage in this chronicle that
recommends itself as the natural starting point either of renewal theory or of
point process theory more generally. Accordingly, we start from the begin-
ning, with a brief discussion of life tables themselves. The connection with
point processes may seem distant at first sight, but in fact the theory of life
tables provides not only the source of much current terminology but also the
setting for a range of problems concerning the evolution of populations in
time and space, which, in their full complexity, are only now coming within
the scope of current mathematical techniques.

In its basic form, a life table consists of a list of the number of individuals,
usually from an initial group of 1000 individuals so that the numbers are
effectively proportions, who survive to a given age in a given population.
The most important parameters are the number �x surviving to age x, the
number dx dying between the ages x and x + 1 (dx = �x − �x+1), and the
number qx of those surviving to age x who die before reaching age x + 1
(qx = dx/�x). In practice, the tables are given for discrete ages, with the
unit of time usually taken as 1 year. For our purposes, it is more appropriate
to replace the discrete time parameter by a continuous one and to replace
numbers by probabilities for a single individual. Corresponding to �x we have
then the survivor function

S(x) = Pr{lifetime > x}.

To dx corresponds f(x), the density of the lifetime distribution function, where

f(x) dx = Pr{lifetime terminates between x and x+ dx},

while to qx corresponds q(x), the hazard function, where

q(x) dx = Pr{lifetime terminates between x and x+ dx
| it does not terminate before x.}

Denoting the lifetime distribution function itself by F (x), we have the follow-
ing important relations between the functions above:

S(x) = 1− F (x) =
∫ ∞

x

f(y) dy = exp
(
−
∫ x

0
q(y) dy

)
, (1.1.1)

f(x) =
dF
dx

=
dS
dx

, (1.1.2)

q(x) =
f(x)
S(x)

=
d

dx
[logS(x)] = − d

dx
{log[1− F (x)]}. (1.1.3)
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The first life table appeared, in a rather crude form, in John Graunt’s (1662)
Observations on the London Bills of Mortality. This work is a landmark in the
early history of statistics, much as the famous correspondence between Pascal
and Fermat, which took place in 1654 but was not published until 1679, is
a landmark in the early history of formal probability. The coincidence in
dates lends weight to the thesis (see e.g. Maistrov, 1967) that mathematical
scholars studied games of chance not only for their own interest but for the
opportunity they gave for clarifying the basic notions of chance, frequency, and
expectation, already actively in use in mortality, insurance, and population
movement contexts.

An improved life table was constructed in 1693 by the astronomer Halley,
using data from the smaller city of Breslau, which was not subject to the
same problems of disease, immigration, and incomplete records with which
Graunt struggled in the London data. Graunt’s table was also discussed by
Huyghens (1629–1695), to whom the notion of expected length of life is due.
A. de Moivre (1667–1754) suggested that for human populations the function
S(x) could be taken to decrease with equal yearly decrements between the ages
22 and 86. This corresponds to a uniform density over this period and a hazard
function that increases to infinity as x approaches 86. The analysis leading
to (1.1.1) and (1.1.2), with further elaborations to take into account different
sources of mortality, would appear to be due to Laplace (1747–1829). It is
interesting that in A Philosophical Essay on Probabilities (1814), where the
classical definition of probability based on equiprobable events is laid down,
Laplace gave a discussion of mortality tables in terms of probabilities of a
totally different kind. Euler (1707–1783) also studied a variety of problems of
statistical demography.

From the mathematical point of view, the paradigm distribution function
for lifetimes is the exponential function, which has a constant hazard inde-
pendent of age: for x > 0, we have

f(x) = λe−λx, q(x) = λ, S(x) = e−λx, F (x) = 1− e−λx. (1.1.4)

The usefulness of this distribution, particularly as an approximation for pur-
poses of interpolation, was stressed by Gompertz (1779–1865), who also sug-
gested, as a closer approximation, the distribution function corresponding to
a power-law hazard of the form

q(x) = Aeαx (A > 0, α > 0, x > 0). (1.1.5)

With the addition of a further constant [i.e. q(x) = B +Aeαx], this is known
in demography as the Gompertz–Makeham law and is possibly still the most
widely used function for interpolating or graduating a life table.

Other forms commonly used for modelling the lifetime distribution in dif-
ferent contexts are the Weibull, gamma, and log normal distributions, corre-
sponding, respectively, to the formulae

q(x) = βλxβ−1 with S(x) = exp(−λxβ) (λ > 0, β > 0), (1.1.6)
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f(x) = λαxα−1e−λx/Γ(α), (1.1.7)

f(x) = (σx
√

2π )−1e−[(log x−µ)/σ]2/2. (1.1.8)

The Weibull distribution was introduced by Weibull (1939a, b) as a model
for brittle fracture. Both this and the preceding distribution have an interpre-
tation in terms of extreme value theory (see e.g. Exercise 1.1.2), but it should
be emphasized that as a general rule the same distribution may arise from
several models (see Exercise 1.1.3).

The gamma distribution has a long history and arises in many different
contexts. When α = 1

2k and λ = 1
2 , it is nothing other than the chi-squared

distribution with k degrees of freedom, with well-known applications in math-
ematical statistics. When α = 1, it reduces to the exponential distribution,
and when α = 3

2 , it reduces to the Maxwell distribution for the distribution
of energies of molecules in a perfect gas. The most important special cases
in the context of life tables arise when α is a positive integer, say α = k.
It then has an interpretation as the sum of k independent random variables,
each having an exponential distribution. Although commonly known as the
Erlang distribution, after the Danish engineer and mathematician who intro-
duced it as a model for telephone service and intercall distributions in the
1920s, this special form and its derivation were known much earlier. One of
the earliest derivations, if not the first, is due to the English mathematician
R.C. Ellis (1817–1859) in a remarkable paper in 1844 that could well be hailed
as one of the early landmarks in stochastic process theory, although in fact
it is rarely quoted. In addition to establishing the above-mentioned result
as a special case, Ellis studied a general renewal process and in that context
established the asymptotic normality of the sum of a number of independent
nonnegative random variables. It is particularly remarkable in that he used
Fourier methods; in other words, essentially the modern characteristic func-
tion proof (with a few lacunae from a modern standpoint) of the central limit
theorem.

An equally interesting aspect of Ellis’ paper is the problem that inspired
the study. This takes us back a century and a half to an even less familiar
statistician in the guise of Sir Isaac Newton (1642–1728). For much of his
later life, Newton’s spare time was devoted to theological problems, one of
which was to reconcile the ancient Greek and Hebrew chronologies. In both
chronologies, periods of unknown length are spanned by a list of successive
rulers. Newton proposed to estimate such periods, and hence to relate the
two chronologies, by supposing each ruler to reign for a standard period of 22
years. This figure was obtained by a judicious comparison of averages from a
miscellany of historical data for which more or less reliable lengths of reigns
were known. It is a statistical inference in the same sense as many of Graunt’s
inferences from the London Bills of Mortality: a plausible value based on the
best or only evidence available and supported by as many cross-checks as
can be devised. How far it was explicitly present in Newton’s mind that he
was dealing with a statistical problem and whether he made any attempts
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to assess the likely errors of his results himself are questions we have not
been able to answer with any certainty. In an informal summary of his work,
Newton (1728) wrote: “I do not pretend to be exact to a year: there may
be errors of five or ten years, and sometimes twenty, and not much above.”
However, it appears unlikely that these figures were obtained by any theory
of compounding of errors. It is tempting to conjecture that he may have
discussed the problems with such friends and Fellows of the Royal Society as
Halley, whose paper to the Royal Society would have been presented while
Newton was president, and de Moivre, who dedicated the first edition of The
Doctrine of Chances to Newton, but if records of such discussions exist, we
have not found them.

Up until the middle of the nineteenth century, as will be clear even from
the brief review presented above, mathematical problems deriving from life ta-
bles not only occupied a major place in the subject matter of probability and
statistics but also attracted the attention of many leading mathematicians of
the time. From the middle of the nineteenth century onward, however, actu-
arial mathematics (together, it may be added, with many other probabilistic
notions), while important in providing employment for mathematicians, be-
came somewhat disreputable mathematically, a situation from which it has
not fully recovered. (How many elementary textbooks in statistics, for ex-
ample, even mention life tables, let alone such useful descriptive tools as the
hazard function?) The result was that when, as was inevitably the case, new
applications arose that made use of the same basic concepts, the links with
earlier work were lost or only partially recognized. Moreover, the new de-
velopments themselves often took place independently or with only a partial
realization of the extent of common material.

In the twentieth century, at least three such areas of application may be
distinguished. The first, historically, was queueing theory, more specifically
the theory of telephone trunking problems. Erlang’s (1909) first paper on
this subject contains a derivation of the Poisson distribution for the number
of calls in a fixed time interval. It is evident from his comments that even
before that time the possibility of using probabilistic methods in that context
was being considered by engineers in several countries. The work here appears
to be quite independent of earlier contributions. In later work, the analysis
was extended to cover queueing systems with more general input and service
distributions.

Mathematical interest in actuarial problems as such re-emerged in the 1910s
and 1920s in connection with the differential and integral equations of popu-
lation growth. Here at least there is a bridge between the classical theory of
life tables on the one hand and the modern treatments of renewal processes on
the other. It is provided by the theory of ‘self-renewing aggregates’ [to borrow
a phrase from the review by Lotka (1939), which provides a useful survey of
early work in this field], a term that refers to a population (portfolio in the
insurance context) of individuals subject to death but also able to regenerate
themselves so that a stable population can be achieved.
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As a typical illustration, consider the evolution of a human population for
which it is assumed that each female of age x has a probability φ(x) dt of
giving birth to a daughter in a time interval of length dt, independently of the
behaviour of other females in the population and also of any previous children
she may have had. Let S(x) denote the survivor function for the (female) life
distribution and n(t) the expected female birth rate at time t. Then n(t)
satisfies the integral equation

n(t) =
∫ t

0
n(t− x)S(x)φ(x) dx,

which represents a breakdown of the total female birth rate by age of parent.
If the population is started at time zero with an initial age distribution having
density r(x), the equation can be rewritten in the form

n(t) = n0(t) +
∫ t

0
n(t− x)S(x)φ(x) dx,

where

n0(t) =
∫ ∞

0
r(x)

S(t+ x)
S(x)

φ(t+ x) dx

is the contribution to the birth rate at time t from the initial population. In
this form, the analogy with the integral equation of renewal theory is clear.
Indeed, the latter equation corresponds to the special case where at death each
individual is replaced by another of age zero and no other ‘births’ are possible.
The population size then remains constant, and it is enough to consider a
population with just one member. In place of n(t), we then have the renewal
density m(t), with m(t) dt representing the probability that a replacement
will be required in the small time interval (t, t + dt); also, φ(x) becomes the
hazard function h(x) for the life distribution, and the combination S(x)h(x)
can be replaced by the probability density function f(x) as in (1.1.3). Thus,
we obtain the renewal equation in the form

m(t) = n0(t) +
∫ t

0
m(t− u)f(u) du.

If, finally, the process is started with a new component in place at time 0,
then n0(t) = f(t) and we have the standard form

ms(t) = f(t) +
∫ t

0
ms(t− u)f(u) du.

The third field to mention is reliability theory. A few problems in this
field, including Weibull’s discussion of brittle fracture, appeared before World
War II, but its systematic development relates to the post-war period and the
rapid growth of the electronics industry. Typical problems are the calculation
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of lifetime distributions of systems of elements connected in series (‘weakest
link’ model) or in parallel. Weibull’s analysis is an example of the first type of
model, which typically leads to an extreme-value distribution with a long right
tail. An early example of a parallel model is Daniels’ (1945) treatment of the
failure of fibre bundles; the distributions in this case have an asymptotically
normal character. In between and extending these two primary cases lie an
infinite variety of further failure models, in all of which the concepts and
terminology invented to cover the life table problem play a central role.

In retrospect, it is easy to see that the three fields referred to are closely
interconnected. Together, they provide one of the main areas of application
and development of point process theory. Of course, they do not represent the
only fields where life table methods have been applied with success. An early
paper by Watanabe (1933) gives a life table analysis of the times between
major earthquake disasters, a technique that has been resurrected by several
more recent writers under the name of theory of durability. An important
recent field of application has been the study of trains of nerve impulses in neu-
rophysiology. In fact, the tools are available and relevant for any phenomenon
in which the events occur along a time axis and the intervals between the time
points are important and meaningful quantities.

Exercises and Complements to Section 1.1
1.1.1 A nonnegative random variable (r.v.) X with distribution function (d.f.) F

has an increasing failure rate (abbreviated to IFR) if the conditional d.f.s

Fx(u) = Pr{X ≤ x+ u | X > x} =
F (x+ u) − F (x)

1 − F (x)
(u, x ≥ 0)

are increasing functions of x for every fixed u in 0 < u < ∞. It has a decreasing
mean residual life (DMRL) if E(X − x | X > x) decreases with increasing x,
and it is new better than used in expectation (NBUE) if E(X − x | X > x) ≤
EX (all x > 0). Show that IFR implies DMRL, DMRL implies NBUE, and
NBUE implies that varX ≤ (EX)2 [see Stoyan (1983, Section 1.6)].

1.1.2 Let X1, X2, . . . be a sequence of independent identically distributed r.v.s with
d.f. F (·). Then, for any fixed nonnegative integer n,

Pr
{

max
1≤j≤n

Xj ≤ u
}

= (F (u))n.

Replacing n by a Poisson-distributed r.v. N with mean µ yields

G(u) ≡ Pr
{

max
1≤j≤N

Xj ≤ u
}

≡ e−µ
∞∑
k=0

µk(k!)−1(F (u))k = e−µ(1−F (u)).

When F (u) = 1−e−λu, G is the Gumbel d.f., while when F (u) = 1−λu−α, G
is the Weibull d.f. [In the forms indicated, these extreme-value distributions
include location and/or scale parameters; see e.g. Johnson and Kotz (1970,
p. 272).]
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1.1.3 Let X1, X2, . . . be as in the previous exercise with F (u) = 1 − e−λu. Show
that Y ≡ max(X1, . . . , Xn) has the same distribution as

∑n

j=1Xj/j.
[Hint: Regard X1, . . . , Xn as lifetimes in a linear death process with death
rate λ, so that y is the time to extinction of the process. Exercise 2.1.2 gives
more general properties.]

1.1.4 Suppose that the lifetimes of rulers are independent r.v.s with common d.f.
F and that conditional on reaching age 21 years, a ruler has a son (with
lifetime d.f.s F ) every 2 years for up to six sons, with the eldest surviving son
succeeding him. Conditional on there being a succession, what is the d.f. of
the age at succession and the expected time that successor reigns (assuming
a reign terminated by death from natural causes)?

What types of error would be involved in matching chronologies from a
knowledge of the orders of two sets of rulers (see the reference to Newton’s
work in the text)? How would such chronologies be matched in the light of
developments in statistical techniques subsequent to Newton?

1.1.5 Investigate the integral equation for the stationary age distribution in a super-
critical age-dependent branching process. Using a suitable metric, evaluate the
difference between this stationary age distribution and the backward recur-
rence time distribution of a stationary renewal process with the same lifetime
distribution as a function of the mean of the offspring distribution. Note that
Euler worked on the age distribution in exponentially growing populations.

1.2. Counting Problems

The other basic approach to point process phenomena, and the only system-
atic approach yet available in spaces of higher dimension, is to count the
numbers of events in intervals or regions of various types. In this approach,
the machinery of discrete distributions plays a central role. Since in proba-
bility theory discrete problems are usually easier to handle than continuous
problems, it might be thought that the development of general models for a
discrete distribution would precede those for a continuous distribution, but
in fact the reverse seems to be the case. Although particular examples, such
as the Bernoulli distribution and the negative binomial distribution, occurred
at a very early stage in the discussion of games of chance, there seems to be
no discussion of discrete distributions as such until well into the nineteenth
century.

We may take as a starting point Poisson’s (1837) text, which included a
derivation of the Poisson distribution by passage to the limit from the binomial
(the claim that he was anticipated in this by de Moivre is a little exaggerated
in our view: it is true that de Moivre appends a limit result to the discussion
of a certain card problem, but it can hardly be said that the resulting formula
was considered by de Moivre as a distribution, which may be the key point).
Even Poisson’s result does not seem to have been widely noted at the time,
and it is not derived in a counting process context. The first discussions
of counting problems known to us are by Seidel (1876) and Abbé (1879),
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who treated the occurrence of thunderstorms and the number of blood cells
in haemocytometer squares, respectively, and both apparently independently
of Poisson’s work. Indeed, Poisson’s discovery of the distribution seems to
have been lost sight of until attention was drawn to it in Von Bortkiewicz’s
(1898) monograph Vas Gesetz der kleinen Zahlen, which includes a systematic
account of phenomena that fit the Poisson distribution, including, of course,
the famous example of the number of deaths from horse kicks in the Prussian
army.

Lyon and Thoma (1881), on Abbé’s data, and Student (1907) gave fur-
ther discussions of the blood cell problem, the latter paper being famous as
one of the earliest applications of the chi-square goodness-of-fit test. Shortly
afterward, the Poisson process arose simultaneously in two very important
contexts. Erlang (1909) derived the Poisson distribution for the number of
incoming calls to a telephone trunking system by supposing the numbers in
disjoint intervals to be independent and considering the limit behaviour when
the interval of observation is divided into an increasing number of equally
sized subintervals. This effectively reproduces the Poisson distribution as the
limit of the binomial, but Erlang was not aware of Poisson’s work at the time,
although he corrected the omission in later papers. Then, in 1910, Bateman,
brought in as mathematical consultant by Rutherford and Geiger in connec-
tion with their classical experiment on the counting of α particles, obtained
the Poisson probabilities as solutions to the family of differential equations

p′
n(t) = −λpn(t) + pn−1(t) (n ≥ 1),
p′
0(t) = −λp0(t).

[Concerning the relation p0(t) = e−λt, Bateman (1910) commented that it
“has been known for some time (Whitworth’s Choice and Chance, 4th Ed.,
Proposition LI),” while Haight (1967) mentioned the result as a theorem of
Boltzmann (1868) and quoted the reference to Whitworth, who does not indi-
cate the sources of his results; in a Gresham lecture reproduced in Whitworth
(1897, p. xxxiii), he wrote of Proposition LI as “a general theorem which I
published in 1886, which met with rather rough treatment at the hands of
a reviewer in The Academy.” Whitworth’s (1867) book evolved through five
editions. It is easy to envisage repeated independent discovery of his Propo-
sition LI.]

These equations represent a formulation in terms of a pure birth pro-
cess and the first step in the rapid development of the theory of birth and
death processes during the next two decades, with notable early papers by
McKendrick (1914, 1926) and Yule (1924). This work preceded the general
formulation of birth and death processes as Markov processes (themselves
first studied by Markov more than a decade earlier) in the 1930s and is not of
immediate concern, despite the close connection with point process problems.
A similar remark can be made about branching processes, studied first by
Bienaymé (see Heyde and Seneta, 1977) and of course by Galton and Watson
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(1874). There are close links with point processes, particularly in the gen-
eral case, but the early studies used special techniques that again lie a little
outside the scope of our present discussion, and it was only from the 1940s
onward that the links became important.

Closer in line with our immediate interests is the work on alternatives to the
Poisson distribution. In many problems in ecology and elsewhere, it is found
that the observed distribution of counts frequently shows a higher dispersion
(i.e. a higher variance for a given value of the mean) than can be accounted
for satisfactorily by the Poisson distribution, for which the variance/mean
ratio is identically unity. The earliest and perhaps still the most widely used
alternative is the negative binomial distribution, which figures in early papers
by Student (1907), McKendrick (1914), and others. A particularly important
paper for the sequel was the study by Greenwood and Yule (1920) of accident
statistics, which provided an important model for the negative binomial, and
in so doing sparked a controversy, still not entirely resolved, concerning the
identifiability of the model describing accident occurrence. Since the accident
process is a kind of point process in time, and since shades of the same contro-
versy will appear in our own models, we briefly paraphrase their derivation.
Before doing so, however, it is convenient to summarize some of the machinery
for handling discrete distributions.

The principal tool is the probability generating function (p.g.f.) defined
for nonnegative integer-valued random variables X by the equation

P (z) =
∞∑
0

pnz
n,

where pn = Pr{X = n}. It is worth mentioning that although generating
functions have been used in connection with difference equations at least since
the time of Laplace, their application to this kind of problem in the 1920s and
1930s was hailed as something of a technological breakthrough.

In Chapter 5, relations between the p.g.f., factorial moments, and cumu-
lants are discussed. For the present, we content ourselves with the observation
that the negative binomial distribution can be characterized by the form of
its p.g.f.,

P (z) =
(

µ

1 + µ− z

)α
(α > 0, µ > 0), (1.2.1)

corresponding to values of the probabilities themselves,

pn =
(α− 1 + n)!
(α− 1)! n!

(
µ

1 + µ

)α( 1
1 + µ

)n
.

1Note that there is a lack of agreement on terminology. Other authors, for example Johnson
and Kotz (1969), would label this as a compound Poisson and would call the distribution
we treat below under that name a generalized Poisson. The terminology we use is perhaps
more common in texts on probability and stochastic processes; the alternative terminology
is more common in the statistical literature.
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Greenwood and Yule derived this distribution as an example of what we
call a mixed Poisson1 distribution; that is, it can be obtained from a Poisson
distribution pn = e−λλn/n! by treating the parameter λ as a random variable.
If, in particular, λ is assumed to have the gamma distribution

dF (λ) = µαλα−1(Γ(α)
)−1e−µλ dλ,

then the resultant discrete distribution has p.g.f.

P (z) =
∫ ∞

0
eλ(z−1) dF (λ) =

(
µ

1 + µ− z

)α
,

eλ(z−1) being the p.g.f. of the Poisson distribution with parameter λ.
It is not difficult to verify that the mean and variance of this negative bi-

nomial distribution equal α/µ and (α/µ)(1+µ−1), so that the variance/mean
ratio of the distribution equals 1 + µ−1, exceeding by µ−1 the corresponding
ratio for a Poisson distribution. Greenwood and Yule interpreted the variable
parameter λ of the underlying Poisson distribution as a measure of individ-
ual ‘accident proneness,’ which was then averaged over all individuals in the
population.

The difficulty for the sequel is that, as was soon recognized, many other
models also give rise to the negative binomial, and these may have quite
contradictory interpretations in regard to accidents. Lüders (1934) showed
that the same distribution could be derived as an example of a compound
Poisson distribution, meaning a random sum of independent random variables
in which the number of terms in the sum has a Poisson distribution. If each
term is itself discrete and has a logarithmic distribution with p.g.f.

P (z) =
log(1 + µ− z)

logµ
, (1.2.2)

and if the number of terms has a Poisson distribution with parameter α,
then the resultant distribution has the identical p.g.f. (1.2.1) for the negative
binomial (see Exercise 1.2.1). The interpretation here would be that all in-
dividuals are identical but subject to accidents in batches. Even before this,
Eggenberger and Pólya (1923) and Pólya (1931) had introduced a whole fam-
ily of distributions, for which they coined the term ‘contagious distributions’
to describe situations where the occurrence of a number of events enhances
the probability of the occurrence of a further event, and had shown that the
negative binomial distribution could be obtained in this way. If the mixed
and compound models can be distinguished in principle by examining the
joint distributions of the number of accidents in nonoverlapping intervals of a
person’s life, Cane (1974, 1977) has shown that there is no way in which the
mixed Poisson and Pólya models can be distinguished from observations on
individual case histories, for they lead to identical conditional distributions
(see Exercise 1.2.2).
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Another important contribution in this field is the work of Neyman (1939),
who introduced a further family of discrete distributions, derived from con-
sideration of a cluster model. Specifically, Neyman was concerned with distri-
butions of beetle larvae in space, supposing these to have crawled some small
distance from their initial locations in clusters of eggs. Further analysis of this
problem resulted in a series of papers, written by Neyman in collaboration
with E.L. Scott and other writers, which treated many different statistical
questions relating to clustering processes in ecology, astronomy, and other
subjects (see e.g. Neyman and Scott, 1958).

Many of these questions can be treated most conveniently by the use of
generating functionals and moment densities, a theory that had been devel-
oping simultaneously as a tool for describing the evolution of particle showers
and related problems in theoretical physics. The beginnings of such a general
theory appear in the work of the French physicist Yvon (1935), but the main
developments relate to the post-war period, and we therefore defer a further
discussion to the following section.

Exercises and Complements to Section 1.2

1.2.1 Poisson mixture of logarithmic distributions is negative binomial. Verify that
if X1, X2, . . . are independent r.v.s with the logarithmic distribution whose
p.g.f. is in (1.2.2), and if N , independent of X1, X2, . . . , is a Poisson r.v. with
mean α, then X1 + · · ·+XN has the negative binomial distribution in (1.2.1).

1.2.2 Nonidentifiability in a model for accident proneness. Suppose that an individ-
ual has n accidents in the time interval (0, T ) at t1 < t2 < · · · < tn. Evaluate
the likelihood function for these n times for the two models:
(i) accidents occur at the epochs of a Poisson process at rate λ, where λ is

fixed for each individual but may vary between individuals;
(ii) conditional on having experienced j accidents in (0, t), an individual has

probability (k + j)µ dt/(1 + µt) of an accident in (t, t + dt), independent
of the occurrence times of the j accidents in (0, t); each individual has
probability kµ dt of an accident in (0, dt).

Show that the probabilities of n events in (0, T ) are Poisson and negative
binomial, respectively, and deduce that the conditional likelihood, given n, is
the same for (i) and (ii). See Cane (1974) for discussion.

1.2.3 The negative binomial distribution can also arise as the limit of the Pólya–
Eggenberger distribution defined for integers n and α, β > 0 by

pk =

(
n

k

)
Γ(α+ k)Γ(β + n− k)Γ(α+ β)

Γ(α+ β + n)Γ(α)Γ(β)
=

(
−α
k

)
Γ(α+ β)n!Γ(β + n− k)

Γ(β)(n− k)!Γ(β + n+ α)
.

When β and n → ∞ with n/β → µ, a constant, and α fixed, show that {pk}
has the p.g.f. in (1.2.1). [For further properties, see Johnson and Kotz (1969)
and the papers cited in the text.]
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1.2.4 Neyman’s Type A distribution (e.g. Johnson and Kotz, 1969) has a p.g.f. of
the form

exp

(
µ
∑
i

αi

(
exp[−λi(1 − z)] − 1

))
,

where αi ≥ 0,
∑

i
αi = 1, λi > 0, and µ > 0, and arises as a cluster model.

Give such a cluster model interpretation for the simplest case αi = 1 for
i = 1, αi = 0 otherwise, and general λ ≡ λ1 and µ.

1.2.5 Suppose that a (large) population evolves according to a one-type Galton–
Watson branching process in which the distribution of the number of children
has p.g.f. P (z). Choose an individual at random in a particular generation.
Show that the distribution of the number of sibs (sisters, say) of this randomly
chosen individual has p.g.f. P ′(z)/P ′(1) and that this is the same as for the
number of aunts, or great-aunts, of this individual.
[Hint: Attempting to estimate the offspring distribution by using the observed
family size distribution, when based on sampling via the children, leads to
the distribution with p.g.f. zP ′(z)/P (1) and is an example of length-biased
sampling that underlies the waiting-time paradox referred to in Sections 3.2
and 3.4. The p.g.f. for the number of great-aunts is used in Chapter 11.]

1.3. Some More Recent Developments
The period during and following World War II saw an explosive growth in
theory and applications of stochastic processes. On the one hand, many new
applications were introduced and existing fields of application were extended
and deepened; on the other hand, there was also an attempt to unify the sub-
ject by defining more clearly the basic theoretical concepts. The monographs
by Feller (1950) and Bartlett (1955) (preceded by mimeographed lecture notes
from 1947) played an important role in stressing common techniques and ex-
ploring the mathematical similarities in different applications; both remain
remarkably succinct and wide-ranging surveys.

From such a busy scene it is difficult to pick out clearly marked lines of
development, and any selection of topics is bound to be influenced by personal
preferences. Bearing such reservations in mind, we can attempt to follow
through some of the more important themes into the post-war period.

On the queueing theory side, a paper of fundamental importance is Con-
nie Palm’s (1943) study of intensity fluctuations in traffic theory, a title that
embraces topics ranging from the foundation of a general theory of the in-
put stream to the detailed analysis of particular telephone trunking systems.
Three of his themes, in particular, were important for the future of point
processes. The first is the systematic description of properties of a renewal
process, as a first generalization of the Poisson process as input to a service
system. The notion of a regeneration point, a time instant at which the sys-
tem reverts to a specified state with the property that the future evolution is
independent of how the state was reached, has proved exceptionally fruitful
in many different applications. In Palm’s terminology, the Poisson process
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is characterized by the property that every instant is a regeneration point,
whereas for a general renewal process only those instants at which a new in-
terval is started form regeneration points. Hence, he called a Poisson process
a process without aftereffects and a renewal process a process with limited
aftereffects. Another important idea was his realization that two types of dis-
tribution function are important in describing a stationary point process—the
distribution of the time to the next event from a fixed but arbitrary origin
and the distribution of the time to the next event from an arbitrary event
of the process. The relations between the two sets of distributions are given
by a set of equations now commonly called the Palm–Khinchin equations,
Palm himself having exhibited only the simplest special case. A third im-
portant contribution was his (incomplete) proof of the first limit theorem for
point processes: namely, that superposition of a large number of independent
sparse renewal processes leads to a Poisson process in the limit. Finally, it
may be worth mentioning that it was in Palm’s paper that the term ‘point
processes’ (Punktprozesse) was first used as such—at least to the best of our
knowledge.

All these ideas have led to important further development. H. Wold (1948,
1949), also a Swedish mathematician, was one of the first to take up Palm’s
work, studying processes with Markov-dependent intervals that, he suggested,
would form the next most complex alternative to the renewal model. Bartlett
(1954) reviewed some of this early work. Of the reworkings of Palm’s theory,
however, the most influential was the monograph by Khinchin (1955), which
provided a more complete and rigorous account of Palm’s work, notably ex-
tended it in several directions, and had the very important effect of bringing
the subject to the attention of pure mathematicians. Thus, Khinchin’s book
became the inspiration of much theoretical work, particularly in the Soviet
Union and Eastern Europe. Ryll-Nardzewski’s (1961) paper set out funda-
mental properties of point processes and provided a new and more general
approach to Palm probabilities. Starting in the early 1960s, Matthes and
co-workers developed many aspects concerned with infinitely divisible point
processes and related questions. The book by Kerstan, Matthes and Mecke
(1974) represented the culmination of the first decade of such work; extensive
revisions and new material were incorporated into the later editions in English
(1978) (referred to as MKM in this book) and in Russian (1982).

In applications, these ideas have been useful not only in queueing theory
[for continuing development in this field, see the monographs of Franken et al.
(1981) and Brémaud (1981)] but also in the study of level-crossing problems.
Here the pioneering work was due to Rice (1944) and McFadden (1956, 1958).
More rigorous treatments, using some of the Palm–Khinchin theory, were
given by Leadbetter and other writers [see e.g. Leadbetter (1972) and the
monographs by Cramér and Leadbetter (1967) and Leadbetter, Lindgren and
Rootzen (1983)].

On a personal note in respect of much of this work, it is appropriate to
remark that Belyaev, Franken, Grigelionis, König, Matthes, and one of us,
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among others, were affected by the lectures and personal influence of Gne-
denko (see Vere-Jones, 1997), who was a student of Khinchin.

Meanwhile, there was also rapid development on the theoretical physics
front. The principal ideas here were the characteristic and generating func-
tionals and product densities. As early as 1935, Kolmogorov suggested the
use of the characteristic functional

Φ(ξ) = E(ei〈X,ξ〉)

as a tool in the study of random elements X from a linear space L; ξ is
then an element from the space of linear functionals on L. The study of
probability measures on abstract spaces remained a favourite theme of the
Russian school of probability theory and led to the development of the weak
convergence theory for measures on metric spaces by Prohorov (1956) and
others, which in turn preceded the general study of random measures [e.g.
Jĭrina (1966) and later writers including the Swedish mathematicians Jagers
(1974) and Kallenberg (1975)]. After the war, the characteristic functional
was discussed by LeCam (1947) for stochastic processes and Bochner (1947)
for random interval functions. Bochner’s (1955) monograph, in particular,
contains many original ideas that have only partially been followed up, for
example, by Brillinger (1972). Kendall (1949) and Bartlett and Kendall (1951)
appear to be the first to have used the characteristic functional in the study
of specific population models.

Of more immediate relevance to point processes is the related concept of a
probability generating functional (p.g.fl.) defined by

G[h] = E
[∏

i

h(xi)
]

= E
[

exp
(∫

log h(x)N(dx)
)]
,

where h(x) is a suitable test function and the xi are the points at which popu-
lation members are located, that is, the atoms of the counting measures N(·).
The p.g.fl. is the natural extension of the p.g.f., and, like the p.g.f., it has an
expansion, when the total population is finite, in terms of the probabilities of
the number of particles in the population and the probability densities of their
locations. There is also an expansion, analogous to the expansion of the p.g.f.
in terms of factorial moments, in terms of certain factorial moment density
functions, or product densities as they are commonly called in the physical
literature. Following the early work of Yvon noted at the end of Section
1.2, the p.g.fl. and product densities were used by Bogoliubov (1946), while
properties of product densities were further explored in important papers by
Bhabha (1950) and Ramakrishnan (1950). Ramakrishnan, in particular, gave
formulae expressing the moments of the number of particles in a given set in
terms of the product densities and Stirling numbers. Later, these ideas were
considerably extended by Ramakrishnan, Janossy, Srinivasan, and others; an
extensive literature exists on their application to cosmic ray showers summa-
rized in the monographs by Janossy (1948) and Srinivasan (1969, 1974).
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This brings us to another key point in the mathematical theory of point
processes, namely the fundamental paper by Moyal (1962a). Drawing princi-
pally on the physical and ecological contexts, Moyal for the first time set out
clearly the mathematical constructs needed for a theory of point processes on
a general state space, clarifying the relations between such quantities as the
product densities, finite-dimensional distributions, and probability generating
functionals and pointing out a number of important applications. Indepen-
dently, Harris (1963) set out similar ideas in his monograph on branching
processes, subsequently (Harris, 1968, 1971) contributing important ideas to
the general theory of point processes and the more complex subject of inter-
acting particle systems.

In principle, the same techniques are applicable to other contexts where
population models are important, but in practice the discussions in such con-
texts have tended to use more elementary, ad hoc tools. In forestry, for exam-
ple, a key problem is the assessment of the number of diseased or other special
kinds of trees in a given region. Since a complete count may be physically
very difficult to carry out and expensive, emphasis has been on statistical sam-
pling techniques, particularly of transects (line segments drawn through the
region) and nearest-neighbour distances. Matérn’s (1960) monograph brought
together many ideas, models, and statistical techniques of importance in such
fields and includes an account of point process aspects. Ripley’s (1981) mono-
graph covers some more recent developments.

On the statistical side, Cox’s (1955) paper contained seeds leading to the
treatment of many statistical questions concerning data generated by point
processes and discussing various models, including the important class of dou-
bly stochastic Poisson processes. A further range of techniques was introduced
by Bartlett (1963), who showed how to adapt methods of time series analysis
to a point process context and brought together a variety of different models.
This work was extended to processes in higher dimensions in a second paper
(Bartlett, 1964). Lewis (1964a) used similar techniques to discuss the instants
of failure of a computer. The subsequent monograph by Cox and Lewis (1966)
was a further important development that, perhaps for the first time, showed
clearly the wide range of applications of point processes as well as extending
many of the probabilistic and statistical aspects of such processes.

In the 1970s, perhaps the most important development was the rapid
growth of interest in point processes in communications engineering (see e.g.
Snyder, 1975). It is a remarkable fact that in nature, for example in nerve
systems, the transfer of information is more often effected by pulse signals
than by continuous signals. This fact seems to be associated with the high
signal/noise ratios that it is possible to achieve by these means; for the same
reason, pulse techniques are becoming increasingly important in communica-
tion applications. For such processes, just as for continuous processes, it is
meaningful to pose questions concerning the prediction, interpolation, and es-
timation of signals, and the detection of signals against background noise (in
this context, of random pulses). Since the signals are intrinsically nonnega-
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tive, the distributions cannot be Gaussian, so linear models are not in general
appropriate. Thus, the development of a suitable theory for point processes
is closely linked to the development of nonlinear techniques in other branches
of stochastic process theory. As in the applications to processes of diffusion
type, martingale methods provide a powerful tool in the discussion of these
problems, yielding, for example, structural information about the process and
its likelihood function as well as more technical convergence results. Amongst
other books, developments in this area were surveyed in Liptser and Shiryayev
(1974; English translation 1977, 1978; 2nd ed. 2000), Brémaud (1981), and
Jacobsen (1982).

The last quarter-century has seen both the emergence of new fields of ap-
plications and the consolidation of older ones. Here we shall attempt no more
than a brief indication of major directions, with references to texts that can
be consulted for more substantive treatments.

Spatial point processes, or spatial point patterns as they are often called,
have become a burgeoning subject in their own right. The many fields of
application include environmental studies, ecology, geography, astrophysics,
fisheries and forestry, as well as substantially new topics such as image pro-
cessing and spatial epidemic theory. Ripley (1981) and Diggle (1983) discuss
both models and statistical procedures, while Cressie (1991) gives a broad
overview with the emphasis on applications in biology and ecology. Image
processing is discussed in the now classical work of Serra (1982). Theoretical
aspects of spatial point patterns link closely with the fields of stereology and
stochastic geometry, stemming from the seminal work of Roger Miles and,
particularly, Rollo Davidson (see Harding and Kendall, 1974) and surveyed
in Stoyan, Kendall and Mecke (1987, 2nd ed. 1995) and Stoyan and Stoyan
(1994). There are also close links with the newly developing subject of random
set theory; see Mathéron (1975) and Molchanov (1997). The broad-ranging
set of papers in Barndorff-Nielsen et al. (1998) covers many of these applica-
tions and associated theory.

Time, space–time, and marked space–time point processes have contin-
ued to receive considerable attention. As well as in the earlier applications
to queueing theory, reliability, and electrical engineering, they have found
important uses in geophysics, neurophysiology, cardiology, finance, and eco-
nomics. Applications in queueing theory and reliability were developed in the
1980s by Brémaud (1981) and Franken et al. (1981). Baccelli and Brémaud
(1994) contains a more recent account. Second-order methods for the statis-
tical analysis of such data, including spectral theory, are outlined in the now
classic text of Cox and Lewis (1966) and in Brillinger (1975b). Snyder and
Miller (1991) describe some of the more recent applications in medical fields.
Extreme-value ideas in finance are discussed, from a rather different point
of view than in Leadbetter et al. (1983) and Resnick (1987), in Embrechts
et al. (1997). Prediction methods for point processes have assumed growing
importance in seismological applications, in which context they are reviewed
in Vere-Jones (1995).



18 1. Early History

Survival analysis has emerged as another closely related major topic, with
applications in epidemiology, medicine, mortality, quality control, reliability,
and other fields. Here the study of a single point process is usually replaced by
the study of many individual processes, sometimes with only a small number
of events in each, evolving simultaneously. Starting points include the early
papers of Cox (1972b) and Aalen (1975). Andersen et al. (1993) give a ma-
jor survey of modelling and inference problems in this field; their treatment
includes an excellent introduction to point process concepts in general, em-
phasizing martingale concepts for inference, and the use of product-integral
formulae.

The growing range of applications has led to an upsurge of interest in infer-
ence problems for point process models. Many of the texts referred to above
devote a substantial part of their discussion to the practical implementation
of inference procedures. General principles of inference for point processes
are treated in the text by Liptser and Shiryayev already mentioned and in
Kutoyants (1980, 1984), Karr (1986, 2nd ed. 1991), and Kutoyants (1998).

Theoretical aspects have also continued to flourish, particularly in the con-
nections with statistical mechanics and stochastic geometry. Recent texts on
basic theory include Kingman’s (1993) beautiful discussion of the Poisson pro-
cess and Last and Brandt’s (1995) exposition of marked point processes. There
are close connections between point processes and infinite particle systems
(Liggett, 1999), while Georgii (1988) outlines ideas related to spatial processes
and phase changes. Branching processes in higher-dimensional spaces exhibit
many remarkable characteristics, some of which are outlined in Dawson et al.
(2000). Very recently, Coram and Diaconis (2002), exploiting Diaconis and
Evans (2000, 2001), have studied similarities between finite point processes of
n points on the unit circle constructed from the eigenvalues of random unitary
matrices from the unitary group Un, and blocks of n successive zeros of the
Riemann zeta function, where n depends on the distance from the real axis
of the block of zeros.



CHAPTER 2

Basic Properties of the Poisson Process

The archetypal point processes are the Poisson and renewal processes. Their
importance is so great, not only historically but also in illustrating and moti-
vating more general results, that we prefer to give an account of some of their
more elementary properties in this and the next two chapters before proceed-
ing to more complex examples and the general theory of point processes.

For our present purposes, we shall understand by a point process some
method of randomly allocating points to intervals of the real line or (occa-
sionally) to rectangles or hyper-rectangles in a d-dimensional Euclidean space
R
d. It is intuitively clear and will be made rigorous in Chapters 5 and 9 that

a point process is completely defined if the joint probability distributions are
known for the number of events in all finite families of disjoint intervals (or
rectangles, etc.). We call these joint or finite-dimensional distributions fidi
distributions for short.

2.1. The Stationary Poisson Process

With the understanding just enunciated, the stationary Poisson process on the
line is completely defined by the following equation, in which we use N(ai, bi]
to denote the number of events of the process falling in the half-open interval
(ai, bi] with ai < bi ≤ ai+1:

Pr{N(ai, bi] = ni, i = 1, . . . , k} =
k∏
i=1

[λ(bi − ai)]ni

ni!
e−λ(bi−ai). (2.1.1)

This definition embodies three important features:
(i) the number of points in each finite interval (ai, bi] has a Poisson distri-

bution;

19
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(ii) the numbers of points in disjoint intervals are independent random
variables; and

(iii) the distributions are stationary: they depend only on the lengths bi−ai
of the intervals.

Thus, the joint distributions are multivariate Poisson of the special type in
which the variates are independent.

Let us first summarize a number of properties that follow directly from
(2.1.1). The mean M(a, b] and variance V (a, b] of the number of points falling
in the interval (a, b] are given by

M(a, b] = λ(b− a) = V (a, b]. (2.1.2)

The constant λ here can be interpreted as the mean rate or mean density
of points of the process. It also coincides with the intensity of the process as
defined following Proposition 3.3.I.

The facts that the mean and variance are equal and that both are pro-
portional to the length of the interval provide a useful diagnostic test for
the stationary Poisson process: estimate the mean M(a, b] and the variance
V (a, b] for half-open intervals (a, b] over a range of different lengths, and plot
the ratios V (a, b]/(b − a). The estimates should be approximately constant
for a stationary Poisson process and equal to the mean rate. Any systematic
departure from this constant value indicates some departure either from the
Poisson assumption or from stationarity [see Exercise 2.1.1 and Cox and Lewis
(1966, Section 6.3) for more discussion].

Now consider the relation, following directly from (2.1.1), that

Pr{N(0, τ ] = 0} = e−λτ (2.1.3)

is the probability of finding no points in an interval of length τ . This may also
be interpreted as the probability that the random interval extending from the
origin to the point first appearing to the right of the origin has length exceed-
ing τ . In other words, it gives nothing other than the survivor function for
the length of this interval. Equation (2.1.3) therefore shows that the inter-
val under consideration has an exponential distribution. From stationarity,
the same result applies to the length of the interval to the first point of the
process to the right of any arbitrarily chosen origin and then equally to the
interval to the first point to the left of any arbitrarily chosen origin. In this
book, we follow queueing terminology in calling these two intervals the for-
ward and backward recurrence times; thus, for a Poisson process both forward
and backward recurrence times are exponentially distributed with mean 1/λ.

Using the independence property, we can extend this result to the distri-
bution of the time interval between any two consecutive points of the process,
for the conditional distribution of the time to the next point to the right of
the origin, given a point in (−∆, 0], has the same exponential form, which,
being independent of ∆, is therefore the limiting form of this conditional dis-
tribution as ∆ → 0. When such a unique limiting form exists, it can be
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identified with the distribution of the time interval between two arbitrary
points of the process (see also Section 3.4 in the next chapter). Similarly, by
considering the limiting forms of more complicated joint distributions, we can
show that successive intervals are independently distributed as well as having
exponential distributions (see Exercises 2.1.2–4 and, for extensions to R

2 and
R

3, Exercises 2.1.7–8).
On the other hand, the particular interval containing the origin is not ex-

ponentially distributed. Indeed, since it is equal to the sum of the forward
and backward recurrence times, and each of these has an exponential distri-
bution and is independent of the other, its distribution must have an Erlang
(or gamma) distribution with density λ2xe−λx. This result has been referred
to as the ‘waiting-time paradox’ because it describes the predicament of a
passenger arriving at a bus stop when the bus service follows a Poisson pat-
tern. The intuitive explanation is that since the position of the origin (the
passenger’s arrival) is unrelated to the process governing the buses, it may be
treated as effectively uniform over any given time interval; hence, it is more
likely to fall in a large rather than a small interval. See Sections 3.2 and 3.4
for more detail and references.

Now let tk, k = 1, 2, . . . , denote the time from the origin t0 = 0 to the kth
point of the process to the right of the origin. Then we have

{tk > x} = {N(0, x] < k} (2.1.4)

in the sense that the expressions in braces describe identical events. Hence,
in particular, their probabilities are equal. But the probability of the event
on the right is given directly by (2.1.1), so we have

Pr{tk > x} = Pr{N(0, x] < k} =
k−1∑
j=0

(λx)j

j!
e−λx. (2.1.5)

Differentiating this expression, which gives the survivor function for the time
to the kth point, we obtain the corresponding density function

fk(x) =
λkxk−1

(k − 1)!
e−λx, (2.1.6)

which is again an Erlang distribution. Since the time to the kth event can
be considered as the sum of the lengths of the k random intervals (t0, t1],
(t1, t2], . . . , (tk−1, tk], which as above are independently and exponentially
distributed, this provides an indirect proof of the result that the sum of k
independent exponential random variables has the Erlang distribution.

In much the same vein, we can obtain the likelihood of a finite realization
of a Poisson process. This may be defined as the probability of obtaining
the given number of observations in the observation period, times the joint
conditional density for the positions of those observations, given their number.
Suppose that there are N observations on (0, T ] at time points t1, . . . , tN .
From (2.1.1), we can write down immediately the probability of obtaining
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single events in (ti−∆, ti] and no points on the remaining part of (0, T ]: it is
just

e−λT
N∏
j=1

λ∆.

Dividing by ∆N and letting ∆ → 0, to obtain the density, we find as the
required likelihood function

L(0,T ](N ; t1, . . . , tN ) = λNe−λT . (2.1.7)

Since the probability of obtaining precisely N events in (0, T ] is equal to
[(λT )N/N ! ]e−λT , this implies inter alia that the conditional density of ob-
taining points at (t1, . . . , tN ), given N points in the interval, is just N !/TN ,
corresponding to a uniform distribution over the hyperoctant

0 ≤ t1 ≤ · · · ≤ tN ≤ T.
One point about this result is worth stressing. It corresponds to treat-

ing the points as indistinguishable apart from their locations. In physical
contexts, however, we may be concerned with the positions of N physically
distinguishable particles. The factor N ! , which arises in the first instance
as the volume of the unit hyperoctant, can then be interpreted also as the
combinatorial factor representing the number of ways the N distinct particles
can be allocated to the N distinct time points. The individual particles are
then to be thought of as uniformly and independently distributed over (0, T ].
It is in this sense that the conditional distributions for the Poisson process are
said to correspond to the distributions of N particles laid down uniformly at
random on the interval (0, T ] (see Exercise 2.1.5). Furthermore, either from
this result or directly from (2.1.1), we obtain

Pr{N(0, x] = k | N(0, T ] = N} =
Pr{N(0, x] = k,N(x, T ] = N − k}

Pr{N(0, T ] = N}

=
(
N

k

)(
px,T

)k(1− px,T )N−k
, (2.1.8)

where px,T = x/T , representing a binomial distribution for the number in the
subinterval (0, x], given the number in the larger interval (0, T ].

Most of the results in this section extend both to higher dimensions and
to nonstationary processes (see Exercises 2.1.6–8). We conclude the present
section by mentioning the simple but important extension to a Poisson pro-
cess with time-varying rate λ(t), commonly called the nonhomogeneous or
inhomogeneous Poisson process. The process can be defined exactly as in
(2.1.1), with the quantities λ(bi−ai) =

∫ bi

ai
λ dx replaced wherever they occur

by quantities

Λ(ai, bi] =
∫ bi

ai

λ(x) dx.

Thus, the joint distributions are still Poisson, and the independence property
still holds. Furthermore, conditional distributions now correspond to particles
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independently distributed on (0, T ] with a common distribution having density
function λ(x)/Λ(0, T ] (0 ≤ x ≤ T ). The construction of sample realizations
is described in Exercise 2.1.6, while the likelihood function takes the more
general form

L(0,T ](N ; t1, . . . , tN ) = e−Λ(0,T ]
N∏
i=1

λ(ti)

= exp
(
−
∫ T

0
λ(t) dt+

∫ T

0
log λ(t)N(dt)

)
.

(2.1.9)

From this expression, we can see that results for the nonstationary Poisson
process can be derived from those for the stationary case by a deterministic
time change t �→ u(t) ≡ Λ(0, t]. In other words, if we write N(t) = N(0, t] (all
t ≥ 0) and define a new point process by

Ñ(t) = N
(
u−1(t)

)
,

then Ñ(t) has the rate quantity Λ̃(0, t) = u(u−1(t)) = t and is therefore a
stationary Poisson process at unit rate.

In Chapters 7 and 14, we shall meet a remarkable extension of this last
result, due to Papangelou (1972a, b): any point process satisfying a simple
continuity condition can be transformed into a Poisson process if we allow a
random time change in which Λ[0, t] depends on the past of the process up
to time t. Papangelou’s result also implies that (2.1.9) represents the typical
form of the likelihood for a point process: in the general case, all that is
needed is to replace the absolute rate λ(t) in (2.1.9) by a conditional rate that
is allowed to depend on the past of the process.

Other extensions lead to the class of mixed Poisson processes (see Exercise
2.1.9) and Cox processes treated in Chapter 6.

Exercises and Complements to Section 2.1
2.1.1 Let N1, . . . , Nn be i.i.d. like the Poisson r.v. N with mean µ = EN , and write

N = (N1 + · · · + Nn)/n for the sample mean. When µ is sufficiently large,
indicate why the sample index of dispersion

Z =
n∑
j=1

(Nj −N)2

N

has a distribution approximating that of a χ2
n−1 r.v. Darwin (1957) found

approximations to the distribution of Z for a general distribution for N based
on its cumulants, illustrating his work via the Neyman, negative binomial,
and Thomas distributions (see also Kathirgamatamby, 1953).

2.1.2 Exponential distribution order properties. LetX1, . . . , Xn be i.i.d. exponential
r.v.s on (0,∞) with Pr{X1 > x} = e−λx (x ≥ 0) for some positive finite λ.
(a) Let X(1) < · · · < X(n) be the order statistics of X1, . . . , Xn. Then

(X(1), . . . , X(n)) has the same distribution as the vector whose kth compo-
nent is

Xn
n

+
Xn−1

n− 1
+ · · · +

Xn−k+1

n− k + 1
.
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(b) Write Y = X1 + · · · + Xn and set Y(k) = (X1 + · · · + Xk)/Y . Then
Y(1), . . . , Y(n−1) are the order statistics of n − 1 i.i.d. r.v.s uniformly dis-
tributed on (0, 1).

2.1.3 Exponential r.v.s have no memory. Let X be exponentially distributed as in
Exercise 2.1.2, and for any nonnegative r.v. Y that is independent of X, define
an r.v. XY as any r.v. whose d.f. has as its tail

R(z) ≡ Pr{XY > z} = Pr{X > Y + z | X > Y }.

Then XY and X have the same d.f.
[There exist innumerable characterizations of exponential r.v.s via their lack
of memory properties; many are surveyed in Galambos and Kotz (1978).]

2.1.4 A process satisfying (2.1.1) has

Pr{N(t− x− ∆, t− ∆] = 0, N(t− ∆, t] = 1, N(t, t+ y] = 0 | N(t− ∆, t] > 0}
→ e−λxe−λy (∆ → 0),

showing the stochastic independence of successive intervals between points of
the process.

2.1.5 Order statistics property of Poisson process. Denote the points of a stationary
Poisson process on R+ by t1 < t2 < · · · < tN(T ) < · · · , where for any positive
T , tN(T ) ≤ T < tN(T )+1 . Let u(1) < · · · < u(n) be the order statistics of n i.i.d.
points uniformly distributed on [0, T ]. Show that, conditional on N(T ) = n,
the distributions of {u(i): i = 1, . . . , n} and {ti: i = 1, . . . , n} coincide.

2.1.6 Conditional properties of inhomogeneous Poisson processes. Given a finite
measure Λ(·) on a c.s.m.s. X , let {t1, . . . , tN(X )} be a realization of an inho-
mogeneous Poisson process on X with parameter measure Λ(·).
(a) I.i.d. property. Let r.v.s U1, . . . , Un be i.i.d. on X with probability distri-

bution Λ(·)/Λ(X ). Show that the joint distributions of {Ui} coincide with
those of {ti} conditional on N(X ) = n.

(b) Binomial distribution. When X = (0, T ], show that (2.1.8) still holds for
the process N(·) with px,T = Λ(x)/Λ(T ).

(c) Thinning construction. To construct a realization on (0, T ] of an inho-
mogeneous Poisson process Π1 for which the local intensity λ(·) satisfies
0 ≤ λ(u) ≤ λmax (0 < u ≤ T ) for some finite positive constant λmax, first
construct a realization of a stationary Poisson process with rate λmax (us-
ing the fact that successive intervals are i.i.d. exponential r.v.s with mean
1/λmax), yielding the points 0 < tl < t2 < · · ·, say. Then, independently
for each k = 1, 2, . . . , retain tk as a point of Π1 with probability λ(tk)/λmax

and otherwise delete it. Verify that the residual set of points satisfies the
independence axiom and that

E(#{j: 0 < tj < u, tj ∈ Π1}) =
∫ u

0

λ(v) dv.

[See also Lewis and Shedler (1976) and Algorithm 7.5.II.]
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2.1.7 Avoidance functions of Poisson process in R
d. The distance X of the point

closest to the origin of a Poisson process in R
d with rate λ satisfies

Pr{X > y} = exp ( − λvd(y)),
where vd(y) = ydvd(1) is the volume of a sphere of radius y in R

d. In
particular,
(i) in R

1, Pr{X > y} = e−2λy;

(ii) in R
2, Pr{X > y} = e−πλy2 ;

(iii) in R
3, Pr{X > y} = e−(4π/3)λy3 .

These same expressions also hold for the nearest-neighbour distance of an
arbitrarily chosen point of the process.

2.1.8 Simulating a Poisson process in R
d. Using the notation of Exercise 2.1.6, we

can construct a realization of a Poisson process Πd in a neighbourhood of
the origin in R

d by adapting Exercises 2.1.6 and 2.1.7 to give an inhomoge-
neous Poisson process on (0, T ) with intensity λ(d/dy)vd(y) and then, denoting
these points by r1, r2, . . . , taking the points of Πd as having polar coordinates
(rj , θj), where θj are points independently and uniformly distributed over the
surface of the unit sphere in R

d.
[An alternative construction for rj is to use the fact that λ(vd(rj)−vd(rj−1)),
with r0 = 0, are i.i.d. exponential r.v.s with unit mean. See also Quine
and Watson (1984). The efficient simulation of a Poisson process in a d-
dimensional hypersphere, at least for small d, is to choose a point at random
in a d-dimensional hypercube containing the hypersphere and use a rejection
method of which Exercise 2.1.6(c) is an example.]

2.1.9 (a) Mixed Poisson process. A point process whose joint distributions are given
by integrating λ in the right-hand side of (2.1.1) with respect to some d.f.
defines a mixed Poisson process since the distributions come from regarding
λ as a random variable. Verify that

N(0, t]/t →a.s. λ (t → ∞),

EN(0, t] = (Eλ)t,

varN(0, t] = (Eλ)t+ (varλ)t2 ≥ EN(0, t],

with strict inequality unless varλ = 0.
(b) Compound Poisson process. Let Y, Y1, Y2, . . . be i.i.d. nonnegative integer-

valued r.v.s with probability generating function g(z) = EzY (|z| ≤ 1),
and let them be independent of a Poisson process Nc at rate λ; write
Nc(t) = Nc(0, t]. Then

N(0, t] ≡
Nc(t)∑
i=1

Yi

defines the counting function of a compound Poisson process for which

EzN(0,t] = exp [ − λt(1 − g(z))],
EN(0, t] = λ(EY )t,

varN(0, t] = λ(varY )t+ λ(EY )2t = λ[E(Y 2)]t

= [ENc(t)](varY ) + [varNc(t)](EY )2 ≥ EN(0, t],

with strict inequality unless E[Y (Y − 1)] = 0, i.e. Y = 0 or 1 a.s.
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[Both the mixed and compound Poisson processes are in general overdispersed
compared with a Poisson process in the sense that (varN(0, t])/EN(0, t] ≥ 1,
with equality holding only in the exceptional cases as noted.]

2.1.10 For a Poisson process with the cyclic intensity function

λ(t) = λ exp[κ sin(ω0t+ θ)]/I0(κ) (κ ≥ 0, ω0 > 0, 0 ≤ θ < 2π, λ > 0),

where I0(κ) =
∫ 2π

0
exp(κ sinu) du is the modified Bessel function of the

first kind of zero order, the likelihood [see (2.1.9) above] of the realization
t1, . . . , tN on the interval (0, T ) where, for convenience of simplifying the
integral below, T is a multiple of the period 2π/ω0, equals

exp

(
−
∫ T

0

λ exp[κ sin(ω0t+ θ)]
I0(κ)

dt

)(
λ

I0(κ)

)N
exp

(
κ

N∑
i=1

sin(ω0ti + θ)

)

= e−λT/2π
(

λ

I0(κ)

)N
exp

(
κ

N∑
i=1

sin(ω0ti + θ)

)
.

Consequently, N is a sufficient statistic for λ, and, when the frequency ω0 is
known, (

N,

N∑
i=1

sinω0ti,

N∑
i=1

cosω0ti

)
≡ (N,S,C) say,

are jointly sufficient statistics for the parameters (λ, κ, θ), the maximum like-
lihood estimates (λ̂, κ̂, θ̂) being determined by λ̂ = 2πN/T , tan θ̂ = C/S, and
(d/dκ) log I0(κ)|κ=κ̂ = S/(N cos θ̂) = (S2 + C2)1/2/N (the constraints that
κ̂ ≥ 0 and that S and cos θ are of the same sign determine which root θ̂ is
taken). [See Lewis (1970) and Kutoyants (1984, Chapter 4) for more details.]

2.2. Characterizations of the Stationary Poisson
Process: I. Complete Randomness

In applications, the Poisson process is sometimes referred to simply as a ran-
dom distribution of points on a line (as if there were no alternative random
processes!) or slightly more specifically as a purely random or completely ran-
dom process. In all these terminologies, what is in view is the fundamental
independence property referred to in (ii) under (2.1.1). We start our discus-
sion of characterizations by examining how far this property alone is capable
of characterizing the Poisson process. More precisely, let us assume that we
are given a point process satisfying the assumptions below and examine how
far the distributions are determined by them.

Assumptions 2.2.I.
(i) The number of points in any finite interval is finite and not identically

zero.
(ii) The numbers in disjoint intervals are independent random variables.

(iii) The distribution of N(a+ t, b+ t] is independent of t.
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For brevity, we speak of a process satisfying (i) as boundedly finite and non-
null, while property (ii) may be referred to as complete independence and (iii)
as (crude) stationarity.

Theorem 2.2.II. Under Assumptions 2.2.I, the probability generating func-
tion (p.g.f.)

P (z, τ) = E(zN(0,τ ])

can be written uniquely in the form

P (z, τ) = e−λτ [1−Π(z)] , (2.2.1)

where λ is a positive constant and Π(z) =
∑∞
n=1 πnz

n is the p.g.f. of a discrete
distribution having no zero term.

Remark. From the stationarity and independence assumptions, all the joint
distributions can be written down once the form of (2.2.1) is given, so that
(2.2.1) is in fact sufficient to specify the process completely. Hence, the as-
sumption of crude stationarity suffices in the case of the Poisson process to
ensure its (complete) stationarity (see Definition 3.2.I below).

Proof. Since N(a, b] is a monotonically increasing function of b, it is clear
that P (z, τ) is a monotonically decreasing function of τ for any fixed z with
0 ≤ z ≤ 1, while Q(z, τ) = − logP (z, τ), finite because of Assumption 2.2.I(i),
is a monotonically increasing nonnegative function of τ . Also, since

N(0, τ1 + τ2] = N(0, τ1] +N(τ1, τ1 + τ2],

it follows from the stationarity and independence assumptions that

P (z, τ1 + τ2) = P (z, τ1)P (z, τ2),
Q(z, τ1 + τ2) = Q(z, τ1) +Q(z, τ2). (2.2.2)

Now it is well known (see e.g. Lemma 3.6.III) that the only monotonic solu-
tions of the functional equation (2.2.2) are of the form

Q(z, τ) = constant× τ,

where in this case the constant is a function of z, C(z) say. Thus, for all τ > 0
we can write

P (z, τ) = e−τC(z) (2.2.3)

for some uniquely determined function C(z).
Consider first the case z = 0. From Assumption 2.2.I(i), N(0, τ ] �≡ 0, so

P (0, τ) �≡ 1, and hence C(0) �= 0. Now

{N(0, 1] ≥ n} ⊇
n⋂
k=1

{
N
(
k − 1
n

,
k

n

]
≥ 1
}
,

so using the independence assumption and (2.2.3), we have

Pr{N(0, 1] ≥ n} ≥
(
Pr{N(0, 1/n] ≥ 1}

)n =
(
1− e−C(0)/n)n.



28 2. Basic Properties of the Poisson Process

If now C(0) = ∞, then Pr{N(0, 1] ≥ n} = 1 (all n = 1, 2, . . .), contradicting
Assumption 2.2.I(i) that N(0, 1] is a.s. finite. Thus, we conclude that

0 < C(0) <∞. (2.2.4)

Define quantities λ and Π(z) by

λ = C(0) and Π(z) =
C(0)− C(z)

C(0)
=

logP (z, τ)− logP (0, τ)
− logP (0, τ)

,

the finiteness and nonnegativity of Π(z) on 0 ≤ z ≤ 1 being ensured by
the monotonicity in z of P (z, ·). From (2.2.3) and (2.2.4), it follows that
P (z, τ)→ 1 (τ → 0) for every fixed z in 0 ≤ z ≤ 1, so from (2.2.3) we have

τC(z) = 1− P (z, τ) + o(τ) (τ ↓ 0),

from which also

Π(z) = lim
τ↓0

P (z, τ)− P (0, τ)
1− P (0, τ)

.

This representation expresses Π(·) as the limit of p.g.f.s, namely the p.g.f.s of
the conditional probabilities

πk|τ ≡ Pr{N(0, τ ] = k | N(0, τ ] > 0}.

The definition of Π(z) shows that it inherits from P (z, τ) the property of
continuity as z ↑ 1, and therefore the continuity theorem for p.g.f.s (see e.g.
Feller, 1968, Section XI.6) ensures that Π(z) must also be a p.g.f., Π(z) =∑
πkz

k say, where

πk = lim
τ↓0

πk|τ = lim
τ↓0

Pr{N(0, τ ] = k | N(0, τ ] > 0} (k = 0, 1, . . .). (2.2.5)

In particular, π0 = Π(0) = 0.
We have thus established the required form of the representation in (2.2.1).

Uniqueness follows from the uniqueness of P (z, τ), which defines C(z) by
(2.2.3), and C(z) in turn defines λ and Π(z).

The process defined by Assumptions 2.2.I is clearly more general than the
Poisson process, to which it reduces only in the case π1 = 1, πk = 0 (k �= 1).
The clue to its interpretation comes from the limit relation (2.2.5), which
suggests that {πk} should be interpreted as a ‘batch-size’ distribution, where
‘batch’ refers to a collection of points of the process located at the same
time point. None of our initial assumptions precludes the possibility of such
batches. The distribution of the number of such batches in (0, 1) is found by
replacing Π(z) by z in (2.2.1), and therefore it is Poisson with rate λ. Thus, the
general process defined by Assumptions 2.2.I can be described as consisting
of a succession of batches, the successive batch sizes or multiplicities being
independent random variables [as follows readily from Assumption 2.2.I(ii)]
having the common distribution {πk}, and the number of batches following
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a Poisson process with constant rate λ. Recognizing that (2.2.1) specifies
the p.g.f. of a compound Poisson distribution, we refer to the process as the
compound Poisson process [see the footnote on p.10 regarding terminology].

Processes with batches represent an extension of the intuitive notion of
a point process as a random placing of points over a region. They are var-
iously referred to as nonorderly processes, processes with multiple points,
compound processes, processes with positive integer marks, and so on. For
a general proof of the existence of a batch-size distribution for stationary
point processes, see Proposition 3.3.VII. It should be noted that the unique-
ness of the representation (2.2.1) breaks down once we drop the convention
π0 = 0. Indeed, given any p.g.f. Π(·) as in (2.2.1), let π∗

0 be any num-
ber in 0 ≤ π∗

0 < 1, and define λ∗ = λ/(1 − π∗
0), π∗

n = (1 − π∗
0)πn. Then

Π∗(z) ≡
∑∞
n=0 π

∗
nz
n = π∗

0 + (1− π∗
0)Π(z), and

λ∗(1−Π∗(z)
)

= λ(1− π∗
0)−1{(1− π∗

0)[1−Π(z)]} = λ
(
1−Π(z)

)
.

The interpretation of this nonuniqueness is that if we increase the rate of
occurrence of batches, we may compensate for this increase by observing only
those batches with nonzero batch size.

We obtain an alternative interpretation of the process by writing (2.2.1) in
the form

P (z, τ) =
∞∏
k=1

exp[−λπkτ(1− zk)],

corresponding to a representation of the total as the sum of independent
contributions from a countable family of simpler processes, the kth of which
may be regarded as a modified Poisson process in which the rate of occurrence
of points is equal to λπk and each such point is treated as a batch of fixed
size k. In this representation, the process is regarded as a superposition of
independent component processes, each of Poisson type but with fixed batch
size. Since both interpretations lead to the same joint distributions and hence
to the same probability structures, they must be regarded as equivalent.

Theorem 2.2.II may also be regarded as a special case of the more general
theorem of Lévy on the structure of processes with stationary independent
increments (see e.g. Loève, 1963, Section 37). In our case, there can be no
Gaussian component (since the realizations are monotonic), no drift compo-
nent (since the realizations are integer-valued), and the Poisson components
must have positive integral jumps. Because a process has independent incre-
ments if and only if the distributions of the increment over any finite interval
are infinitely divisible, (2.2.1) also gives the general form of an infinitely divis-
ible distribution taking values only on the nonnegative integers [see Exercise
2.2.2 and Feller (1968, Section XII.2)].

Analytically, the condition corresponding to the requirement of no batches,
or points occurring one at a time, is clearly π1 = 1, or equivalently

Pr{N(0, τ ] > 1} = o(Pr{N(0, τ ] > 0})
= o(1− e−λτ ) = o(τ) for τ ↓ 0. (2.2.6)



30 2. Basic Properties of the Poisson Process

More generally, a stationary process satisfying this condition was called by
Khinchin (1955) an orderly process (Russian ordinarnii), and we follow this
terminology for the time being, as contrasted with the sample path terminol-
ogy of a simple point process. The relations between analytical and sample
path properties are discussed later in Section 3.3 and Chapter 9. For the
present, suffice it to be noted that the analytical condition (2.2.6) is equiva-
lent to the absence of batches with probability 1 (see Exercise 2.2.4). Using
the notion of an orderly process, we obtain the following characterization of
the Poisson process as a corollary to Theorem 2.2.II.

Theorem 2.2.III. A stationary point process satisfying Assumption 2.2.I(i)
is a Poisson process if and only if (a) it has the complete independence prop-
erty 2.2.I(ii) and (b) it is orderly.

Exercises and Complements to Section 2.2

2.2.1 In equation (2.2.3), P (z, τ) → 1 (z → 1) for every finite τ (why?), and equation
(2.2.2) and λτ > 0 suffice to check that Π(1) = 1. (A general proof, using only
stationarity and not the Poisson assumption, is given in Proposition 3.3.VIII
below.)

2.2.2 Call the p.g.f. P (z) infinitely divisible when for 0 ≤ z ≤ 1 its uniquely defined
nonnegative kth root P1/k(z) ≡ (P (z))1/k is a p.g.f. for every positive integer.
Then show that unless P (z) = 1 for all 0 ≤ z ≤ 1:
(a) p0 = P (0) > 0;
(b) (P (z)/p0)1/k → 1 (k → ∞);

(c)
logP (z) − logP (0)

− logP (0)
= lim
k↑∞

P1/k(z) − P1/k(0)
1 − P1/k(0)

;

(d) the left-hand side of (c) represents a p.g.f. on {1, 2, . . .}.
Hence, deduce that every nontrivial infinitely divisible p.g.f. is of the form
exp[−λ(1−Π(z))] for finite λ (in fact, p0 = e−λ), and p.g.f. Π(z) =

∑∞
n=1 πnz

n

[for details see e.g. Feller (1968, Section XII.2)].

2.2.3 (Continuation). Show that an r-variate p.g.f. P (z1, . . . , zr), which is nontrivial
in the sense that P (z1, . . . , zr) �≡ 1 in

∑r

j=1 |1 − zj | > 0, is infinitely divisible
if and only if it is expressible in the form exp[−λ(1 − Π(z1, . . . , zr))] for some
p.g.f.

Π(z1, . . . , zr) =
∞∑

n1=0

· · ·
∞∑

nr=0

πn1,...,nrz
n1 · · · znr

r

for which π0...0 = 0.

2.2.4 If a point process N has N((k−1)/n, k/n] ≤ 1 for k = 1, . . . , n, then there can
be no batches on (0, 1]. Use the complete independence property in Assump-
tion 2.2.I(ii) and the fact that (1 − o(1/n))n → 1 (n → ∞) to show that a
Poisson process satisfying the analytic orderliness property in (2.2.6) has a.s.
no batches on the unit interval, and hence on R.
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2.3. Characterizations of the Stationary Poisson
Process: II. The Form of the Distribution

The discussion to this point has stressed the independence property, and it has
been shown that the Poisson character of the finite-dimensional distributions
is really a consequence of this property. To what extent is it possible to
work in the opposite direction and derive the independence property from the
Poisson form of the distributions? Observe that for any partition A1, . . . , Ar
of a Borel set A, the avoidance probability P0(A) of a Poisson process satisfies

P0(A) = Pr{N(A) = 0} = exp(−λ�(A)) =
r∏
i=1

exp(−λ�(Ai)) =
r∏
i=1

P0(Ai),

(2.3.1)
so the events {N(Ai) = 0} are independent [in (2.3.1), �(·) denotes Lebesgue
measure]. Rényi (1967) weakened this assumption by requiring (2.3.1) to hold
merely on all sets A that are finite unions of finite intervals, and then, adding
the requirement that N be orderly, he deduced that N must be Poisson.

In the converse direction, it is not enough to take A to be the class of
unions of any fixed number of intervals: in particular, it is not enough to
know that N(A) has a Poisson distribution for all single intervals A = [a, b],
as shown in a series of counterexamples provided by Shepp in Goldman (1967),
Moran (1967, 1976a, b), Lee (1968), Szasz (1970), and Oakes (1974); two such
counterexamples are described in Exercises 2.3.1 and 4.5.12.

Theorem 2.3.I. Let N be an orderly point process on R. Then, for N to be
a stationary Poisson process it is necessary and sufficient that for all sets A
that can be represented as the union of a finite number of finite intervals,

P0(A) = e−λ�(A). (2.3.2)

It is as easy to prove a more general result for a Poisson process that is
not necessarily stationary. To this end, define a simple Poisson process in
d-dimensional space R

d as a point process N for which the joint distributions
of the counts N(Ai) on bounded disjoint Borel sets Ai satisfy [see equation
(2.1.1)]

Pr{N(Ai) = ki (i = 1, . . . , r)} =
r∏
i=1

[µ(Ai)]ki

ki!
e−µ(Ai) (r = 1, 2, . . .)

for some nonatomic measure µ(·) that is bounded on bounded sets. Thus,
the N(Ai) are Poisson-distributed and independent, E[N(A)] = µ(A), and
µ being nonatomic, µ(An) → 0 for any monotonic sequence of bounded sets
An ↓ ∅ or {x′} for any singleton set {x′} (see Lemma A1.6.II). It is an el-
ementary property of the Poisson distribution that this then implies that
Pr{N(An) ≥ 2}

/
Pr{N(An) ≥ 1} → 0 for the same sequence {An}; thus, N

has the property of orderliness noted below (2.2.6).
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Theorem 2.3.II. Let µ be a nonatomic measure on R
d, finite on bounded

sets, and suppose that the simple point process N is such that for any set A
that is a finite union of rectangles,

Pr{N(A) = 0} = e−µ(A). (2.3.3)

Then N is a Poisson process with mean µ(A).

Proof. We use the idea of a dissecting system (see Appendix A1.6). For
any set A as in (2.3.3), let the set Tn of rectangles {Ani: i = 1, . . . , rn} be an
element of a dissecting system {Tn} of partitions for A [so, for given n, the
union of the Ani is A, Ani and Anj are disjoint for i �= j, and each Anj is the
union of some subset An+1,is (s = 1, . . . , r′

n,i) of Tn+1, and for any x ∈ A,
there is a sequence {An(x)}, An(x) ∈ Tn with

⋂
nAn(x) = {x}]. Since µ is

nonatomic, µ(An(x))→ 0 as n→∞.
Given a partition Tn, define the indicator random variables

Ini =
{

1 if N(Ani) > 0,
0 otherwise,

and set Nn(A) =
∑rn

i=1 Ini. Because the sets Ani are disjoint, the random
variables of the set {Inij : j = 1, . . . , s} are mutually independent because
they are {0, 1}-valued and

Pr{Inij = 0 (j = 1, . . . , s)} = Pr{N(Anij ) = 0 (j = 1, . . . , s)}
= Pr{N

(⋃s
j=1Anij

)
= 0}

= exp
[
− µ
(⋃s

j=1Anij
)]

=
s∏
j=1

exp[−µ(Anij )] .

Also, E(zIni) = 1− (1− z)(1− e−µ(Ani)), so Nn(A) has p.g.f.

E(zNn(A)) =
∏
i

E(zIni) =
∏
i

[
1− (1− z)(1− e−µ(Ani))

]
.

Because µ is nonatomic, supi µ(Ani) ≡ εn → 0 as n → ∞ (see Lemma
A1.6.II), and thus, using 1 − δ < e−δ < 1 − δ + δ2 for all δ sufficiently
small, the p.g.f. of Nn(A) converges to exp[−(1− z)µ(A)] as n→∞.

Since N is simple, for each realization there exists n0 such that, for all
n ≥ n0, each of the N(A) points xj is in a distinct set Anj , say. Then, for
n ≥ n0, Nn(A) = N(A). Also, the random variables Nn(A) are monotonically
increasing in n and thus have the a.s. limit N(A). It follows that E(zN(A)) =
exp[−(1 − z)µ(A)]; i.e. N(A) is Poisson-distributed with mean µ(A) for sets
A as in the theorem.
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Next, let {Aj} be a finite family of disjoint sets that are unions of rectangles.
Repeating the argument above shows that the random variables {N(Aj)} are
mutually independent Poisson random variables with means µ(Aj).

Now let A be an open set. Then there is a sequence of families T ′
n of

rectangles A′
ni that are disjoint, as for Tn, with union a subset of A and the

unions converging monotonically to A. Analysis similar to that just given
shows that N(A) is Poisson distributed with mean µ(A).

Similarly, for a finite family of disjoint open sets Aj , the random variables
N(Aj) are independent.

Finally, we extend these properties to arbitrary disjoint bounded Borel sets
Aj by using generating functionals (see Definition 5.5.I) with functions that
equal 1 on open sets contained by Aj , vanish on a closed set containing Aj ,
and are continuous (and between 0 and 1). Such approximating functions
yield generating functions that are of Poisson variables and that decompose
into products of the separate functions (for each distinct Aj), so the N(Aj)
are Poisson-distributed and independent.

Theorem 2.3.II is due to Rényi (1967); the proof above is adapted from
Kingman (1993). This result includes Theorem 2.3.I as a special case, while
in the other direction, it is a corollary of a more general result, proved in
Chapter 9 and due to Kurtz, that for a simple point process N , it is enough
to know the avoidance probabilities P0(A) on a sufficiently rich class of sets A
in order to determine its distribution. In turn, this leads to a characterization
of those set functions P0(A) that can be avoidance functions.

Exercises and Complements to Section 2.3

2.3.1 (see Theorem 2.3.II). Let N(·) be a point process on R having as its fidi
distributions those of a stationary Poisson process of unit rate except for the
following eight probabilities relating to the interval (0, 4]:

p0010 = p0101 = p1011 = p1100 = e−4 + ε,

p0100 = p1010 = p1101 = p0011 = e−4 − ε,

where pijkl = Pr{N(0, 1] = i, N(1, 2] = j, N(2, 3] = k, N(3, 4] = l}, 0 <
ε < e−4, and, conditional on N(a, a + 1] = 1 for a = 0, 1, 2, 3, that point is
uniformly distributed over that unit interval. Verify that N(I) is Poisson-
distributed for any interval I, but N(·) is not a Poisson process (Lee, 1968).

2.3.2 (a) Raikov’s theorem. Let Z be a Poisson r.v. expressible as the sum Z =
X + Y of independent nondegenerate, nonnegative r.v.s X and Y . Then
X and Y are Poisson r.v.s [see e.g. Loève (1963, Section 19.2) or Moran
(1968, p. 408)].

(b) Let N be a Poisson process for which N = N ′ +N ′′ for nontrivial indepen-
dent point processes N ′, N ′′. Show that each of N ′ and N ′′ is a Poisson
process.
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2.3.3 (see Theorem 2.3.III). Suppose a stationary orderly point process satisfies
(2.3.1). Since orderliness implies that

Pr{N((0, 1] \ ((k − 1)/n, k/n]) = 0} − Pr{N(0, 1] = 0}
= Pr{N((0, 1] \ ((k − 1)/n, k/n]) = 0, N((k − 1)/n, k/n] = 1} + o(1/n),

deduce that Pr{N(0, 1] = 1} = limn→∞ n(e−λ(1−1/n) − e−λ−o(1/n)) = λe−λ.
Extend this argument to show that Pr{N(0, 1] = j} = λje−λ/j !

2.3.4 (a) Random thinning. Let N(·) be an orderly inhomogeneous Poisson process
on R

d with rate λ(·). Form a new process N ′(·) by treating each point of a
realization {xi} independently of all other points; namely (∗) either retain
xi with probability p(xi) or delete it with probability 1 − p(xi), where p(·)
is a measurable function with 0 ≤ p(x) ≤ 1 for all x. Show that N ′(·) is a
Poisson process with rate p(x)λ(x).

(b) Random translation. Repeat part (a) but instead of (∗) use (†): translate
xi to xi + Yi, where Yi are independent identically distributed random
variables with distribution function F (·). Show that the resulting point
process, N ′′(·) say, is Poisson with rate

∫
Rd λ(x− y)F (dy).

(c) What conditions on λ(·) and p(·) make N ′(·) stationary? What conditions
make N ′′(·) stationary?

2.4. The General Poisson Process

We suppose in this section that the point process takes its values in a com-
plete separable metric space (c.s.m.s.) X , thereby anticipating the context
of Chapter 9, and without necessarily being stationary, homogeneous, or
isotropic. The cases of frequent occurrence are those in which X is two-
or three-dimensional Euclidean space (see the exercises), while the setting in-
cludes spatial point processes as in Section 5.3 and Chapter 15, for example.

We suppose throughout that N(A), the number of points in the set A, is
defined and finite for every bounded set A in the Borel σ-field B(X ) ≡ BX
generated by the open spheres of X . We may express this more succinctly
by saying that (with probability 1) the trajectories N(·) are boundedly finite
[recall Assumption 2.2.I(i)]. The Poisson process can then be defined by
assuming that there exists a boundedly finite Borel measure Λ(·) such that
for every finite family of disjoint bounded Borel sets {Ai, i = 1, . . . , k}

Pr{N(Ai) = ni, i = 1, . . . , k} =
k∏
i=1

[Λ(Ai)]ni

ni!
e−Λ(Ai). (2.4.1)

The measure Λ(·) is called the parameter measure of the process. Note that
when X is the real line, (2.4.1) includes as special cases the two examples
given in Section 2.1: for the homogeneous process Λ(A) = λ�(A), and for
the inhomogeneous process, Λ(A) =

∫
A
λ(x) dx. Equation (2.4.1) embraces a
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nontrivial increase in generality because, in general, the parameter measure
may have both a discrete (or atomic) component and a continuous singular
component.

In this general setting, we first clarify the role of the discrete component of
Λ(·). Suppose, in particular, that Λ(·) has an atom of mass λ0 at the point x0.
Since the single-point set {x0} is a Borel set, it follows at once from (2.4.1)
that N{x0} ≡ N({x0}) must have a Poisson distribution with parameter λ0.
We say that any point x0 with the property Pr{N{x0} > 0} > 0 is a fixed
atom of the process. Thus, we conclude that every atom of Λ(·) is a fixed
atom of N(·). Conversely, if x0 is a fixed atom of N(·), then N{x0} must
have a Poisson distribution with nonzero parameter λ0, say. From this, it
follows that x0 is an atom of Λ(·) with mass λ0. Hence, the following is true.

Lemma 2.4.I. The point x0 is an atom of the parameter measure Λ if and
only if it is a fixed atom of the process.

Note that whether a given point x0 represents a fixed atom of the process
is not discernible from a single realization: any point of the process is an atom
of its particular realization. For x0 to constitute a fixed atom, there must be
positive probability of it recurring over a whole family of realizations. Thus,
the fixed atoms relate to the probability structure of the process, not to the
structure of individual realizations.

In the Poisson case, the fixed atoms are also the key to the question of
orderliness. The definition given earlier in (2.2.6) is most naturally extended
to the present context by requiring

Pr{N(Sε(x)) > 1} = o(Pr{N(Sε(x)) > 0}) (ε→ 0), (2.4.2)

for each x ∈ X , where Sε(x) denotes the open sphere with radius ε and centre
x. In the case of a Poisson process, N(Sε(x)) has a Poisson distribution, with
parameter Λ(Sε(x)) = Λε, say, so that

Pr{N(Sε(x)) > 0} = 1− e−Λε ,

Pr{N(Sε(x)) > 1} = 1− e−Λε − Λεe−Λε .

Now if x is a fixed atom of Λ, Λε → Λ0 = Λ{x} > 0 as ε ↓ 0, whereas if x
is not a fixed atom, Λε → 0. In the first case, the ratio Pr{N(Sε(x)) > 1}/
Pr{N(Sε(x)) > 0} tends to the positive constant 1 − Λ0/(eΛ0 − 1), whereas
in the second case it tends to zero. Thus, the process is orderly, in the sense
of (2.4.2), if and only if Λ(·) has no atoms.

Theorem 2.4.II. The Poisson process defined by (2.4.1) is orderly if and only
if it has no fixed atoms; equivalently, if and only if the parameter measure
has no discrete component.

When X is the real line, the distribution function FΛ(x) ≡ Λ(0, x] is contin-
uous if and only if Λ has no discrete component, so in this case Λ itself could
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be called continuous. One should beware of claiming any such conclusions for
more general X , however, for even though Λ(·) may have no atoms, it may
well have concentrations on lines, surfaces, or other lower-dimensional subsets
that may cause an associated distribution function to be discontinuous. In
such situations, in contrast to the case of a homogeneous Poisson process,
there will be some positive probability of points of the process appearing on
such lines, surfaces, and so on.

We turn next to the slightly more difficult problem of extending the char-
acterizations based on the complete independence property stated below.

Assumption 2.4.III. For each finite family of bounded, disjoint Borel sets
{Ai, i = 1, . . . , k}, the random variables N(A1), . . . , N(Ak) are mutually in-
dependent.

The most important result is contained in the following lemma.

Lemma 2.4.IV. Suppose (i) N is boundedly finite a.s. and has no fixed
atoms, and (ii) N has the complete independence property of Assumption
2.4.III. Then, there exists a boundedly finite nonatomic Borel measure Λ(·)
such that

P0(A) = Pr{N(A) = 0} = e−Λ(A) (all bounded Borel sets A).

Proof. Set Q(A) = − logP0(A), observing immediately that Q(A) ≥ 0 and
that by (ii) it is finitely additive. Countable additivity is equivalent to having
Q(An)→ 0 for any decreasing sequence {An} of bounded Borel sets for which
Q(An) < ∞ and An ↓ ∅. For An ↓ ∅, we must have N(An) → 0 a.s., and
thus e−Q(An) = P0(An) = Pr{N(An) = 0} → 1, establishing Q(An) → 0 as
required. To show that Q(·) is nonatomic, observe that, by (i),

0 = Pr{N{x} > 0} = 1− e−Q({x}),

so that Q({x}) = 0 for every x.
It remains to show that Q(·) is boundedly finite, which is equivalent to

P0(A) > 0 for any bounded Borel set A. Suppose the contrary for some set
A, which without loss of generality we may assume to be closed, for if not,
0 ≤ P0(Ā) ≤ P0(A) = 0, whence P0(Ā) = 0. Since X is separable, A can be
covered by a countable number of disjoint Borel sets An, each with diameter
less than 1, so A =

⋃∞
n=1An. Let pn = Pr{N(An) > 0}, so that N(A) = 0

only if N(An) = 0 for all n, and thus 0 = P0(A) =
∏∞
n=1(1 − pn). This

infinite product vanishes only if pn = 1 for some n, or else
∑∞
n=1 pn diverges.

In the latter event, the Borel–Cantelli lemma implies that a.s. infinitely many
N(An) are nonzero, and hence N(A) =∞ a.s., contradicting the assumption
that N(·) is boundedly finite. Consequently, we must have pn = 1 for some set
An, A(1) say, and A(1) has diameter less than 1 and as with A may be assumed
to be closed. By repeating the argument, we can find a closed set A(2) with
diameter less than 2−1 such that P0(A(2)) = 0. Proceeding by induction, a
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sequence {A(n)} of nested closed sets is constructed with diameters → 0, and
P0(A(n)) = 0 (all n). Choose xn ∈ A(n), so that {xn} is a Cauchy sequence,
xn → x0 say, and, each A(n) being closed, x0 ∈ A(n), and therefore An ↓
{x0}. Then N(A(n)) ↓ N({x0}), and by monotone convergence, P0({x0}) =
limn→∞ P0(A(n)) = 0. Equivalently, Pr{N{x0} > 0} = 1, so that x0 is a fixed
atom of the process, contradicting (i).

Now suppose that the process is orderly in addition to satisfying the con-
ditions of Lemma 2.4.IV. Then, it follows from Theorem 2.3.II that we have
a Poisson process without fixed atoms. Thus, the following theorem, due to
Prekopa (1957a, b), is true.

Theorem 2.4.V. Let N(·) be a.s. boundedly finite and without fixed atoms.
Then N(·) is a Poisson process if and only if

(i) it is orderly, and
(ii) it has the complete independence property of Assumption 2.4.III.

To extend this result to the nonorderly case, consider for fixed real z in
0 ≤ z ≤ 1 the set function

Qz(A) ≡ − log E(zN(A)) ≡ − logPz(A)

defined over the Borel sets A. It follows immediately that

0 ≤ Qz(A) < Q(A),

and using also the argument of Lemma 2.4.VI, it follows that Qz(·) is a mea-
sure, absolutely continuous with respect to Q(·). Consequently, there exists
a density, qz(x) say, such that

Qz(A) =
∫
A

qz(x)Q(dx) (2.4.3)

and for Q-almost-all x

qz(x) = lim
ε↓0

Qz(Sε(x))
Q(Sε(x))

,

where Sε(x) is as in (2.4.2); see also e.g. Lemma A1.6.III for this property of
Radon–Nikodym derivatives. If we continue to assume that the process has
no fixed atoms, Q(Sε(x)) and hence also Qz(Sε(x)) both → 0 as ε → 0, for
then Sε(x) → {x}. We can then imitate the argument leading to Theorem
2.2.II and write for Q-almost-all x

Πz(x) = 1− qz(x) = lim
ε↓0

Pz(Sε(x))− P0(Sε(x))
1− P0(Sε(x))

. (2.4.4)

Now, for fixed A, Qz(A) is monotonically decreasing in z for 0 ≤ z ≤ 1, so
by taking a countably dense set of z values in [0, 1], (2.4.4) holds for such z
except possibly on a Q-null set formed by the union of the Q-null sets where
it may fail for the separate values of z.
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For each ε, (2.4.4) is the p.g.f. of the conditional distribution

Pr{N(Sε(x)) = k | N(Sε(x)) > 0}.

Now a sequence of p.g.f.s converging on a countably dense set of z values in
[0, 1) converges for all 0 ≤ z < 1, with the limit being a p.g.f. of a possibly
dishonest distribution. In the present case, the limit is in fact Q-a.e. honest
because by monotone convergence and (2.4.3),

0 = logP1(A) = lim
z↑1

Qz(A) =
∫
A

(
lim
z→1

qz(x)
)
Q(dx),

implying that limz→1 qz(x) = 0 Q-a.e.
Consequently, except for a Q-null set, (2.4.4) holds for all 0 ≤ z ≤ 1, and

for the limit qz(x), 1−qz(x) is the p.g.f. of a proper distribution, {πk(x)} say,
for which

π0(x) = 0, Πz(x) =
∞∑
k=1

πk(x)zk,

and

Pz(A) = exp
(
−
∫
A

[1−Πz(x)]Q(dx)
)
. (2.4.5)

There is the alternative form for (2.4.5),

Pz(A) = exp
(
−Q(A)[1−Πz(A)]

)
,

in which there appears the p.g.f. Πz(A) of the ‘averaged’ probabilities

πk(A) =
1

Q(A)

∫
A

πk(x)Q(dx).

Thus, the distributions in this process still have the compound Poisson form.
Finally, suppose we reinstate the fixed atoms of the process. Note that

these are also atoms of Q(·) and can therefore be at most countable in number,
and also that the number of points of the process at each fixed atom must
be a discrete random variable independent of the rest of the process. We
thus arrive at the following structure theorem for the general point process
satisfying the complete independence property.

Theorem 2.4.VI. Let N(·) be a point process that has the complete inde-
pendence property of Assumption 2.4.III. Then N(·) can be written in the
form of a superposition N = N1 +N2, where N1 and N2 are independent and
(i) N1 consists of a finite or countable family of fixed atoms, {x1, x2, . . .},

where for each i, N1{xi} has a proper, discrete distribution and is inde-
pendent of the rest of the process; and

(ii) N2 is a process without fixed atoms, which can be represented in the
compound Poisson form (2.4.5), where Q(·) is a fixed, boundedly finite,
nonatomic measure, and for Q-almost-all x, Πz(x) is the p.g.f. of a proper
discrete distribution, satisfying Π0(x) = 0.
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We remark that, analogously to the situation described by Theorem 2.2.II,
the realizations of N2 consist a.s. of random batches of points, where the
number of batches is governed by a Poisson process with parameter measure
Q(·) and, conditional on a batch occurring at x, its probability distribution is
given by {πk(x)}. These sample-path results can be established directly for
this special case, but we prefer to treat them as special cases of the theorems
established in Chapter 3.

Exercises and Complements to Section 2.4
2.4.1 Let N1, N2 be independent Poisson processes with parameter measures Λ1,

Λ2. Show that N1 +N2 is a Poisson process with parameter measure Λ1 +Λ2.

2.4.2 Poisson process on the surface of a sphere. There is an area-preserving map
of the surface of a sphere of radius r onto the curved surface of a cylinder of
radius r and height 2r. Conclude that a homogeneous Poisson process on the
surface of such a sphere can be represented as a Poisson process on a rectangle
with side-lengths 2r and 2πr. How may a homogeneous Poisson process on
the surface of an oblate or prolate elliptical spheroid be constructed?
[Hint: An oblate spheroid is the solid of revolution obtained by rotating an
ellipse with major and minor axes of lengths 2a and 2b, respectively, about its
minor axis, so it has the same surface area as the curved surface of a cylinder of
radius a and height 2

∫ π/2
0

cos θ
√
a2 sin2 θ + b2 cos2 θ dθ. For a prolate spher-

oid, use a cylinder of radius b and height 2
∫ π/2
0

sin θ
√
a2 sin2 θ + b2 cos2 θ dθ.]

2.4.3 Poisson process on a lattice. A homogeneous Poisson process with density λ
on a given (countably infinite) lattice of points, {zi} say, is a sequence of i.i.d.
Poisson r.v.s, {Ni} say, with common mean λ.

A homogeneous binary process on such a lattice is a sequence, {Yi} say, of
i.i.d. {0, 1}-valued r.v.s {Yi} for which Pr{Yi = 1} = p for some p ∈ (0, 1). It
is only approximately Poisson, and then only for small p.

2.4.4 Define a homogeneous Poisson process on a cylinder of unit radius as a Poisson
process of points {(xi, θi)} on the doubly infinite strip R × (0, 2π] at rate
λdxdθ. Such a point process can also be interpreted as a Poisson process of
directed lines in the plane since any such line is specified by its orientation
relative to a given direction and its distance from the origin (negative if the
origin is to the left of the line rather than the right).
(a) In this line-process interpretation, check that the largest circle that can be

drawn around a randomly chosen point in the plane without intersecting
a line has radius R with distribution Pr{R > y} = Pr{strip of width 2y
has no point (xi, θi)} = exp(−λ 2πy).

(b) Show that the expected number of intersections lying within the circle
SR(0) between the line (x, 0) and lines of the process, where 0 < x <

R, equals 4
∫ R
x

arsin(y/R) 2λdy. Deduce that the expected number of
intersections between any two lines of the process and lying in a circle of
radius R equals

2π
∫ R

0

2λdx
∫ R

x

8λ arsin(y/R) dy = (2λπR)2.
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Observe that such a point process (from line intersections) cannot be Pois-
son because with probability 1, given any two points, there are infinitely
many other points collinear with the two given points.

2.4.5 Poisson process in Hilbert space.
(i) Find an example of a Hilbert-space-valued random variable that does

not have its distribution concentrated on a finite-dimensional subspace.
[Hint: Consider a series of the form Y =

∑
akUkek, where the ak form a

scalar series, the Uk are i.i.d., and ek is the unit vector in the kth dimen-
sion. Other examples follow from the Hilbert-space Gaussian measures
discussed in Chapter 9.] By combining copies of this probability measure
suitably, build up examples of σ-finite measures.

(ii) Using the measures above, construct examples of well-defined Poisson
processes on a Hilbert space. Discuss the nature of the realizations in
increasing sequences of spheres or cubes.

(iii) Show that if a σ-finite measure is invariant under Hilbert-space transla-
tions, then it cannot be boundedly finite. Hence, show that no Poisson
process can exist that is invariant under the full set of Hilbert-space trans-
lations.



CHAPTER 3

Simple Results for Stationary Point
Processes on the Line

The object of this chapter is to give an account of some of the distinctive
aspects of stationary point processes on the line without falling back on the
measure-theoretic foundations that are given in Chapter 9. Some aspects that
are intuitively reasonable and that can in fact be given a rigorous basis are
taken at face value in order that the basic ideas may be exposed without the
burden of too much mathematical detail. Thus, the results presented in this
chapter may be regarded as being made logically complete when combined
with the results of Chapter 9.

Ideas introduced here concerning second-order properties are treated at
greater length in Chapters 8 and 12, and Palm theory in Chapter 13.

3.1. Specification of a Point Process on the Line

A point process on the line may be taken as modelling the occurrences of
some phenomenon at the time epochs {ti} with i in some suitable index set.
For such a process, there are four equivalent descriptions of the sample paths:

(i) counting measures;
(ii) nondecreasing integer-valued step functions;

(iii) sequences of points; and
(iv) sequences of intervals.

In describing a point process as a counting measure, it does not matter that
the process is on the real line. However, for the three other methods of
describing the process, the order properties of the reals are used in an essential
way. While the methods of description may be capable of extension into
higher dimensions, they become less natural and, in the case of (iv), decidedly
artificial.

41
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In Chapters 1 and 2, we mostly used the intuitive notion of a point process
as a counting measure. To make this notion precise, take any subset A of the
real line and let N(A) denote the number of occurrences of the process in the
set A; i.e.

N(A) = number of indices i for which ti lies in A

= #{i: ti ∈ A}. (3.1.1)

When A is expressed as the union of the disjoint sets A1, . . . , Ar, say, that is,

A =
r⋃
i=1

Ai where Ai ∩Aj = ∅ for i �= j,

it is a consequence of (3.1.1) that

N

( r⋃
i=1

Ai

)
=

r∑
i=1

N(Ai) for mutually disjoint A1, . . . , Ar. (3.1.2)

It also follows from (3.1.1) that

N(A) is nonnegative integer-(possibly ∞-)valued. (3.1.3)

In order that we may operate conveniently on N(A) for different sets A—in
particular, in order that the probability of events specified in terms of N(A)
may be well defined—we must impose a restriction on the sets A that we are
prepared to consider. Since we want to include intervals and unions thereof,
the usual constraint is that

N(A) is defined for all Borel subsets A of the real line. (3.1.4)

Finally, in order to exclude the possibility of ‘too many’ points occurring ‘too
close’ together, we insist that, for the point processes we consider,

N(A) is finite for bounded sets A. (3.1.5)

The assumptions in (3.1.2–5) with (3.1.2) extended to allow r = ∞ are
precisely those that make N(·) a counting measure on the σ-field BR of all
Borel subsets of the real line R. The constraint in (3.1.3) that N(·) be integer-
valued distinguishes it from other more general nonnegative measures as a
counting measure.

To be consistent with N(·) being a set function, we ought to write, for
example, N((a, b]) when A is the half-open interval (a, b]; our preference for
the less cumbersome abbreviation N(a, b] should lead to no confusion.

We have already used in Chapters 1 and 2 the further contraction

N(t) = N(0, t] = N((0, t]) (0 < t ≤ ∞); (3.1.6)
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the difference in argument should suffice to distinguish the real function
N(t) (t > 0) from the set function N(A). This function N(t) is nondecreas-
ing, right-continuous, and integer-valued, and hence a step function. For point
processes on the positive half-line, knowledge of N(t) for all t ≥ 0 suffices to
determine N(A) for Borel sets A ⊂ (0,∞) in precisely the same manner as a
distribution function determines a probability measure on Borel sets. When
the point process is defined on the whole line, we extend the definition (3.1.6)
to

N(t) =


N((0, t]) (t > 0),
0 (t = 0),
−N((t, 0]) (t < 0).

(3.1.7)

In this way, N(t) retains the properties of being a right-continuous integer-
valued function on the whole line. Moreover, N(t) determines N(A) for all
Borel sets A and hence describes the point process via a step function. Thus,
instead of starting with N(A) (all A ∈ B), we could just as well have specified
the sample path as a right-continuous function N(t) (−∞ < t < ∞) that is
nonnegative and integer-valued for t > 0, nonpositive and integer-valued for
t < 0, and has N(0) = 0.

The simplest case of the third method listed above occurs where the process
is defined on the half-line t > 0. Setting

ti = inf{t > 0:N(t) ≥ i} (i = 1, 2, . . .), (3.1.8)

it follows that for i = 1, 2, . . ., we have the seemingly obvious but most im-
portant relation

ti ≤ t if and only if N(t) ≥ i. (3.1.9)

This relation makes it clear that specifying the sequence of points {ti} is
equivalent to specifying the function N(t) in the case where N(−∞, 0] = 0.
It should be noted that the set of points {ti} in (3.1.8) is in increasing order;
such a restriction is not necessarily implied in talking of a set of time epochs
{ti} as at the beginning of the present section.

If the point process has points on the whole line and not just the positive
axis, the simplest extension consistent with (3.1.8) is obtained by defining

ti = inf{t:N(t) ≥ i}

=
{

inf{t > 0:N(0, t] ≥ i} (i = 1, 2, . . .),
− inf{t > 0:N(−t, 0] ≥ −i+ 1} (i = 0,−1, . . .).

(3.1.10)

Such a doubly infinite sequence of points has the properties that

ti ≤ ti+1 (all i) and t0 ≤ 0 < t1. (3.1.11)

Finally, by setting

τi = ti − ti−1 with {ti} as in (3.1.10) (3.1.12)
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[or else, in the case of only a half-line as in (3.1.8), with the added conventions
that t0 = 0 and τi is defined only for i = 1, 2, . . . ], the process is fully described
by the sequence of intervals {τi} and one of the points {ti}, usually t0. Observe
that τi ≥ 0 and that if N(t) → ∞ as t → ∞, then

∑n
i=1 τi → ∞ as n → ∞,

while if N(t) �→ ∞ as t→∞, then τi is not defined for i > limt→∞N(t).
We now make the intuitively plausible assumption that there exists a proba-

bility space on which the functions N(A), N(t), ti, τi are well-defined random
variables and furthermore that we can impose various constraints on these
random variables in a manner consistent with that assumption. The question
of the existence of such a probability space is discussed in Chapter 9.

Exercises and Complements to Section 3.1
3.1.1 Suppose that the r.v.s {ti} in (3.1.8) are such that Pr{ti+1 > ti} = 1, and

define
Gi(x) = Pr{ti ≤ x}.

(a) Show that limx→0Gi(x) = 0 for all integers i > 0.
(b) Show that the assumption in (3.1.5) of N(·) being boundedly finite implies

that, for all real x > 0,
lim
i→∞

Gi(x) = 0.

3.1.2 (Continuation). Show that for x > 0, M(x) ≡ EN(x) =
∑∞

i=1Gi(x) and,
more generally, that

E([N(x)]r) =
∞∑
i=1

(ir − (i− 1)r)Gi(x) =
∞∑
i=1

ir(Gi(x) −Gi+1(x))

in the sense that either both sides are infinite or, if one is finite, so is the other
and the two sides are equal.

3.1.3 (Continuation). Show that for |z| ≤ 1 and x > 0,

P (x; z) ≡ EzN(x) = 1 + (z − 1)
∞∑
i=0

Gi+1(x)zi.

3.2. Stationarity: Definitions

The notion of stationarity of a point process at first sight appears to be a
simple matter: at the very least, it means that the distribution of the number
of points lying in an interval depends on its length but not its location; that
is,

pk(x) ≡ Pr{N(t, t+ x] = k} (x > 0, k = 0, 1, . . .)

depends on the length x but not the location t. Lawrance (1970) called this
property simple stationarity, while we follow Chung (1972) in calling it crude
stationarity. It is in fact weaker than the full force of the definition below
(see Exercise 3.2.1).
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Definition 3.2.I. A point process is stationary when for every r = 1, 2, . . .
and all bounded Borel subsets A1, . . . , Ar of the real line, the joint distribution
of

{N(A1 + t), . . . , N(Ar + t)}

does not depend on t (−∞ < t <∞).

In the case where the point process is defined only on the positive half-line,
the sets Ai must be Borel subsets of (0,∞) and we require t > 0.

There is also the intuitive feeling that the intervals {τi} should be station-
ary, and accordingly we introduce the following definition.

Definition 3.2.II. A point process is interval stationary when for every r =
1, 2, . . . and all integers ii, . . . , ir, the joint distribution of {τi1+k, . . . , τir+k}
does not depend on k (k = 0,±1, . . .).

Note that this definition makes no reference to the point t0 required to com-
plete the specification of a sample path as below (3.1.12). It is most natural to
take t0 = 0 [see (3.1.11)]. Such processes may then be regarded as a general-
ization of renewal processes in that the intervals between occurrences, instead
of being mutually independent and identically distributed, constitute merely
a stationary sequence.

The relation that exists between the probability distributions for interval
stationarity on the one hand and stationarity on the other is taken up in
Section 3.4 and elsewhere, notably Chapter 13, under its usual heading of
Palm–Khinchin theory.

Some authors speak of arbitrary times and arbitrary points in connection
with point processes. A probability distribution with respect to an arbitrary
time epoch of a stationary point process is one that is stationary as under
Definition 3.2.I; a probability distribution with respect to an arbitrary point
of a point process is one determined by the interval stationary distributions
as under Definition 3.2.II.

The importance of maintaining a distinction between interval stationarity
and ordinary stationarity is underlined by the waiting-time paradox. If in
some town buses run exactly on schedule every ∆ minutes and a stranger
arrives at a random time to wait for the next bus, then his expected waiting
time EW is 1

2∆ minutes. If, on the other hand, buses run haphazardly ac-
cording to a Poisson process with an average time ∆ between buses, then the
expected waiting time of the same stranger is ∆. The core of the so-called
paradox lies in the use of ∆ as an average interval length from the arrival of
one bus to the next, and the waiting time EW being half the mean interval
between bus arrivals when the probabilities of different intervals being chosen
are proportional to their lengths. In renewal theory, the resolution of the
paradox is known as length-biased sampling [see Feller (1966, Section I.4),
Exercise 1.2.5 above, and (3.4.17) below].
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Exercises and Complements to Section 3.2
3.2.1 (a) Construct an example of a crudely stationary point process that is not

stationary (for one example, see Exercise 2.3.1).
(b) Let N(·) be crudely stationary. Is it necessarily true that

Pr{N({t}) ≥ 2 for some t in (−1, 0]}
= Pr{N({t}) ≥ 2 for some t in (0, 1]} ?

[See the proof of Proposition 3.3.VI, where equality is shown to hold when
the probabilities equal zero.]

3.3. Mean Density, Intensity, and
Batch-Size Distribution

A natural way of measuring the average density of points of a point process
is via its mean, or in the case of a stationary point process, its mean density,
which we define as

m = E(N(0, 1]). (3.3.1)

Defining the function
M(x) = E(N(0, x]), (3.3.2)

it is a consequence of the additivity properties of N(·) as in (3.1.2) and of
expectations of sums, and of the crude stationarity property in (3.2.1), that
for x, y ≥ 0,

M(x+ y) = E
(
N(0, x+ y]

)
= E
(
N(0, x] +N(x, x+ y]

)
= E
(
N(0, x]

)
+ E
(
N(x, x+ y]

)
= E
(
N(0, x]

)
+ E
(
N(0, y]

)
= M(x) +M(y).

In other words, M(·) is a nonnegative function satisfying Cauchy’s functional
equation

M(x+ y) = M(x) +M(y) (0 ≤ x, y <∞).

Consequently, by Lemma 3.6.III,

M(x) = M(1)x = mx (0 ≤ x <∞), (3.3.3)

irrespective of whether M(x) is finite or infinite for finite x > 0.
There is another natural way of measuring the rate of occurrence of points

of a stationary point process, due originally to Khinchin (1955).

Proposition 3.3.I (Khinchin’s Existence Theorem). For a stationary (or
even crudely stationary) point process, the limit

λ = lim
h↓0

Pr{N(0, h] > 0}
h

(3.3.4)

exists, though it may be infinite.
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Proof. Introduce the function

φ(x) = Pr{N(0, x] > 0}. (3.3.5)

Then φ(x) ↓ 0 as x ↓ 0, and φ(·) is subadditive on (0,∞) because for x, y > 0,

φ(x+ y) = Pr{N(0, x+ y] > 0}
= Pr{N(0, x] > 0}+ Pr{N(0, x] = 0, N(x, x+ y] > 0}
≤ Pr{N(0, x] > 0}+ Pr{N(x, x+ y] > 0}
= φ(x) + φ(y).

The assertion of the proposition now follows from the subadditive function
Lemma 3.6.I.

The parameter λ is called the intensity of the point process, for when it is
finite, it makes sense to rewrite (3.3.4) as

Pr{N(x, x+ h] > 0} = Pr{there is at least one point in (x, x+ h]}
= λh+ o(h) (h ↓ 0). (3.3.6)

Examples of a point process with λ =∞ are given in Exercises 3.3.2–3.
These two measures of the ‘rate’ of a stationary point process coincide

when the point process has the following property.

Definition 3.3.II. A point process is simple when

Pr{N({t}) = 0 or 1 for all t} = 1. (3.3.7)

Daley (1974) called this sample-path property almost sure orderliness to
contrast it with the following analytic property due to Khinchin (1955).

Definition 3.3.III. A crudely stationary point process is orderly when

Pr{N(0, h] ≥ 2} = o(h) (h ↓ 0). (3.3.8)

Notice that stationarity plays no role in the definition of a simple point
process, nor does it matter whether the point process is defined on the real
line or even a Euclidean space. While orderliness can be defined for point
processes that either are nonstationary or are on some space different from
the real line, the defining equation (3.3.8) must then be suitably amended
[see Exercise 3.3.1, Chapter 9, and Daley (1974) for further discussion and
references].

It is a consequence of Korolyuk’s theorem and Dobrushin’s lemma, given
below, that for stationary point processes with finite intensity, Definitions
3.3.II and 3.3.III coincide.

Proposition 3.3.IV (Korolyuk’s Theorem). For a crudely stationary simple
point process,

λ = m, finite or infinite.
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Remark. In Khinchin’s (1955, Section 11) original statement of this proposi-
tion, the point process was assumed to be orderly rather than simple. In view
of the possible generalizations of the result to nonstationary point processes
and to processes on spaces other than the real line where any definition of
orderliness may be more cumbersome, it seems sensible to follow Leadbetter
(1972) in connecting the present result with Korolyuk’s name.

Proof. We use a sequence of nested intervals that in fact constitute a dis-
secting system (see Section A1.6 and the proof of Theorem 2.3.II). For any
positive integer n and i = 1, . . . , n, define indicator random variables

Ini =
{ 1

0
according as N

(
i− 1
n

,
i

n

] {> 0,

= 0.
(3.3.10)

Then, as n→∞ through the integers 2p, p = 1, 2, . . . ,
n∑
i=1

Ini ↑ N(0, 1] (3.3.11)

for those realizations N(·) for which N(0, 1] <∞ and N({t}) = 0 or 1 for all
0 < t ≤ 1; that is, in view of (3.1.5) and (3.3.7), (3.3.11) holds a.s. Then

m = E
(
N(0, 1]

)
= E

(
lim
n→∞

n∑
i=1

Ini

)

= lim
n→∞

E

(
n∑
i=1

Ini

)
by Lebesgue’s monotone convergence theorem,

= lim
n→∞

nφ(n−1) by (3.3.5), (3.3.10), and crude stationarity,

= λ by Khinchin’s existence theorem.

Proposition 3.3.V (Dobrushin’s Lemma). A crudely stationary simple
point process of finite intensity is orderly.

Proof. For any positive integer n, E(N(0, 1]) = nE(N(0, n−1]) by crude
stationarity, so

m = E(N(0, 1]) = n

∞∑
j=1

Pr{N(0, n−1] ≥ j}

≥ nφ(n−1) + nPr{N(0, n−1] ≥ 2}. (3.3.12)

Being crudely stationary, Khinchin’s existence theorem applies, so nφ(n−1)
→ λ as n→∞, and being simple also, Korolyuk’s theorem applies, so λ = m.
Combining these facts with (3.3.12), nPr{N(0, n−1] ≥ 2} → 0 as n → ∞,
which by (3.3.8) is the same as orderliness.

Dobrushin’s lemma is a partial converse of the following result in which
there is no finiteness restriction on the intensity.

Proposition 3.3.VI. A crudely stationary orderly point process is simple.
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Proof. Simpleness is equivalent to

0 =
∞∑

r=−∞
Pr
{
N({t}) ≥ 2 for some t in (r, r + 1]

}
,

which in turn is equivalent to

0 = Pr
{
N({t}) ≥ 2 for some t in (r, r + 1]

}
(r = 0,±1, . . .). (3.3.13)

For every positive integer n,

Pr{N({t}) ≥ 2 for some t in (0, 1]} ≤
n∑
i=1

Pr
{
N
( i− 1

n
,
i

n

]
≥ 2
}

= nPr{N(0, n−1] ≥ 2} by crude stationarity,
→ 0 (n→∞) when N(·) is orderly,

so (3.3.13) holds for r = 0 and, by trite changes, for all r.

In the results just given, a prominent role is played by orderliness, which
stems from the notion that the points {ti} can indeed be ordered; that is, in
the notation of (3.1.10), we have ti < ti+1 for all i. Without orderliness, we
are led to the idea of batches of points: we proceed as follows.

Proposition 3.3.VII. For a crudely stationary point process, the limits

λk = lim
h↓0

Pr{0 < N(0, h] ≤ k}
h

(3.3.14)

exist for k = 1, 2, . . . , and

λk ↑ λ (k →∞), finite or infinite ; (3.3.15)

when λ is finite,

πk ≡
λk − λk−1

λ
= lim

h↓0
Pr{N(0, h] = k | N(0, h] > 0} (3.3.16)

is a probability distribution on k = 1, 2, . . . .

Proof. Define, by analogy with (3.3.5),

φk(x) = Pr{0 < N(0, x] ≤ k} (x > 0, k = 1, 2, . . .). (3.3.17)

Then, like φ(·), φk(x) → 0 for x ↓ 0 and it is subadditive on (0,∞) because,
for x, y > 0,

φk(x+ y) = Pr{0 < N(0, x] ≤ k,N(x, x+ y] = 0}
+ Pr{N(0, x] ≤ k −N(x, x+ y], 0 < N(x, x+ y] ≤ k}
≤ Pr{0 < N(0, x] ≤ k}+ Pr{0 < N(x, x+ y] ≤ k}
= φk(x) + φk(y),
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invoking crude stationarity at the last step. Thus, (3.3.14) follows from the
subadditive function lemma, which is also invoked in writing

λ = sup
h>0

sup
k>0

φk(h)
h

= sup
k>0

sup
h>0

φk(h)
h

= sup
k>0

λk.

The monotonicity of λk in k is obvious from (3.3.14), so (3.3.15) is now proved.
Equation (3.3.16) follows from (3.3.14), (3.3.15), and (3.3.17).

The limit of the conditional probability in (3.3.16) can be rewritten in the
form

Pr{N(0, h] = k} = λπkh+ o(h) (h ↓ 0, k = 1, 2, . . .). (3.3.18)

This equation and (3.3.16) suggest that the points {ti} of sample paths occur
in batches of size k = 1, 2, . . . with respective intensities λπk. To make this
idea precise, recall that for bounded Borel sets A we have assumed N(A) to
be integer-valued and finite so that we can define

Nk(A) = #{distinct t ∈ A:N({t}) = k} (k = 1, 2, . . .)

and thereby express N(A) as

N(A) =
∞∑
k=1

kNk(A). (3.3.19)

By definition, these point processes Nk(·) are simple and stationary, and
for them we can define indicator random variables I(k)

ni , analogous to Ini in
(3.3.10), by

I
(k)
ni =

{ 1

0
according as N

(
i− 1
n

,
i

n

] {= k,

�= k.
(3.3.20)

By letting n → ∞ through n = 2p for p = 1, 2, . . . , it follows from (3.3.20)
and the construction of Nk(·) that

Nk(0, 1] = lim
n→∞

n∑
i=1

I
(k)
ni a.s. (3.3.21)

Now I
(k)
ni ≤ Ini, so when λ <∞, it follows from (3.3.21) by using dominated

convergence that E(Nk(0, 1]) <∞, being given by

E(Nk(0, 1]) = lim
n→∞

E
( n∑
i=1

I
(k)
ni

)
= lim
n→∞

n[φk(n−1)− φk−1(n−1)]

= λπk . (3.3.22)
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The sample-path definition of Nk(·) having intensity λπk as in (3.3.22)
warrants the use of the term batch-size distribution for the probability distri-
bution {πk}. Note that a stationary orderly point process has the degenerate
batch-size distribution for which π1 = 1, πk = 0 (all k �= 1). Otherwise,
the sample paths are appropriately described as having multiple points; this
terminology is reflected in the frequently used description of a simple point
process as one without multiple points.

The moments of the distribution {πk} can be related to those of N(·) as
in the next two propositions, in which we call equation (3.3.23) a generalized
Korolyuk equation.

Proposition 3.3.VIII. For a crudely stationary point process of finite in-
tensity,

m = E(N(0, 1]) = λ

∞∑
k=1

kπk, finite or infinite. (3.3.23)

Proof. Take expectations in (3.3.19) with A = (0, 1] and use Fubini’s theo-
rem and (3.3.22) to deduce (3.3.23).

Proposition 3.3.IX. For a crudely stationary point process of finite inten-
sity λ and finite γth moment, γ ≥ 1,

lim
h↓0

E
(
[Nγ(0, h]]γ

)
h

exists and equals λ
∞∑
k=1

kγπk . (3.3.24)

Proof. Introduce
Mγ(x) = E(Nγ(0, x]),

and observe that for x, y > 0, using γ ≥ 1,

Mγ(x+ y) = E
(
(N(0, x] +N(x, x+ y])γ

)
≥ E(Nγ(0, x]) + E(Nγ(x, x+ y])
= Mγ(x) +Mγ(y);

that is, the function Mγ(x) is superadditive for x > 0. When Mγ(x) is finite
for 0 < x <∞, Mγ(x)→ 0 (x ↓ 0), so the subadditive function Lemma 3.6.IV
applied to −Mγ(x) proves the existence part of (3.3.24). Since

Nγ(0, 1] ≥
n∑
i=1

( ∞∑
k−1

kγI
(k)
ni

)
→

∞∑
k=1

kγNk(0, 1] a.s. (n→∞),

we can use dominated convergence and crude stationarity to conclude that

lim
n→∞

nMγ(n−1) = E
( ∞∑
k=1

kγNk(0, 1]
)

= λ

∞∑
k=1

kγπk .
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Exercises and Complements to Section 3.3
3.3.1 Verify that a simple point process (Definition 3.3.II) can be defined equiva-

lently as one for which the distances between points of a realization are a.s.
positive. [Hint: When the realization consists of the points {tn}, (3.3.7) is
equivalent (Vasil’ev, 1965) to the relation

Pr{|ti − tj | > 0 (all i �= j)} = 1. ]

3.3.2 Show that a mixed Poisson process for which

Pr{N(0, t] = j} =
∫ ∞

1

e−λt(λt)j

j!
1
2λ

−3/2 dλ

is simple but not orderly. A mixed Poisson process with

Pr{N(0, t] = j} =
∫ ∞

1

e−λt(λt)j

j!
λ−2 dλ

also has infinite intensity, but it does satisfy the orderliness property (3.3.8).

3.3.3 (a) Let the r.v. X be distributed on (0,∞) with distribution function F (·)
and, conditional on X, let the r.v. Y be uniformly distributed on (0, X).
Now define a point process to consist of the set of points {nX + Y :n =
0,±1, . . .}. Verify that such a process is stationary and that

Pr{N(0, h] = 0} =
∫ ∞

h

(
1 − h

x

)
dF (x) = 1 − h

∫ ∞

h

x−2F (x) dx,

Pr{N(0, h] ≥ 2} = h

∫ h

(1/2)h

x−2F (x) dx.

When F (x) = x for 0 < x < 1, show that
(i) the intensity λ = ∞;
(ii) the process is not orderly; and
(iii) it has the Khinchin orderliness property [Khinchin (1956); see also

Leadbetter (1972) and Daley (1974)]

Pr{N(0, h] ≥ 2 | N(0, h] ≥ 1} → 0 (h → 0). (3.3.25)

(b) Let the realizations of a stationary point process come, with probability 1
2

each, either from a process of doublets consisting of two points at each of
{n+Y :n = 0,±1, . . .}, where Y is uniformly distributed on (0, 1), or from
a simple point process as in part (a). Then Pr{N({t}) ≤ 1 for all t} = 1

2 ,
so the process is not simple, but it does have the Khinchin orderliness
property in (3.3.25).

3.3.4 Suppose that N(·) is a simple point process on (0,∞) with finite first moment
M(x) = EN(x), and suppose that M(·) is absolutely continuous in the sense
that M(x) =

∫ x
0
m(y) dy (x > 0) for some density function m(·). Show that

the distribution functions Gi(·) of Exercise 3.1.1 are also absolutely continuous
with density functions gi(·), where

Gi(x) =
∫ x

0

gi(y) dy, and m(x) =
∞∑
i=1

gi(x) a.e.
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3.3.5 (Continuation). Now define Gi(x; t) as the d.f. of the ith forward recurrence
time after t, i.e. Gj(x; t) is the d.f. of inf{u > t:N(t, u] ≥ i}. Supposing
that N(·) has finite first moment and is absolutely continuous in the sense of
Exercise 3.3.4, show that when N(·) is simple,

g1(0; t) = m(t), gi(0; t) = 0 (i ≥ 2).

Use these results to give an alternative proof of Korolyuk’s Theorem 3.3.IV.
Show also that when the rth moment of N(·) is finite,

lim
h↓0

E[(N(t, t+ h])r]
h

= m(t).

3.3.6 Given any point process with sample realizations N , define another point
process with sample realization N∗ by means of

N∗(A) = #{distinct x ∈ A:N({x}) ≥ 1} (all Borel sets A)

(in the setting of marked point processes in Section 6.4 below, N∗ here is an
example of a ground process, denoted Ng there). Show that if, for any real
finite s > 0,

E(e−sN(A)) ≥ E(e−sN∗(A)) (all Borel sets A),

then N is simple. Irrespective of whether or not it is simple, N(A) = 0 iff
N∗(A) = 0.

Show that if N is a compound Poisson process as in Theorem 2.2.II, then
N∗ is a stationary Poisson process with rate λ.

3.3.7 Consider a compound Poisson process as in Theorem 2.2.II, and suppose that
the mean batch size Π′(1) =

∑
kπk is infinite. Let the points of the process be

subject to independent shifts with a common distribution that has no atoms.
The resulting process is no longer Poisson, is simple, and has infinite intensity.

When the shifts are i.i.d. and uniform on (0, 1), show that, for 0 < h < 1,

Pr{N(0, h] = 0} = exp

(
−λ(1+h)+λ(1−h)Π(1−h)+2λ

∫ h

0

Π(1−u) du

)
.

3.4. Palm–Khinchin Equations
Throughout this section, we use P to denote the probability measure of a
stationary point process (Definition 3.2.I). Our aim is to describe an elemen-
tary approach to the problem raised by the intuitively reasonable idea that
the stationarity of a point process as in Definition 3.2.I should imply some
equivalent interval stationarity property as in Definition 3.2.II. For example,
for positive x and y and small positive h, stationarity of the point process
N(·) implies that

P{N(t, t+ h] = N(t+ x, t+ x+ h] = N(t+ x+ y, t+ x+ y + h] = 1,
N(t, t+ x+ y + h] = 3}

= P{N(−h, 0] = N(x− h, x] = N(x+ y − h, x+ y] = 1, N(−h, x+ y] = 3}
≡ P{Ax,y,h}, say. (3.4.1)

Now the event Ax,y,h describes a sample path with a point near the origin
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and intervals of about x and y, respectively, to the next two points. Our
intuition suggests that, as far as the dependence on the variables x and y is
concerned, P{Ax,y,h} should be related to the probability measure P0(·) for
an interval stationary point process; that is, there should be a simple relation
between P{Ax,y,h} and P0{τ1 � x, τ2 � y}. We proceed to describe the
partial solution that has its roots in Khinchin’s monograph (1955) and that
connects P{N(0, x] ≤ j} to what we shall show is a distribution function

Rj(x) = lim
h↓0
P{N(0, x] ≥ j | N(−h, 0] > 0} (j = 1, 2, . . .). (3.4.2)

What emerges from the deeper considerations of Chapter 13 is that, granted
orderliness, there exists an interval stationary point process {τj} with proba-
bility measure P0, so P0{t0 = 0} = 1, for which we can indeed set

P0(·) = lim
h↓0
P(· | N(−h, 0] > 0).

It then follows, for example, that

P0{τ1 + · · ·+ τj ≤ x} = Rj(x) (3.4.3)

[see (3.4.2) and (3.1.9)], thereby identifying a random variable having Rj(·)
as its distribution function.

Instead of the expression in (3.4.1), we consider first the probability

ψj(x, h) ≡ P{N(0, x] ≤ j, N(−h, 0] > 0} (3.4.4)

and prove the following proposition.

Proposition 3.4.I. For a stationary point process of finite intensity, the
limit

Qj(x) = lim
h↓0
P{N(0, x] ≤ j | N(−h, 0] > 0} (3.4.5)

exists for x > 0 and j = 0, 1, . . . , being right-continuous and nonincreasing in
x with Qj(0) = 1.

Proof. Observe that for u, v > 0,

ψj(x, u+ v) = P{N(0, x] ≤ j, N(−u, 0] > 0}
+ P{N(0, x] ≤ j, N(−u, 0] = 0, N(−u− v,−u] > 0}.

In the last term,

{N(0, x] ≤ j, N(−u, 0] = 0} = {N(−u, x] ≤ j, N(−u, 0] = 0}
⊆ {N(−u, x] ≤ j}
⊆ {N(−u, x− u] ≤ j},
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and then using stationarity of P(·), we have

ψj(x, u+ v) ≤ ψj(x, u) + ψj(x, v).

Consequently, the subadditivity lemma implies that the limit as h → 0 of
ψj(x, h)/h exists, being bounded by λ [because ψj(x, h) ≤ φj(h)], so by writ-
ing

P{N(0, x] ≤ j | N(−h, 0] > 0} =
ψj(x, h)
φ(h)

=
ψj(x, h)/h
φ(h)/h

,

we can let h → 0 to prove the assertion in (3.4.5) concerning existence. By
subadditivity, and right-continuity and monotonicity in x of ψj(x, h),

Qj(x) = sup
h>0

ψj(x, h)
λh

= sup
h>0

sup
y>x

ψj(y, h)
λh

= sup
y>x

Qj(y),

so Qj(x) is right-continuous and nonincreasing in x, with Qj(0) = 1 since
ψj(0, h) = φ(h).

It follows from this result that every

Rj(x) ≡ 1−Qj−1(x) (j = 1, 2, . . .) (3.4.6)

is a d.f. on (0,∞) except for the possibility, to be excluded later under the
conditions of Theorem 3.4.II, that limx→∞Rj(x) may be less than 1. The
plausible interpretation of (3.4.5), or equivalently, of (3.4.6), is that Rj(x)
represents the conditional probability (in which the conditioning event has
zero probability)

P
{
N(0, x] ≥ j | N({0}) > 0

}
= P{τ1 + · · ·+ τj ≤ x | t0 = 0, t1 > 0}. (3.4.7)

Example 3.4(a) Renewal process. Consistent with (3.4.7), for a renewal
process starting at 0 with lifetime d.f. F for which F (0+) = 0, Rj(x) =
F j∗(x), where Fn∗(·) is the n-fold convolution of F . In this case then, Rj(·)
is the d.f. of the sum of j random variables that are not merely stationary
but also independent. On the other hand, if we have a renewal process with
a point at 0 and having lifetime d.f. F for which 0 < F (0+) < 1, then the
constraint in (3.4.7) that τ1 = t1 − t0 > 0 means that τ1 has d.f. F+(x) =
(F (x)− F (0+))/(1− F (0+)), while τ2, τ3, . . . have d.f. F and

Rj(x) =
∫ x

0
F (j−1)∗(x− u) dF+(u) (j = 1, 2, . . .).

Thus, Rj(x) is here the d.f. of the sum of nonstationary r.v.s, and so for
a renewal process we have the stationarity property at (3.4.3) only when
F (0+) = 0; that is, when the process is orderly (or equivalently, simple).
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This last assumption is also what enables us to proceed simply in general
[but, note the remarks around (3.4.12) below].

Theorem 3.4.II. For an orderly stationary point process of finite intensity
λ and such that

P{N(−∞, 0] = N(0,∞) =∞} = 1, (3.4.8)

P{N(0, x] ≤ j} = λ

∫ ∞

x

qj(u) du (j = 0, 1, . . .), (3.4.9)

where
qj(x) = lim

h↓0
P{N(0, x] = j | N(−h, 0] > 0}, (3.4.10)

and Rj(x) = 1 −
∑j−1
k=0 qk(x) is a distribution function on (0,∞) with mean

jλ−1 for each j = 1, 2, . . . .

Proof. Set
Pj(x) = P{N(0, x] ≤ j}

and observe by Proposition 3.4.I and the assumption of orderliness that

Pj(x+ h) =
j∑
i=0

P{N(0, x] ≤ j − i,N(−h, 0] = i}

= P{N(0, x] ≤ j} − P{N(0, x] ≤ j,N(−h, 0] > 0}
+ P{N(0, x] ≤ j − 1, N(−h, 0] = 1}+ o(h).

Thus,
Pj(x+ h)− Pj(x) = P{N(0, x] ≤ j − 1, N(−h, 0] ≥ 1}

− P{N(0, x] ≤ j, N(−h, 0] > 0}+ o(h)
= −λhqj(x) + o(h),

where the existence of qj(x) in (3.4.10) is assured by (3.4.5) directly for j = 0
and then by induction for j = 1, 2, . . . . Using D+ to denote the right-hand
derivative operator, it follows that

D+Pj(x) = −λqj(x).

Setting Q−1(x) ≡ 0, the nonnegative function qj(x) = Qj(x)−Qj−1(x) is the
difference of two bounded nonincreasing functions and hence is integrable on
bounded intervals with

Pj(x)− Pj(y) = λ

∫ y

x

qj(u) du. (3.4.11)

The assumption in (3.4.8) implies that Pj(y)→ 0 for y →∞, so (3.4.9) now
follows from (3.4.11).



3.4. Palm–Khinchin Equations 57

Letting x ↓ 0 in (3.4.9), it follows that

λ−1 =
∫ ∞

0
qj(u) du (j = 0, 1, . . .),

and hence, using (3.4.6) as well, that for j = 1, 2, . . . ,∫ ∞

0

(
1−Rj(u)

)
du =

∫ ∞

0
Qj−1(u) du = jλ−1.

There is a most instructive heuristic derivation of (3.4.9) as follows. By
virtue of (3.4.8), if we look backward from a point x, there will always be
some point u < x for which N(u, x] ≤ j and N [u, x] > j. In fact, because of
orderliness, we can write (with probability 1)

{N(0, x] ≤ j} =
⋃
u≤0

{N(u, x] = j, N({u}) = 1},

in which we observe that the right-hand side is the union of the mutually
exclusive events that the (j + 1)th point of N(·) looking backward from x
occurs at some u ≤ 0. Consequently, we can add their ‘probabilities’, which
by (3.4.7), (3.3.4), and orderliness equal qj(x − u)λ du, yielding the Palm–
Khinchin equation (3.4.9) in the form

Pj(x) = λ

∫ 0

−∞
qj(x− u) du.

Without the orderliness assumption, made from (3.4.8) onward above, we
can proceed as follows. First (see Proposition 3.4.I), we show that the function

ψj|i(x, h) ≡ P{N(0, x] ≤ j, 0 < N(−h, 0] ≤ i} (3.4.12)

is subadditive in h and so deduce that, for those i for which πi > 0 [see
(3.3.16)], there exists the limit

Qj|i(x) = lim
h↓0
P{N(0, x] ≤ j | N(−h, 0] = i}, (3.4.13)

with
P{N(0, x] ≤ j, N(−h, 0] = i} = λπiQj|i(x)h+ o(h) (h ↓ 0)

irrespective of πi > or = 0 by setting Qj|i(x) ≡ 0 when πi = 0. Then, the
argument of the proof of Theorem 3.4.II can be mimicked in establishing that

Pj(x) = λ

∫ ∞

x

∞∑
i=1

πi[Qj|i(u)−Qj−i|i(u)] du, (3.4.14)
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setting Qk|i(u) ≡ 0 for k < 0, and it can also be shown that, when πi > 0,

Rj|i(x) ≡ 1−Qj−1|i(x) ≡ 1−
j−1∑
k=0

qk|i(x)

is a proper distribution function on (0,∞).
For any point process N , the random variable

Tu ≡ inf{t > 0:N(u, y + t] > 0} (3.4.15)

is the forward recurrence time r.v. For a stationary point process, Tu =d T0
for all u, and we can study its distribution via the Palm–Khinchin equations
since {T0 > x} = {N(0, x] = 0}. Assuming that (3.4.8) holds,

P{T0 > x} = λ

∫ ∞

x

q0(u) du (3.4.16)

when N(·) is orderly as in Theorem 3.4.II. Recall that q0(·) is the tail of the
d.f. R1(·), which can be interpreted as the d.f. of the length τ1 of an arbitrarily
chosen interval. Then, still assuming that (3.4.8) holds,

ET0 =
∫ ∞

0
P{T0 > x}dx = λ

∫ ∞

0
uq0(u) du

= λ

∫ ∞

0
u
(
1−R1(u)

)
du = 1

2λ(Eτ2
1 ). (3.4.17)

When all intervals are of the same length, ∆ say, λ = ∆−1 and ET0 = 1
2∆,

whereas for a Poisson process, τ1 has mean ∆ and second moment Eτ2
1 = 2∆2,

so then ET0 = ∆. These remarks amplify the comments on the waiting-time
paradox at the end of Section 3.2.

In both Theorem 3.4.II and the discussion of the forward recurrence time
r.v. Tu, the caveat that P{N(0,∞) =∞} = 1 has been added. This is because
stationary point processes on the real line R have the property that

P{N(0,∞) =∞ = N(−∞, 0)} = 1− P{N(R) = 0}, (3.4.18)

which is equivalent to
P{0 < N(R) <∞} = 0. (3.4.19)

A similar property in a more general setting is proved in Chapter 12.
Inspection of the statements onward from (3.4.8) shows that they are ei-

ther conditional probability statements (including limits of such statements),
which in view of (3.4.18) reduce to being conditional also on {N(R) = ∞},
or unconditional statements, which without (3.4.8) need further elaboration.
This is quickly given: (3.4.8) is equivalent by (3.4.18) to P{T0 <∞} = 1, and
without (3.4.8), equations (3.4.16) and (3.4.17) must be replaced by assertions
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of the form

P{T0 > x} = λ�

∫ ∞

x

q0(u) du+ 1−�, (3.4.20)

E(T0 | T0 <∞) = 1
2λE(τ2

1 ), (3.4.21)

where � = P{N(R) =∞} = P{T0 <∞}.

Exercises and Complements to Section 3.4
3.4.1 Analogously to (3.4.15), define a backward recurrence time r.v. Bu ≡ inf{t >

0:N(u − t, u] > 0} (assuming this to be finite a.s.). Show that when N(·)
is a stationary point process, Bu =d B0 =d T0. The r.v. Lu = Bu + Tu
denotes the current lifetime r.v.; when N is orderly and stationary, show that
EL0 = (Eτ2

1 )/(Eτ1) [see (3.4.16)] and that

P{L0 < x} = λ

∫ x

0

[q0(u) − q0(x)] du = λ

∫ x

0

u dR1(u).

3.4.2 Use Palm–Khinchin equations to show that when the hazard functions q and
r of the interval and forward recurrence r.v.s τ0 and T0, respectively, are such
that r(x) = r(0) +

∫ x
0
r′(u) du for some density function r′, then q and r are

related by
r(x) = q(x) + r′(x)/r(x) (x > 0).

3.4.3 Show that for an orderly point process,

EN(0, 1] =
∫ 1

0

P{N(dx) ≥ 1},

where the right-hand side is to be interpreted as a Burkill integral [see Fieger
(1971) for further details].

3.4.4 For a point process N on R, define the event

Bk ≡ Bk((xi, ji): i = 1, . . . , k) = {N(0, xi] ≤ ji (i = 1, . . . , k)}
for positive xi, nonnegative integers ji (i = 1, . . . , k), and any fixed finite
positive integer k.
(a) When N is stationary with finite intensity λ,

ψ(Bk, h) = P(Bk ∩ {N(−h, 0] > 0})

is subadditive in h > 0, the limit Q(Bk) = limh↓0 P(Bk | {N(−h, 0] > 0})
exists finite, is right-continuous and nonincreasing in each xi and non-
decreasing in ji, is invariant under permutations of (x1, j1), . . . , (xk, jk),
satisfies the consistency conditions

Q(Bk) = Q(Bk+1((0, jk+1), (xi, ji) (i = 1, . . . , k)))
= Q(Bk+1((xk+1,∞), (xi, ji) (i = 1, . . . , k))),

and
Q(Bk) = lim

h↓0
ψ(Bk, h)/λh = sup

h>0
ψ(Bk, h}/λh.
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(b) Define a shift operator Sh (h > 0) and a difference operator ∆ on Bk by

ShBk = Bk((xi + h, ji) (i = 1, . . . , k)),
∆Bk = Bk((xi, ji − 1) (i = 1, . . . , k)),

and put q(Bk) = Q(Bk)−Q(∆Bk), with the convention that if any ji = 0,
then ∆Bk is a null set with Q(∆Bk) = 0. Under the condition (3.4.8)
of Theorem 3.4.II, the right-hand derivative D+P(Bk) exists in the sense
that D+P(ShBk) |h=0 = −λq(Bk), and

P(Bk) − P(SxBk) = λ

∫ x

0

q(SuBk) du.

[See Daley and Vere-Jones (1972, Section 7) and Slivnyak (1962, 1966). Note
that Slivnyak used a slightly different operator S0

h defined by

S0
hBk = Bk+1((h, 0), (xi + h, ji) (i = 1, . . . , k)),

so that ψ(Bk, h) = P(Bk)−P(S0
hBk), and deduced the existence of a derivative

in h of P(S0
hBk) from the convexity in h of this function, assuming stationarity

of N but not necessarily that it has finite intensity.]

3.5. Ergodicity and an Elementary Renewal
Theorem Analogue

Let N(·) be a stationary point process with finite mean density m = EN(0, 1].
Then, the sequence {Xn} of random variables defined by

Xn = N(n− 1, n] (n = 0,±1, . . .)

is stationary with finite first moment m = EXn (all n), and by the strong law
for stationary random sequences,

N(0, n]
n

=
X1 + · · ·+Xn

n
→ ξ a.s.

for some random variable ξ for which Eξ = m. Using �x� to denote the largest
integer ≤ x, it then follows on letting x→∞ in the inequalities

N
(
0, �x�

]
�x� · �x�

x
≤
N
(
0, �x�

]
x

≤
N
(
0, �x�+ 1

]
�x�+ 1

· �x�+ 1
x

(x ≥ 1)

that we have proved the following proposition.

Proposition 3.5.I. For a stationary point process with finite mean density
m = EN(0, 1], ζ ≡ limx→∞N(0, x]/x exists a.s. and is a random variable with
Eζ = m.
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In our discussion of limit properties of stationary point processes we shall
have cause to use various concepts of ergodicity; for the present we simply use
the following definition.

Definition 3.5.II. A stationary point process with finite mean density m is
ergodic when

P{N(0, x]/x→ m (x→∞)} = 1.

Suppose that in addition to being ergodic, the second moment E[(N(0, 1])2]
is finite, so by stationarity and the Cauchy–Schwarz inequality, E[(N(0, x])2]
< ∞ for all finite positive x. Then, we can use an argument similar to that
leading to Proposition 3.5.I to deduce from the convergence in mean square
of (X1 + · · · + Xn)/n = N(0, n]/n to the same limit [see e.g. (2.15) of Doob
(1953, p. 471) or Chapter 12 below] that

var(N(0, x]/x) = E(N(0, x]/x−m)2 → 0 (x→∞) (3.5.1)

when N(·) is ergodic with finite second moment. This is one of the key
probabilistic steps in the proof of the next theorem, in which the asymptotic
result in (3.5.3), combined with the remarks that follow, is an analogue of
the elementary renewal theorem [see Exercise 4.1.1(b) and Section 4.4 below].
The function U(·), called the expectation function in Daley (1971), is the
analogue of the renewal function.

Theorem 3.5.III. For a stationary ergodic point process with finite second
moment and mean density m, the second-moment function

M2(x) ≡ E[(N(0, x])2] =
∫ x

0

(
2U(u)− 1

)
mdu (3.5.2)

for some nondecreasing function U(·) for which

U(x)/x→ m (x→∞); (3.5.3)

when the process is orderly,

U(x) =
∞∑
j=0

Rj(x). (3.5.4)

Remarks. (1) It is consistent with the interpretation of Rj(·) in (3.4.3) as the
d.f. of the sum Sj = τ1 + · · ·+ τj that

U(x) = lim
h↓0

E(N(0, x] + 1 | N(−h, 0] > 0)

in the case where N(·) is orderly. In the nonorderly case, it emerges that,
given an ergodic stationary sequence {τj} of nonnegative random variables
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with Eτj = 1/m and partial sums {Sn} given by S0 = 0 and

Sn = τ1 + · · ·+ τn, S−n = −(τ0 + · · ·+ τ−(n−1)) (n = 1, 2, . . .),

we can interpret U(·) as

2U(x)− 1 = E#{n = 0,±1, . . . : |Sn| ≤ x} =
∞∑

n=−∞
Pr{|Sn| ≤ x}. (3.5.5)

In the case where the random variables {τj} are independent and identically
distributed,

U(x) =
∞∑
n=0

Fn∗(x) (3.5.6)

and hence U(·) is then the renewal function.
(2) It follows from (3.5.2) that

varN(0, x] =
∫ x

0

(
2[U(u)−mu]− 1

)
mdu. (3.5.7)

(3) It is a simple corollary of (3.5.3) that for every fixed finite y,

U(x+ y)
U(x)

→ 1 (x→∞). (3.5.8)

Proof of Theorem 3.5.III. From the definition in (3.5.2) with N(x) =
N(0, x],

M2(x) = E
(
[N(x)]2

)
= varN(x) +

(
EN(x)

)2
= x2[var(N(x)/x) +m2] ∼ m2x2 (x→∞)

when N(·) is ergodic, by (3.5.1). If we can assume that M2(·) is absolutely
continuous and that the function U(·), which can then be defined as in (3.5.2),
is monotonically nondecreasing, we can appeal to a Tauberian theorem (e.g.
Feller, 1966, p. 421) and conclude that (3.5.3) holds.

It remains then to establish (3.5.2), for which purpose we assume first that
N(·) is orderly so that the representation (3.4.9) is at our disposal. It is a
matter of elementary algebra that

M2(x) +mx = E
(
N(x)(N(x) + 1)

)
=

∞∑
j=1

j(j + 1)P{N(x) = j}

= 2
∞∑
k=1

kP{N(x) ≥ k}



3.5. Ergodicity and an Elementary Renewal Theorem Analogue 63

= 2
∞∑
k=1

(k + 1)
∫ x

0
qk(u)λ du

= 2
∫ x

0

(
1 +

∞∑
j=0

(
1−Qj(u)

))
λ du = 2

∫ x

0

∞∑
j=0

Rj(u)λ du,

where R0(u) ≡ 1. Thus, we have (3.5.2) in the case of orderly N(·) with the
additional identification that

U(x) =
∞∑
j=0

Rj(x), (3.5.9)

of which (3.5.6) is a special case. Note in (3.5.9) that the nondecreasing nature
of each Rj(·) ensures the same property for U(·).

When N(·) is no longer orderly, we must appeal to (3.4.14) in writing

M2(x) +mx = 2
∞∑
k=0

(k + 1)
(
1− Pk(x)

)
= 2

∞∑
k=0

(k + 1)
∫ x

0

∞∑
i=1

πi
(
Qk|i(u)−Qk−i|i(u)

)
λ du. (3.5.10)

Without loss of generality, we may set Qk|i(x) ≡ 1 when πi = 0. Fubini’s
theorem is then applicable as before in the manipulations below:

2
∞∑
k=0

(k + 1)
∞∑
i=1

πi

k∑
j=(k−i+1)+

qj|i(u) = 2
∞∑
i=1

πi

∞∑
k=0

(k + 1)
k∑

j=(k−i+1)+

qj|i(u)

=
∞∑
i=1

πi

∞∑
j=0

i(2j + i+ 1)qj|i(u)

=
∞∑
i=0

iπi

[
i+ 1 + 2

∞∑
j=0

(
1−Qj|1(u)

)]
. (3.5.11)

Substitute (3.5.11) in (3.5.10) and recall that Qj|i(u) is nonincreasing; this
establishes the existence of nondecreasing U(·) in (3.5.2) as required.

Exercises and Complements to Section 3.5

3.5.1 (see Theorem 3.5.III). Use the Cauchy–Schwarz inequality to show that, when
M2(x) ≡ EN2(0, x] < ∞ for finite x, (M2(x))1/2 is subadditive in x > 0
and hence that there is then a finite constant λ2 ≥ m2 such that M2(x) ∼
λ2x

2 (x → ∞).

3.5.2 Let N(·) be a stationary mixed Poisson process with P{N(0, t] = j} =
1
2e−ttj/j!+ 1

2e−2t(2t)j/j! . Show that λ = 3
2 = m < U(t)/t = 5

3 (all t > 0) (cf.
Theorem 3.5.III; this process is not ergodic) and that N(0, t]/t → ξ (t → ∞),
where ξ = 1 or 2 with probability 1

2 each.



64 3. Simple Results for Stationary Point Processes on the Line

3.6. Subadditive and Superadditive Functions

We have referred earlier in this chapter to properties of subadditive and su-
peradditive functions, and for convenience we now establish these properties
in a suitable form. For a more extensive discussion of such functions, see Hille
and Phillips (1957).

A function g(x) defined for 0 ≤ x < a ≤ ∞ is subadditive when

g(x+ y) ≤ g(x) + g(y) (3.6.1)

holds throughout its domain of definition; similarly, a function h(x) for which

h(x+ y) ≥ h(x) + h(y) (3.6.2)

holds is superadditive. A function f(x) for which

f(x+ y) = f(x) + f(y) (3.6.3)

holds is additive, and (3.6.3) is known as Cauchy’s functional equation or (see
e.g. Feller, 1966, Section IV.4) the Hamel equation.

Lemma 3.6.I. For a subadditive function g(·) that is bounded on finite in-
tervals, µ ≡ infx>0 g(x)/x is finite or −∞, and

g(x)
x
→ µ (x→∞). (3.6.4)

Proof. There exists y for which g(y)/y < µ′ for any µ′ > µ. Given any x,
there is a unique integer n for which x = ny+η, where 0 ≤ η < y, and n→∞
as x→∞. Then

g(x)
x
≤ g(ny) + g(η)

x
≤ ng(y)

ny + η
+
g(η)
x

=
g(y)

y + η/n
+
g(η)
x
→ g(y)

y
(x→∞).

Thus, lim supx→∞ g(x)/x ≤ µ′, and µ′ being an arbitrary quantity > µ, this
proves the lemma.

The function −h(x) is subadditive when h(·) is superadditive, and an ad-
ditive function is both subadditive and superadditive, so Lemma 3.6.I implies
both of the following results.

Lemma 3.6.II. For a superadditive function h(·) that is bounded on finite
intervals, µ ≡ supx>0 h(x)/x is finite or +∞ and

h(x)
x
→ µ (x→∞). (3.6.5)
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Lemma 3.6.III. An additive function f(·) that is bounded on finite intervals
satisfies

f(x) = f(1)x (0 ≤ x <∞). (3.6.6)

In passing, note that there do exist additive functions that do not have the
linearity property (3.6.6): they are unbounded on every finite interval and
moreover are not measurable (see e.g. Hewitt and Zuckerman, 1969).

Observe also that nonnegative additive functions satisfy (3.6.6) with the
understanding that f(1) =∞ is allowed.

The behaviour near 0 of subadditive and superadditive functions requires
the stronger condition of continuity at 0 in order to derive a useful result
[a counterexample when f(·) is not continuous at 0 is indicated in Hille and
Phillips (1957, Section 7.11)].

Lemma 3.6.IV. Let g(x) be subadditive on [0, a] for some a > 0, and let
g(x)→ 0 as x→ 0. Then λ ≡ supx>0 g(x)/x is finite or +∞, and

g(x)
x
→ λ (x→ 0). (3.6.7)

Proof. The finiteness of g(x) for some x > 0 precludes the possibility that
λ = −∞. Consider first the case where 0 < λ < ∞, and suppose that
g(an)/an < λ − 2ε for some ε > 0 for all members of a sequence {an} with
an → 0 as n→∞. For any given x > 0, we can find an sufficiently small that
sup0≤δ<an

g(δ) < εx. Write x = knan + δn for some nonnegative integer kn
and 0 ≤ δn < an. Then

g(x)
x
≤ kng(an) + g(δn)

knan+ < δn
≤ g(an)/an

1 + (δn/an)/kn
+
g(δn)
x

≤ λ− ε (all n sufficiently large).

Thus, supx>0 g(x)/x ≤ λ − ε, contradicting the definition of λ. The case
−∞ < λ ≤ 0 is established by considering g1(x) ≡ g(x) + λ′x for some finite
λ′ > −λ. Finally, the case λ = ∞ is proved by contradiction starting from
the supposition that g(an)/an → λ′′ <∞ for some {an} with an → 0.

Lemma 3.6.V. Let h(x) be superadditive on [0, a] for some a > 0, and let
h(x)→ 0 as x→ 0. Then λ ≡ infx>0 h(x)/x is finite or −∞, and

h(x)
x
→ λ (x→ 0). (3.6.8)



CHAPTER 4

Renewal Processes

The renewal process and variants of it have been the subject of much study,
both as a model in many fields of application (see e.g. Cox, 1962; Cox and
Lewis, 1966; Cox and Isham, 1980) and as a source of important theoretical
problems. It is not the aim of this chapter to repeat much of the material
that is available, for example, in Volume II of Feller (1966); rather, we have
selected some features that are either complementary to Feller’s treatment or
relevant to more general point processes.

The first two sections are concerned with basic properties, setting these
where possible into a point process context. The third section is concerned
with some characterization theorems and the fourth section with aspects of the
renewal theorem, a topic so important and with such far-reaching applications
that it can hardly be omitted. Two versions of the theorem are discussed,
corresponding to different forms of convergence of the renewal measure to
Lebesgue measure. Some small indication of the range of applications is given
in Section 4.5, which is concerned with ‘neighbours’ of the renewal process,
notably the Wold process of correlated intervals.

A final section is concerned with the concept of a hazard measure for the
lifetime distribution, a topic that is of interest in its own right and of cen-
tral importance to the discussion of compensators and conditional intensity
functions in Chapters 7 and 14.

4.1. Basic Properties

Let X,X1, X2, . . . be independent identically distributed nonnegative random
variables, and define the partial sums

S0 = 0, Sn = Sn−1 +Xn = X1 + · · ·+Xn (n = 1, 2, . . .). (4.1.1)

66
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For Borel subsets A of (0,∞), we attempt to define the counting measure of
a point process by setting

N(A) = #{n:Sn ∈ A}. (4.1.2)

Even if we exclude the trivial case X = 0 a.s., as we do throughout this
chapter, it may not be completely obvious that (4.1.2) is finite. To see that
this is so, observe that for X �= 0 a.s. there must exist positive ε, δ such that

Pr{X > ε} > δ

so that with probability 1 the event {Xn > ε} must occur infinitely often
(by the Borel–Cantelli lemmas) and hence Sn → ∞ a.s. It follows that the
right-hand side of (4.1.2) is a.s. finite whenever A is bounded, thus justifying
the definition (4.1.2). (Here we ignore measurability aspects, for which see
Chapter 9.) The process so defined is the (ordinary ) renewal process.

In the notation and terminology of Chapter 3, provided X1 > 0, we have
ti = Si and τi = Xi for i = 1, 2, . . . , while the assumption that the {Xn} are
i.i.d. implies that N(·) is interval stationary. Orderliness of the process here
means Sn+1 > Sn for n = 0, 1, . . . ; that is, Xn > 0 for all n ≥ 0, all with
probability 1. But the probability that Xn > 0 for n = 0, 1, . . . , N−1 is equal
to (Pr{X > 0})N → 0 as N → ∞ unless Pr{X > 0} = 1. Thus, the process
is orderly if and only if Pr{X > 0} = 1; that is, if and only if the lifetime
distribution has zero mass at the origin.

Taking expectations of (4.1.2) yields the renewal measure

U(A) = E(#{n:Sn ∈ A,n = 0, 1, 2, . . .}) = E[N(A)], (4.1.3)

an equation that remains valid even if A includes the origin. U(A) is just the
first moment or expectation measure of N(·).

Writing F (·) for the common lifetime distribution and F k∗ for its k-fold
convolution (which is thus the distribution function for Sk), and immediately
abusing the notation by writing F (·) for the measure induced on the Borel
sets of BR by F , we have

U(A) = E
( ∞∑
k=0

I{Sk∈A}

)
= δ0(A) +

∞∑
k=1

F k∗(A). (4.1.4)

We note in passing that the higher moments of N(A) can also be expressed
in terms of U(·) (see Exercise 4.1.2). The quantity most commonly studied is
the cumulative function, commonly called the renewal function,

U(x) ≡ U([0, x]) = 1 +
∞∑
k=1

F k∗(x) (x ≥ 0). (4.1.5)

Again, U(x) is always finite. To see this, choose any δ > 0 for which F (δ) <
1 (possible since we exclude the case X = 0 a.s.). Then, since F (0−) = 0, we
have for any positive integers i, j and x, y > 0,

1− F (i+j)∗(x+ y) ≥
(
1− F i∗(x)

)(
1− F j∗(y)

)
,
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and for 0 < y < x,

F i∗(x− y)F j∗(y) ≤ F (i+j)∗(x) ≤ F i∗(x)F j∗(x).

Thus, F k∗(δ) ≤ (F (δ))k < 1, and therefore the series in (4.1.5) certainly
converges for x < δ. For general x in 0 < x <∞, there exists finite positive k
for which x/k < δ. For given x and such k, 1− F k∗(x) > [1− F (x/k)]k > 0,
so

U(x) ≤
(
1 + F (x) + · · ·+ F (k−1)∗(x)

) ∞∑
n=0

Fnk∗(x)

≤
(
1 + F (x) + · · ·+ F (k−1)∗(x)

)
/
(
1− F k∗(x)

)
<∞.

Thus, (4.1.5) converges for all x > 0.
Taking Laplace–Stieltjes transforms in (4.1.5), we have for Re(θ) > 0

χ(θ) ≡
∫ ∞

0
e−θx dU(x) =

∞∑
k=0

(
ψ(θ)

)k =
1

1− ψ(θ)
, (4.1.6)

where ψ(θ) =
∫∞
0 e−θx dF (x). Equivalently, for Re(θ) > 0,

ψ(θ) = 1− 1/χ(θ),

which shows (using the uniqueness theorem for Laplace–Stieltjes transforms)
that U determines F uniquely and hence that there is a one-to-one correspon-
dence between lifetime distributions F and renewal functions U .

From (4.1.5), we have for x > 0

U(x) = 1 +
∫ x

0
U(x− y) dF (y), (4.1.7)

this being the most important special case of the general renewal equation

Z(x) = z(x) +
∫ x

0
Z(x− y) dF (y) (x > 0), (4.1.8)

where the solution function Z is generated by the initial function z. If the
function z(x) is measurable and bounded on finite intervals, one solution to
(4.1.8) is given by

Z0(x) = z(x) +
∞∑
k=1

∫ x

0
z(x− y) dF k∗(y) =

∫ x

0
z(x− y) dU(y), (4.1.9)

the convergence of the series in the middle member being justified by com-
parison with (4.1.5).

Using the monotonicity of the relation z → Z0, we easily see that if z ≥ 0,
(4.1.9) is the minimal nonnegative solution to (4.1.8). In fact, considerably
more is true, for if z(x) is merely measurable and bounded on finite inter-
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vals, the difference D(x) between any two solutions of (4.1.8) with the same
property satisfies

D(x) =
∫ x

0
D(x− y) dF k∗(y) for each k = 1, 2, . . . ;

hence, D(x) ≡ 0 from the fact that F k∗(x) → 0 as k → ∞ and the assumed
boundedness of D. We summarize as follows.

Lemma 4.1.I (Renewal Equation Solution). When z(x) is measurable and
bounded on finite intervals, the general renewal equation (4.1.8) has a unique
measurable solution that is also bounded on finite intervals, and it is given by
(4.1.8). In particular, U(x) is the unique monotonic and finite-valued solution
of (4.1.7).

Example 4.1(a) Exponential intervals. The lack of memory property of the
exponential distribution bequeaths on the renewal process that it generates
the additional independence properties of the Poisson process. Suppose specif-
ically that

F (x) = 1− e−λx (λ > 0, 0 ≤ x <∞).

The renewal function for the corresponding Poisson process is U(x) = 1 +
λx, as can be checked either by using the transform equation in (4.1.6), by
summing the convolution powers as in (4.1.5), or by direct verification in the
integral equation in (4.1.7).

Example 4.1(b) Forward recurrence time. We gave below (3.4.15) an expres-
sion for the distribution of the forward recurrence time r.v. Tu of a stationary
point process. The definition at (3.4.15) does not require stationarity, and in
the present case of a renewal process, it can be written as

Tu = inf{Sn:Sn > u} − u = inf{Sn − u:Sn − u > 0}

=
{
X1 − u if X1 > u,
inf{Sn −X1:Sn −X1 > u−X1} − (u−X1) otherwise.

Now when X1 ≤ u, Tu has the same distribution as the forward recurrence
time r.v. T ′

u−X1
, defined on the renewal process with lifetime r.v.s {X ′

n} ≡
{Xn+1}, so

Pr{Tu > y} = Pr{X1 > y + u}+
∫ u

0
Pr{Tu−v > y}dF (v). (4.1.10)

But this equation is of the form (4.1.8), with z(x) = Pr{X1 > y + x} =
1− F (y + x), so by (4.1.9)

Pr{Tu > y} =
∫ u

0−
[1− F (y + u− v)] dU(v). (4.1.11)

In particular, putting y = 0, we recover the identity that is implicit in (4.1.5),

1 =
∫ x

0−
[1− F (x− v)] dU(v) (all x ≥ 0). (4.1.12)
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Example 4.1(c) Renewal equation with linear solution. As another important
application of (4.1.8), consider the generator z(·) that corresponds to the
solution Z(x) = λx (all x > 0), assuming such a solution function exists, and
that λ−1 = EXn =

∫∞
0 [1− F (x)] dx is finite. Rearranging (4.1.8) yields

z(x) = λx− λ
∫ x

0
(x− y) dF (y) = λ

∫ x

0
[1− F (y)] dy.

We can recognize this expression as the distribution function of the forward
recurrence time of a stationary point process. This argument identifies the
only initial distribution for which the delayed renewal function is linear.

We conclude this section with a few brief remarks concerning the more
general case where the random variables Xn are not necessarily nonnegative
or even one-dimensional; thus we admit the possibility that the Xn are d-
dimensional vectors for some integer d > 1. In such cases, the sequence {Sn}
constitutes a random walk. Such a walk is said to be transient if (4.1.2) is
finite for all bounded Borel sets A; otherwise, it is recurrent, in which case
the walk revisits any nonempty open set infinitely often. Thus, it is only for
transient random walks that (4.1.2) can be used to define a point process,
which we shall call the random walk point process. In R

1, it is known that
a random walk is transient if the mean E(X) is finite and nonzero; if E(X)
exists but E(X) = 0, the random walk is recurrent. If the expectation is not
defined (the integral diverges), examples of both kinds can occur. In R

2, the
random walk can be transient even if E(X) = 0, but only if the variance is
infinite. In higher dimensions, every random walk is transient unless perhaps
it is concentrated on a one- or two-dimensional subspace. Proofs and further
details are given, for example, in Feller (1966).

Most of the renewal equation results also carry over to this context with
only nominal changes of statement but often more difficult proofs. Thus, the
expectation or renewal measure may still be defined as in (4.1.4), namely

U(A) = δ0(A) +
∞∑
k=1

F k∗{A}, (4.1.4′)

and is finite for bounded Borel sets whenever the random walk is transient
(but not otherwise, at least if A has nonempty interior). Furthermore, if z(x)
is bounded, measurable, and vanishes outside a bounded set, we may consider
the function

Z0(x) = z(x) +
∞∑
k=1

∫
Rd

z(x− y)F k∗(dy) =
∫

Rd

z(x− y)U(dy), (4.1.13)

which is then a solution, bounded on finite intervals, of the generalized renewal
equation

Z(x) = z(x) +
∫

Rd

Z(x− y)F (dy). (4.1.14)
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Note that in (4.1.8) we were constrained not only to distributions F (·) con-
centrated on the half-line but also to functions z(x) and solutions Z(x) that
could be taken as zero for x < 0. Without such constraints, the proof of
uniqueness becomes considerably more subtle: one possible approach is out-
lined in Exercise 4.1.4. Note too that both (4.1.13) and (4.1.14) remain valid
on replacing the argument x by a bounded Borel set A, provided Z(·) is then
a set function uniformly bounded under translation for such A.

Example 4.1(d) Random walks with symmetric stable distributions. Here we
define the symmetric stable distributions to be those distributions in R with
characteristic functions of the form

φα(s) = exp(−c|s|α) 0 < α ≤ 2.

Let us consider the associated random walks for the cases α ≤ 1 for which
the first moment does not exist. The case α = 1 corresponds to the Cauchy
distribution with density function for some finite positive c

f(x) =
c

π(c2 + x2)
(−∞ < x <∞).

The nth convolution is again a Cauchy distribution with parameter cn = nc.
If the renewal measure were well defined, we would expect it to have a renewal
density

u(x) =
∞∑
n=1

fn∗(x) =
1
π

∞∑
n=1

cn

c2n2 + x2 .

The individual terms are O(n−1) as n→∞, so the series diverges. It follows
readily that the first-moment measure is infinite, so the associated random
walk is recurrent.

For α < 1, it is difficult to obtain a convenient explicit form for the density,
but standard results for stable distributions imply that fn∗ and f differ only
by a scale factor,

fn∗
α (x) = n−1/αfα(xn−1/α),

so that, assuming fα is continuous at zero,

fn∗
α (x) ∼ xn−1/αfα(0).

Thus, the series is convergent for 1/α > 1 (i.e. for α < 1), and divergent
otherwise, so the associated random walk is transient only for α < 1.

Example 4.1(e) A renewal process in two dimensions. We consider indepen-
dent pairs (Xn, Yn) where each pair has a bivariate exponential distribution
with density vanishing except for x ≥ 0, y ≥ 0, where

f(x, y) =
λ1λ2

1− ρ exp
(
λ1x+ λ2y

1− ρ

)
I0

(
2(ρλ1λ2xy)1/2

1− ρ

)
,
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λ1, λ2, and ρ are positive constants, 0 ≤ ρ < 1, and In(x) is the modified
Bessel function of order n defined by the series

In(x) =
∞∑
k=0

(x/2)2k+n

k! (k + n)!
. (4.1.15)

The marginal distributions are exponential with parameters λ1, λ2; ρ is
the correlation between X1 and Y1; and the joint distribution has bivariate
Laplace–Stieltjes transform

ψ(θ, φ) = {(1 + θ/λ1)(1 + φ/λ2)− ρθφ/λ1λ2}−1.

Much as in the one-dimensional case, the renewal function can be defined
as

U(x, y) = E(#{n:Sn ≤ x, Tn ≤ y}),
where Sn =

∑n
k=1Xk and Tn =

∑n
k=1 Yk and has Laplace–Stieltjes transform

χ(θ, φ) given by

χ(θ, φ) =
1

1− ψ(θ, φ)
.

Substituting for ψ(θ, φ) and simplifying, we obtain

χ(θ, φ)− 1 = [θ/λ1 + φ/λ2 + (1− ρ)θφ/λ1λ2]−1,

corresponding to the renewal density

u(x, y) =
λ1λ2

1− ρ exp
(
− λ1x+ λ2y

1− ρ

)
I0

(
2(λ1λ2xy)1/2

1− ρ

)
(x > 0, y > 0).

It should be noted that while the renewal density has uniform marginals,
corresponding to the fact that each marginal process is Poisson, the bivariate
renewal density is far from uniform, and in fact as x → ∞ and y → ∞, it
becomes relatively more and more intensely peaked around the line λ1x = λ2y,
as one might anticipate from the central limit theorem.

The example is taken from Hunter (1974a, b), where more general results
can be found together with a bibliography of earlier papers on bivariate re-
newal processes. See also Exercise 4.1.5.

Exercises and Complements to Section 4.1
4.1.1 (a) Using a sandwich argument and the strong law of large numbers for the

i.i.d. sequence of lifetimes, prove that N(x)/x → λ a.s. as x → ∞.
(b) Deduce from (a) the Elementary Renewal Theorem: The renewal function

U(x) satisfies U(x)/x → λ as x → ∞, i.e. U(x) ∼ λx. [Hint: See Smith
(1958) and Doob (1948). This is not the only possible proof.]

(c) Similarly, if the lifetime distribution has finite second moment with vari-
ance σ2, deduce from the central limit theorem for the Xn that as x → ∞,
(N(x) − λx)/λσ

√
λx converges in distribution to a standard N(0, 1) ran-

dom variable. [Hint: N(x) ≥ n if and only if Sn ≤ x, and if n, x → ∞
such that (x− n/λ)/(σ

√
n ) → z for finite z, then λx/n → 1.]
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4.1.2 Higher moments of the number of renewals.
(a) Show that for 0 < x < y < ∞,

E[N(dx)N(dy)] = U(dx)U(dy − x),

where U is the renewal measure. Similarly, for any finite sequence 0 <
x1 < x2 < · · · < xk < ∞,

E[N(dx1) · · ·N(dxk)] = U(dx1)U(dx2 − x1) · · ·U(dxk − xk−1).

[These are differential forms for the moment measures. When the densities
exist, they reduce to the moment or product densities as discussed in
Chapter 5; see, in particular, Example 5.4(b).]

(b) Prove directly that E[(N(0, x])[k]] ≤ k! [U0(x)]k < ∞, where n[k] =
n(n− 1) · · · (n− k + 1) and U0(x) = U(x) − 1.

(c) In terms of the renewal function U(x), use (a) to show that

E[(N [0, x])2] = U(x) + 2
∫ x

0−
U0(x− y) dU(y)

and hence that when the renewal process is simple,

varN [0, x] = varN(0, x] = U0(x) + 2
∫ x

0+

[U0(x− y) − U0(y)] dU0(y).

Check that in the case of a Poisson process at rate λ, E[(N [0, x])2] =
1 + 3λx+ λ2x2 and varN(0, x] = λx.

4.1.3 Let Q(z;x) =
∑∞

n=0 z
nPr{N [0, x] ≥ n}. Show that

Q(z;x) = 1 + z

∫ x

0

Q(z;x− y) dF (y)

and hence that the Laplace–Stieltjes transform is given by

Q̃(z; θ) =
∫ ∞

0−
e−θx dxQ(z;x) =

1
1 − zψ(θ)

,

where ψ(θ) is the Laplace–Stieltjes transform of F . Obtain corresponding
results for the p.g.f. P (z;x) =

∑∞
n=0 z

nPr{N [0, x] = n}. Deduce that the
factorial moment E[(N [0, x])[k]] is the k-fold convolution of U(x) − 1.

4.1.4 For the one-dimensional random walk with nonlattice step distribution F ,
prove that the only bounded measurable solutions of the equation

D(x) =
∫ ∞

−∞
D(x− y)F (dy)

are constant. An outline of one method is as follows.
(1◦) Let Yn = D(−Sn), where Sn =

∑n

i=1X1. Use the equation to show that
for any bounded measurable solution D, the random variables {Yn} constitute
a bounded martingale (see Appendix 3) and hence converge a.s. to some limit
random variable Y∞.
(2◦) Since Y∞ is defined on the tail σ-algebra of the i.i.d. sequence {Xn}, it
must be degenerate; that is, Y∞ = c for some finite real number c.
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(3◦) Since for all X ′
1 independent of Sn, D(−X ′

1 − Sn) =d D(−Sn+1) → c
a.s., deduce that

E(D(−X ′
1 − Sn) | X ′

1) → c

and hence, using the equation again, that D(−X ′
1) = c a.s., whence also

D(−Sn) = c a.s. for n = 1, 2, . . . . Thus, finally, D(x) = c a.e. whenever X
has a nonlattice distribution.
[Hint: See Doob, Snell and Williamson (1960); for an alternative proof, see
Feller (1966, Section XI.2), and for a review, see Rao and Shanbhag (1986).]

4.1.5 Two-dimensional renewal process. In the context of Example 4.1(e), let
N(x, y) = #{n : Sn ≤ x, Tn ≤ y}, where Sn =

∑n

i=1Xi and Tn =
∑n

i=1 Yi,
and put

Q(z;x, y) =
n∑
n=0

znPr{N(x, y) ≥ n},

P (z;x, y) =
∞∑
n=0

znPr{N(x, y) = n}.

Extend the result of Exercise 4.1.3 to show that the double Laplace–Stieltjes
transform of P (z;x, y) is given by

P̃ (z; θ, φ) =
1 − ψ(θ, φ)
1 − zψ(θ, φ)

, ψ(θ, φ) =
∫ ∞

0

∫ ∞

0

e−θx−φy dx,yF (x, y).

For the particular bivariate exponential distribution in Example 4.1(e), the
renewal measure has the density

∑∞
n=1 f

n∗, where for x, y > 0,

fn∗(x, y) = f(x, y)

(
ζ

ρ

)n−1
In−1(2ζ/(1 − ρ))
I0(2ζ/(1 − ρ))

, ζ =
√
ρλ1λ2xy .

4.2. Stationarity and Recurrence Times

A modified or delayed renewal process, {S′
n} say, is defined much as in (4.1.1)

but with X1 replaced by X ′
1, which is independent of, but not necessarily

identically distributed with, the remaining variables X2, X3, . . . . Let F1(x) =
Pr{X ′

1 ≤ x}. Then, in terms of a forward recurrence time r.v. Tu for a renewal
process as in Example 4.1(b), the forward recurrence time r.v. T ′

u for such a
process {S′

n} is defined by T ′
u = inf{S′

n:S′
n > u} − u and satisfies

T ′
u =d

{
X ′

1 − u if X ′
1 > u,

Tu−X′
1

otherwise,
(4.2.1)

hence (see (4.1.10))

Pr{T ′
u > y} = 1− F1(y + u) +

∫ u

0
Pr{Tu−v > y}dF1(v). (4.2.2)
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The most important delayed renewal process arises when X ′
1 has the prob-

ability density function

f1(x) = λ
(
1− F (x)

) (
x ≥ 0, λ−1 = E(X)

)
, (4.2.3)

for then the resulting point process in (0,∞), with counting measure

N ′(A) = #{n:S′
n ∈ A},

is stationary, as we might anticipate from (3.4.16) and Example 4.1(c). Note
that here we are dealing with stationarity on the half-line, in the sense that
Definition 3.2.I is required to hold only for Borel subsets of (0,∞) and for
shifts t ≥ 0.

To establish this stationarity property more formally, define another de-
layed renewal process, {S′′

n} say, with initial lifetime r.v. X ′′
1 = T ′

u that is
followed by a further sequence of i.i.d. random variables with common d.f.
F . Stationarity of {S′

n} is proved by showing that the distributions of the
two sequences {S′

n} and {S′′
n} coincide. From the assumed independence and

distributional properties, it is enough to show that the distributions of the
two initial intervals X ′

1 and X ′′
1 coincide; i.e. Pr{X ′

1 > y} = Pr{T ′
u > y} for

all nonnegative u and y. Using (4.2.2) and (4.1.11), Pr{T ′
u > y} equals

λ

∫ ∞

y+u
[1−F (x)] dx+

∫ u

0

[ ∫ u−v

0−
[1−F (y+u−v−w)] dU(w)

]
λ[1−F (v)] dv,

(4.2.4)
and the last term here equals

λ

∫ u

0−
dU(w)

∫ u−w

0

(
1− F (v)

)(
1− F (y + u− v − w)

)
dv

= λ

∫ u

0
dU(w)

∫ u−w

0

(
1− F (u− w − v)

)(
1− F (y + v)

)
dv

= λ

∫ u

0

(
1− F (y + v)

)
dv
∫ u−v

0

(
1− F (u− v − w)

)
dU(w)

= λ

∫ u

0

(
1− F (y + v)

)
dv, using (4.1.12).

Substituting back in (4.2.4) and simplifying leads by (4.2.3) to Pr{T ′
u > y}

= λ
∫∞
y

[1− F (x)] dx = Pr{X ′
1 > y}, as required.

These remarks prove the first part of the following proposition (see Exercise
4.2.2 for an alternative proof of this part).

Proposition 4.2.I. If the lifetime d.f. has finite first moment λ−1, then the
delayed renewal process with initial density (4.2.3) is stationary, and for all
u > 0 the forward recurrence time T ′

u has this density. If the mean of the
lifetime distribution is infinite, then no delayed renewal process with this
lifetime distribution can be stationary.

Proof. To prove the last statement, start by noting from the key renewal
theorem, proved later in Proposition 4.4.II, that the forward recurrence time
r.v. Tu for a renewal process {Sn} whose lifetime distribution has infinite
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mean satisfies (see also Example 4.4(a))

for every finite y, lim
u→∞

Pr{Tu ≤ y} = 0.

Then, by dominated convergence, letting u → ∞ in (4.2.2) shows that, ir-
respective of the distribution F1 of X ′

1, Pr{T ′
u > y} → 1 for every y, so no

stationary form for the distribution of T ′
u is possible.

The intuitive interpretation of the last somewhat paradoxical limit state-
ment is that if λ−1 = ∞, we shall spend an ever greater proportion of time
traversing intervals of exceptional length and find ourselves in a situation
where the current interval has a length greater than y still to run.

Now recall from Exercise 3.4.1 the definition of a backward recurrence time
r.v. Bu as a companion to the forward recurrence time r.v. Tu:

Tu = inf{y:N(u, u+ y] > 0}, Bu = inf{x:N(u− x, u] > 0}. (4.2.5)

Note that there is an asymmetry in the definitions of Bu and Tu: because
N(·) is a.s. finite on bounded intervals, Tu > 0 a.s. but it is quite possible to
have Pr{Bu = 0} > 0. The current lifetime r.v. Lu can then be defined by

Lu ≡ Bu + Tu .

The joint distribution of any two of these r.v.s thus gives the distribution of
all three: the simplest is that of Bu and Tu for which, when N(·) is stationary
and orderly,

Pr{Bu > x, Tu > y} = Pr{N(u− x, u+ y] = 0}
= Pr{N(u, u+ x+ y] = 0}

= Pr{Tu > x+ y} = λ

∫ ∞

x+y

(
1− F (v)

)
dv. (4.2.6)

Note that under stationarity and orderliness, Bu has the same marginal d.f.
as Tu, while

Pr{Lu > z} =
∫ z

0
Pr{Tu > z − x, Bu ∈ (x, x+ dx)}+ Pr{Bu > z}

=
∫ z

0
λ
(
1− F (x+ z − x)

)
dx+

∫ ∞

z

λ
(
1− F (v)

)
dv

= λ

∫ ∞

0

(
1− F (max(v, z))

)
dv. (4.2.7)

Thus,
ELu = 2ETu = 2EBu = λEX2 = EX2/EX ≥ EX, (4.2.8)

with equality only in the case where X = EX a.s.; that is, all lifetimes are
equal to the same constant, when the renewal process is variously called a
deterministic renewal process or a process of equidistant points.

By identifying 1 − F (·) with q0(·) in (3.4.9), equations (4.2.6–8) continue
to hold for any stationary orderly point process as discussed in Section 3.4.
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Without the assumption of stationarity, we may use the alternative defini-
tion for Bu,

Bu = u− sup{Sn:Sn ≤ u} (u ≥ 0}.
Arguing as in (4.1.10), it is not difficult to show (see Exercise 4.2.1) that for
the basic renewal process {Sn},

Pr{Bu > x, Tu > y} =
∫ (u−x)+

0

(
1− F (u+ y − v)

)
dU(v). (4.2.9)

In the case of a Poisson process, we have F (x) = 1 − e−λx, and it is then
not difficult to check from these relations that

EX <∞ and the distribution of Tu is independent of u; (4.2.10a)
EX <∞ and Bu and Tu are independent for each u > 0; (4.2.10b)
ETu <∞ (all u) and is independent of u. (4.2.10c)

Properties such as (4.2.10) have been used to characterize the Poisson pro-
cess amongst renewal processes, as detailed in part in Galambos and Kotz
(1978). For example, when ETu <∞, integration of (4.1.10) shows that

ETu =
∫ ∞

u

(
1− F (y)

)
dy +

∫ u

0
E(Tu−v) dF (v),

so that when (4.2.10c) holds,(
1− F (u)

)
ETu =

(
1− F (u)

)
ET0 =

∫ ∞

u

(
1− F (y)

)
dy (all u > 0).

Thus, F (y) = 1−c e−λy for some constant c = 1−F (0+); since F (0+) = 0 for
an orderly renewal process, c = 1. The proof of the rest of Proposition 4.2.II
is indicated in Exercises 4.2.3–4.

Proposition 4.2.II. Any one of the statements (4.2.10a), (4.2.10b), and
(4.2.10c) characterizes the Poisson process amongst orderly renewal processes.

Exercises and Complements to Section 4.2
4.2.1 By following the argument leading to (4.2.3), show that for an orderly renewal

process N(·) for which N({0}) = 1 a.s.,

Pr{Bu > x, Tu > y} = Pr{N(u− x, u+ y] = 0}

=
∫ (u−x)+

0−
[1 − F (y + u− v)] dU(v),

Pr{Lu > z} =
∫ u

0−
[1 − F ( max(z, u− v))] dU(v).

4.2.2 Suppose that the delayed renewal process {S′
n} with counting function N(·)

and lifetime distribution F (·) with finite mean λ−1 is stationary. Show thatX ′
1

must have the density (4.2.3). [Hint: Stationarity implies that EN(0, x] = λx
(all x > 0); now use Example 4.1(c).]

4.2.3 Use (4.1.10) to show that (4.2.10a) characterizes the Poisson process among
orderly renewal processes.
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4.2.4 Use (4.2.9) with x ↑ u to deduce that when (4.2.10b) holds,

Pr{Tu > y} =
1 − F (y + u)

1 − F (u)

for each u and y ≥ 0. Consequently, for all v in the support of U(·),

[1 − F (0+)][1 − F (y + v)] = [1 − F (y)][1 − F (v)],

so that F (·) is either geometric or exponential. If F (x) is constant for 0 <
x < δ, then Bu and Tu cannot be independent—hence the characterization in
Proposition 4.2.II via (4.2.10b).

4.2.5 For a renewal process with lifetime d.f. F (x) = 1− (1+µx)e−µx, evaluate the
renewal function as

U(x) = 1 + 1
2µx− 1

4 (1 − e−2µx)

and hence derive the d.f.s of the forward and backward recurrence time r.v.s
Tu and Bu. Verify their asymptotic properties for u → ∞.

4.3. Operations and Characterizations

Because a single d.f. F suffices to describe a renewal or stationary renewal
process, it is of interest to ask in various contexts involving the manipula-
tion of point processes what conditions lead again to a renewal process as a
result of the transformation or operation concerned. More often than not,
the solution to such a question is a characterization of the Poisson process, a
conclusion that can be disappointing when it might otherwise be hoped that
more general renewal processes could be realized. Roughly speaking, when
such a Poisson process characterization solution holds, it indicates that the
interval independence property of a renewal process can be preserved only as
a corollary of the stronger lack-of-memory property of the Poisson process.
We have already given examples of characterizations of the Poisson process
in Proposition 4.2.II. The three operations considered in this section concern
thinning, superposition, and infinite divisibility.

Example 4.3(a) Thinning of renewal processes. Given a renewal process
{Sn}, let each point Sn for n = 1, 2, . . . be omitted from the sequence with
probability 1− α and retained with probability α for some constant α in 0 <
α < 1, each such point Sn being treated independently. This independence
property means that if {Sn(r), r = 1, 2, . . .} is the sequence of retained points
with 0 = n(0) < n(1) < n(2) < . . . , then Nr ≡ n(r) − n(r − 1) is a family
of i.i.d. positive integer-valued r.v.s with Pr{Nr = j} = α(1 − α)j−1 for
j = 1, 2, . . . , and hence

{Yr} ≡ {Sn(r) − Sn(r−1)} (4.3.1)
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is a family of i.i.d. r.v.s with d.f.

Pr{Yr ≤ x} =
∞∑
j=1

α(1− α)j−1F j∗(x).

Consequently, {Sn(r)} is still a renewal process, and it is not hard to verify
that its renewal function, Uα say, is related to that of {Sn} by rescaling as in

Uα(x)− 1 = α
(
U(x)− 1

)
. (4.3.2)

It is readily seen that whenever {Nr} here is a family of i.i.d. positive
integer-valued r.v.s, {Sn(r)} is a renewal process, but it is only for the geo-
metric distribution for Nr that (4.3.2) holds. In connection with this equation,
the converse question can be asked as to when it can be taken as defining a
renewal function for α > 1. In general, for a given renewal function U , there is
a finite largest α ≥ 1 for which 1+α(U(x)−1) is a renewal function, although
there is a class of lifetime d.f.s, including the exponential and others besides,
for which 1 +α(U(x)− 1) is a renewal function for all finite positive α [Daley
(1965); see also van Harn (1978) and Exercise 4.3.1].

Any renewal function U satisfies U(x)/λx→ 1 as x→∞, and consequently
the renewal function Uα of the thinned renewal process {Sn(r)}, when rescaled
so as to have the same mean lifetime, becomes Usα, say, defined by

Usα(x)− 1 = α
(
U(x/α)− 1

)
→ λx (α ↓ 0).

Thus, if Usα is independent of α, it must equal the renewal function of a Poisson
process, which is therefore the only renewal process whose renewal function
is preserved under thinning and rescaling, i.e. Usα = U (all 0 < α < 1).

Example 4.3(b) Superposition of renewal processes. Let N1, . . . , Nr be in-
dependent nontrivial stationary renewal processes. When is the superposed
process

N = N1 + · · ·+Nr (4.3.3)

again a renewal process? Certainly, N is a renewal process (indeed a Pois-
son process) when each of the components N1, . . . , Nr is a Poisson process.
Conversely, since by Raikov’s theorem (e.g. Lukacs, 1970) independent ran-
dom variables can have their sum Poisson-distributed only if every compo-
nent of the sum is Poisson-distributed also, it follows from writing N(A) =
N1(A) + · · · + Nr(A) (all Borel sets A) and appealing to Renyi’s characteri-
zation in Theorem 2.3.II that if N is a Poisson process, then so also is each
Nj . Because a renewal process is characterized by its renewal function, and
this is linear only if the process is Poisson, one way of proving each of the two
assertions below is to show that the renewal function concerned is linear.

Proposition 4.3.I. A stationary renewal process is the superposition of two
independent nontrivial stationary renewal processes only if the processes are
Poisson.



80 4. Renewal Processes

Proposition 4.3.II. A stationary renewal process is the superposition of
r ≥ 2 independent identically distributed stationary renewal processes only if
the processes are Poisson.

Proof. We start by allowing the renewal processes Nj to have possibly
different lifetime d.f.s Fj , denoting each mean by λ−1

j , so by Proposition 4.1.I,
each λj is finite and positive. Write λ = λ1+· · ·+λr, pj = λj/λ, πj = Fj(0+),
and π = F (0+), where F is the lifetime d.f. of the superposed process N . For
any such renewal process, we have, for small h > 0 and |z| ≤ 1,

E
(
zN(0,h)) = 1− λh(1− z)

(1− π)(1− zπ)
+ o(h)

=
r∏
j=1

E
(
zNj(0,h)) =

r∏
j=1

(
1− λjh(1− z)

(1− πj)(1− zπj)
+ o(h)

)
.

It follows by equating powers of z that for i = 1, 2, . . . ,

lim
h↓0

Pr{N(0, h] = i | N(0, h] > 0} = πi−1(1− π) = (1− π)λ−1
r∑
j=1

λjπ
i−1
j .

All these equations can hold for nonzero π and πj (and nonzero λ) only if
π = πj for j = 1, . . . , r; that is, only if all renewal processes concerned have
the same probability of zero lifetimes. Consequently, it is enough to establish
the propositions in the orderly case, which we assume to hold from here on.

In place of the renewal function U in (4.1.5), we use

H(x) =
∞∑
n=1

Fn∗(x), so H(x) = λx for a Poisson process. (4.3.4)

Then, from (3.5.3), for a stationary renewal process N ,

varN(0, x) = varN(0, x] = λ

∫ x

0
[2H(u) + 1] du− (λx)2

= λ

∫ x

0

(
2[H(u)− λu] + 1

)
du ≡ V (x)

and thus
cov
(
N [−x, 0), N(0, y]

)
= 1

2

(
V (x+ y)− V (x)− V (y)

)
= λ

∫ y

0

(
G(x+ u)−G(u)

)
du,

where G(x) = H(x)−λx. It is convenient to write below, for r.v.s Y for which
the limits exist,

E0(Y ) = lim
h↓0

E(Y | N(0, h] > 0).

Since pj = limh↓0 Pr{Nj(0, h] > 0 | N(0, h] > 0},
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H(x) = E0(N(0, x] | N({0}) > 0)

= lim
h→0

r∑
j=1

E0
( r∑
i=1

Ni(0, x]
∣∣∣ Nj({0}) > 0

)
Pr{Nj(−h, 0] > 0}[1 + o(1)]

Pr{N(−h, 0] > 0}

=
r∑
j=1

(
pjHj(x) + pj

∑
i �=j

λix

)
, (4.3.5)

so G(x) =
∑r
j=1 pjGj(x). Similar, somewhat lengthier, algebra leads to

G(x, y) ≡ lim
h→0

E0((N(−x, 0)− λx
)(
N(0, y)− λy

)
| N({0}) > 0

)
=

r∑
j=1

pjGj(x, y) + λ

∫ y

0

(
G(x+ u)−G(u)−

r∑
j=1

p2
j

(
Gj(x+ u)−Gj(u)

))
du.

Thus, when N1, . . . , Nr are identically distributed, pj = 1/r, Gj(x) = G1(x)
(all j), and G1(x) = G(x). Also, for a renewal process, G(x, y) = G(x)G(y),
so

G(x)G(y) = G(x)G(y) + λ(1− 1/r)
∫ y

0

(
G(x+ u)−G(u)

)
du.

It follows that G(x+ y) = G(y) = G(0) (all x, y > 0). Thus, H(x) = λx, and
Proposition 4.3.II is proved.

On the other hand, for r = 2 and possibly different F1 and F2, replacing
G(x, y) by G(x)G(y) with G(x) = p1G1(x) + p2G2(x), p1 + p2 = 1, leads to

−p1p2
(
G1(x)−G2(x)

)(
G1(y)−G2(y)

)
= λp1p2

∫ y

0

(
G1(x+ u) +G2(x+ u)−G1(u)−G2(u)

)
du.

The function K(y) ≡ G1(y)−G2(y) thus has a right-derivative k(·) given by

−K(x)k(y) = λ
(
G1(x+ y) +G2(x+ y)−G1(y)−G2(y)

)
.

Either K(x) = 0, in which case G1 = G2 and the earlier argument shows
that G(x) = 0, or else by letting y ↓ 0 and using G1(0) = G2(0) = 0, it follows
that G1(x) is proportional to G2(x), with G1(x) having the derivative g1(x),
say. Consequently,

g1(x)g1(y) = αg1(x+ y)

for some nonzero α, so g1(x) = αe−βx for some 0 < β <∞ because G1(x)/x
→ 0 as x→∞. Transform calculus now shows that each 1−Fj(u) = e−bju.

An earlier version of Proposition 4.3.I is in McFadden and Weissblum
(1963), and a different proof is in Mecke (1969). Another argument is used in
Mecke (1967) to prove the following result (the proof is omitted here).

Proposition 4.3.III. Let the stationary renewal process N be the super-
position of the independent stationary point processes N1 and N2 with N1
renewal. If the lifetime d.f.s F and F1 of N and N1 have density functions
that are continuous on (0,∞) and right-continuous at 0, then N1 is a Poisson
process.
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By taking N1 to be Poisson with rate parameter λ and N2 to be an alternat-
ing renewal process with exponential distributions for the alternating lifetime
d.f.s, their parameters α and β being such that λ2 = αβ, Daley (1973a) fur-
nished an example showing that Mecke’s result cannot characterize N2 as a
Poisson process. If only the differentiability assumptions could be omitted,
the restriction in Proposition 4.3.II that the components Nj of the sum N at
(4.3.3) should be identically distributed could be dropped.

Example 4.3(c) Infinite divisibility. A natural complement to Example 4.3(b)
is to ask whether there are any stationary renewal processes other than the
Poisson that are infinitely divisible. Here we ask whether for (any or all)
integers r, the stationary renewal process N in (4.3.3) is expressible as the
superposition of i.i.d. stationary point processes N1, . . . , Nr. Assuming that
the lifetime distribution concerned has a density function, [MKM] state that
Häberlund (1975) proved that the Poisson process is the only one, while under
the additional assumption of the existence of density functions for all the
joint distributions of the component process N1, Ito (1980) has asserted the
stronger result that if N is expressible as N = N1 + · · ·+ Nr for one integer
r ≥ 2, then it is Poisson and hence infinitely divisible.

There are innumerable characterizations of the exponential distribution and
Poisson processes (see reviews in Galambos and Kotz (1978) and Johnson and
Kotz (1994, Section 19.8)). Fosam and Shanbhag (1997) has a useful list of
papers exploiting variants of the Choquet–Deny functional equation approach.

Exercises and Complements to Section 4.3
4.3.1 (a) When F (x) = 1 − (1 + x)e−x, show (e.g. by using Laplace–Stieltjes trans-

forms) that 1 +α(U(x) − 1) is a renewal function if and only if 0 < α ≤ 1.
(b) Let {X(t): t ≥ 0} be a stochastic process with X(0) = 0 and stationary

nonnegative independent increments, with Lévy–Khinchin representation
E(e−θX(t)) = etψ(θ), where

ψ(θ) = −θµ0 +
∫

(0,∞)

(e−θx − 1)µ(dx),

with µ0 ≥ 0 and µ(·) a nonnegative measure on (0,∞) satisfying∫
(0,∞)

min(x, 1) µ(dx) < ∞, and µ(0,∞) = ∞ if µ0 = 0. Let 0 = t0

< t1 < · · · be the successive epochs of a Poisson process in (0,∞) with
unit intensity so that the r.v.s X(tn) −X(tn−1) are i.i.d. with d.f. F (x) =∫∞
0
F (x, t)e−t dt, where F (x, t) = Pr{X(t) ≤ x}. Show that with U(·) the

renewal function corresponding to F and U0(x) = U(x) − 1, 1 + αU0(x) is
a renewal function for all 0 < α < ∞, and that U0(x) is subadditive (see
Kingman, 1972, p. 100).

4.3.2 Let the stationary point process N1 arise as the jump epochs of a Markov
process on countable state space, and let N2 be a stationary Poisson process
independent of N1. Daley (1975b) showed that for N ≡ N1 + N2 to be a
stationary renewal process different from Poisson, not only must the Markov
chain transition rates underlying N1 have a particular structure but also there
is a unique rate λ for N2 for which N can have the renewal property.



4.4. Renewal Theorems 83

4.4. Renewal Theorems

Considerable effort has been expended in the mathematics of renewal theory
on establishing Theorem 4.4.I below and its equivalents; they are stronger
statements than the elementary renewal theorem [i.e. the property U(x) ∼
λx given in Exercise 4.1.1(b) of which there is a generalization in (3.5.3)].
Theorem 4.4.I is variously known as Blackwell’s renewal theorem or the key
renewal theorem, depending basically on how it is formulated.

Theorem 4.4.I (Blackwell’s Renewal Theorem). For fixed positive y, re-
stricted to finite multiples of the span of the lattice when the lifetime d.f. is
lattice, and otherwise arbitrary,

U(x+ y)− U(x)→ λy (x→∞). (4.4.1)

Equation (4.4.1) says roughly that the renewal measure ultimately behaves
like a multiple of Lebesgue measure. To make this more precise, let StU denote
the shifted version of the renewal measure U so that

StU(A) = U(t+A).

Then (4.4.1) implies that on any finite interval (0,M), StU converges weakly
to the multiple λ� of Lebesgue measure �(·) (or, equivalently, StU as a whole
converges vaguely to λ�; see Section A2.3 for definitions and discussion of
weak and vague convergence). Blackwell’s theorem represents the ‘set’ form
of the criterion for weak convergence, while the key renewal theorem (Theorem
4.4.II below) represents a strengthened version of the corresponding ‘function’
form, the strengthening taking advantage of the special character of the limit
measure and its approximants.

On the other hand, the theorem is not so strong as to assert anything con-
cerning a density u(·) for U . Such results require further assumptions about
the lifetime distributions and are explored, together with further strengthen-
ings of Blackwell’s theorem, following Theorem 4.4.II.

Proof of Theorem 4.4.I. The proof given here is probabilistic and uses a
coupling method [see Lindvall (1977, 1992) and Thorisson (2000, Section 2.8)].
We compare each sample path {Sn} with the sample path {S′

n} of a stationary
renewal process as defined in Section 4.2, {Sn} and {S′

n} being defined on a
common probability space (Ω,F , P ) so as to be mutually independent. For
each ω ∈ Ω, and every integer i ≥ 0, define for {S′

n} the forward recurrence
time r.v.s Ziω = T ′

Si(ω) so that

Zi(ω) = min{S′
j(ω)− Si(ω):S′

j(ω) > Si(ω)}.

Because the sequence {Si+n − Si} has a distribution independent of i and is
independent of {S′

n}, and because T ′
u is stationary, it follows that the sequence

{Zi} is also stationary. Thus, the events

Ai ≡ {Zj < δ for some j ≥ i},



84 4. Renewal Processes

which we define for any fixed δ > 0, have the same probability for each
i = 0, 1, . . . , and in particular therefore P (A0) = P (A∞), where

A0 ⊇ A1 ⊇ · · · ⊇ A∞ ≡
∞⋂
i=1

Ai = {Zi < δ i.o.}.

Now A∞ is a tail event on the conditional σ-field (namely, conditional on X ′
1)

of the i.i.d. r.v.s {X1, X
′
1, X2, X

′
2, . . .} and therefore by the zero–one law for

tail events (see e.g. Feller, 1966, Section IV.6), for �-a.e. x,

P (A∞ | X ′
1 = x) = 0 or 1 (0 < x <∞).

Because F is nonlattice, P{u − x < S′
j − X ′

1 < u − x + δ for some j} is
positive for all sufficiently large u for fixed δ > 0 (see Feller, 1966, Section
V.4a, Lemma 2), and hence P (A0 | X ′

1 = x) > 0 for every x. Thus, the
equations

0 < λ

∫ ∞

0
P (A0 | X ′

1 = x)[1− F (x)] dx = P (A0)

= P (A∞) = λ

∫ ∞

0
P (A∞ | X ′

1 = x)[1− F (x)] dx

force P (A∞ | X ′
1 = x) = 1 for every x for which F (x) < 1. Hence, P (A∞) =

1 = P (A0), so that for every δ > 0,

P{Zi < δ for some i} = 1.

To establish (4.4.1), it is enough to show that, for any δ > 0, we can find
x0 such that x ≥ x0 implies that |EN(x, x+ y]− λy| ≤ δ. Observe that λy =
EN ′(x, x + y], where N ′ is the counting function for the stationary renewal
process with intervals {X ′

n}. Let Iδ = inf{i:Zi < δ}, so that P{Iδ <∞} = 1.
Defining

J ≡ inf{j:S′
j(ω) > SIδ

(ω)},
we then have 0 < ZIδ

(ω) = S′
J(ω) − SIδ

(ω) < δ. Define a new point process
by means of the sequence of intervals

{X1, . . . , XIδ
, X ′

J+1, X
′
J+2, . . .},

and denote its counting function by N ′′ so that for any Borel set A,

N ′′(A) = N
(
A ∩ (0, SIδ

)
)

+N ′((A+ ZIδ
) ∩ (S′

j ,∞)
)

= N
(
A ∩ (0, SIδ

)
)

+N ′(A+ ZIδ
)−N ′((A+ ZIδ

) ∩ (0, S′
j)
)
.

When A is the interval (x, x+y], the shifted interval A+ZIδ
has EN ′(A+ZIδ

)
lying between λ(y − δ) and λ(y + δ) because

(x+ δ, x+ y] ⊆ (x+ ZIδ
, x+ y + ZIδ

] ⊆ (x, x+ y + δ].

For every x, the r.v.s N(x, x + y] are stochastically dominated by the r.v.
1 + N(0, y], and since this has finite expectation, {N(x, x + y]:x ≥ 0} is a
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uniformly integrable family of r.v.s. This ensures that

E
(
N(x, x+ y]I{x<SIδ

}
)
→ 0 as x→∞

since then P{x < SIδ
} → 0. Similarly, N ′(x+ZIδ

, x+y+ZIδ
] is stochastically

dominated by 1 +N(0, y] and P{x < S′
j} → 0 as x→∞, so

E(N ′(x+ ZIδ
, x+ y + ZIδ

]I{x<S′
j
})→ 0.

Consequently, for x sufficiently large, U(x + y) − U(x) = EN ′′(x, x + y] is
arbitrarily close to EN ′(A+ZIδ

), and since δ is arbitrarily positive, (4.4.1) is
established.

We now turn to an equivalent but very important form of Theorem 4.4.I
for nonlattice lifetimes. A function g(·) defined on [0,∞) is directly Riemann
integrable there when, for any h > 0, the normalized sums

h
∞∑
n=1

gh−(nh) and h

∞∑
n=1

gh+(nh)

converge to a common finite limit as h→ 0; here,

gh−(x) = inf
0≤δ≤h

g(x− δ), gh+(x) = sup
0≤δ≤h

g(x− δ).

Exercise 4.4.1 states sufficient conditions for g to be directly Riemann inte-
grable. For such a function, with U(x) ≡ 0 for x < 0 and monotonically
increasing on x ≥ 0,∫ x

0
g(x− y) dU(y)

≤
≥

∞∑
n=1

gh±(nh)
(
U
(
x− (n− 1)h

)
− U(x− nh)

)
.

These sums can be truncated to finite sums with truncation error bounded
by ∫ x−C

0
|g(x− y)|dU(y)

≤
[x−C]∑
n=1

|g|1+(C + n)
(
U(x+ 1− C − n)− U(x− C − n)

)
≤ U(1)

∞∑
n=1

|g|1+(C + n),

which can be made arbitrarily small, uniformly in x > 0, by taking C suffi-
ciently large. Thus, the sums are approximated by∫ x

x−C
g(x− y) dU(y)

≤
≥

[C/h]∑
n=1

gh±(nh)[U(x− nh+ h)− U(x− nh)]

→ λh

[C/h]∑
n=1

gh±(nh) (x→∞)

→ λ

∫ C

0
g(u) du (h→ 0).
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The following equivalent form of Theorem 4.4.I can now be given.

Theorem 4.4.II (Key Renewal Theorem). For nonlattice lifetime distribu-
tions and directly Riemann integrable functions g(·),∫ x

0
g(x− y) dU(y)→ λ

∫ ∞

0
g(y) dy (x→∞). (4.4.2)

Some results for monotonically decreasing but not necessarily integrable
functions g(·) are sketched in Exercise 4.4.5(c).

The following examples may serve as prototypes for the application of the
renewal theorem to problems of convergence to equilibrium.

Example 4.4(a) Convergence of the forward recurrence time distribution.
Our starting point is (4.1.11), which after subtracting from (4.1.12) can be
written

Fu(y) ≡ Pr{Tu ≤ y} =
∫ u

0−
[F (y + u− v)− F (u− v)] dU(v). (4.4.3)

This is in the form (4.4.2) with g(x) = F (y + x) − F (x). This function is
integrable and of bounded variation over the whole half-line; it then follows
easily (see Exercise 4.4.1) that the function is directly Riemann integrable,
so that the theorem can be applied. It asserts that, provided the lifetime
distribution is nonlattice,

Fu(y) → λ

∫ ∞

0
[F (y + x)− F (x)] dx = λ

∫ y

0
[1− F (v)] dv (u→∞).

If λ−1 <∞, this is the usual form of the length-biased distribution associated
with F , the fact that the distribution is proper following from the identity
1 = λ

∫∞
0

(
1−F (v)

)
dv. In this case, (4.4.2) asserts directly that the forward

recurrence time distribution converges weakly to its limit form. The extension
of this result to a delayed renewal process with arbitrary initial distribution
follows then from (4.4.4).

When λ−1 =∞, Fu(y)→ 0 for all y and no stationary form can exist.

Example 4.4(b) Convergence of the renewal density. As a further corollary,
we shall prove (see Feller, 1966, Section XI.4) that if the lifetime distribution
F has finite mean and bounded density f(t), then U(t) has density u(t) such
that

u(t)− f(t)→ λ. (4.4.4)

This follows from the fact that u(t), when it exists, satisfies the renewal
equation in its traditional form

u(t) = f(t) +
∫ t

0
u(t− x)f(x) dx.

[To check this, note that equation (4.1.9) implies that the solution has the form
u(s) =

∫ s
0 f(s− x) dU(x), which on integrating yields

∫ t
0 u(s) ds = U(t)− 1.]
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Moreover, the function

u(t)− f(t) =
∞∑
k=2

fk∗(t)

satisfies the renewal equation

u(t)− f(t) = f2∗(t) +
∫ t

0
[u(t− x)− f(t− x)]f(x) dx. (4.4.5)

Now if f(t) is bounded, f2∗(t) is directly Riemann integrable. Indeed, as the
convolution of a bounded and an integrable function, it is uniformly continu-
ous (Exercise 4.4.2), while the inequality

f2∗(t) =
∫ t/2

0
f(t− y)f(y) dy +

∫ t

t/2
f(t− y)f(y) dy

= 2
∫ t/2

0
f(t− y)f(y) dy ≤ 2C[1− F ( 1

2 t)],

where C = sup |f(t)|, shows that when µ = λ−1 <∞, f2∗(t) is also bounded
above by an integrable monotonic function and is therefore directly Riemann
integrable by Exercise 4.4.1(c). Thus, Proposition 4.4.II applies, yielding
(4.4.4).

The argument can be extended to the case where, if not f itself, at least
one of its convolution powers has bounded density (see Exercise 4.4.3).

Even a partial assumption of absolute continuity allows the conclusions of
the renewal theorems to be substantially strengthened—for example, from lo-
cal weak convergence of the renewal measure to local convergence in variation
norm, namely

‖StU − λ�‖M → 0, (4.4.6)

where ‖µ‖M is the variation norm of the (signed) measure µ over [0,M ].
Equation (4.4.6) would imply that, in Blackwell’s theorem, U(t+A)→ λ�(A)
not only for A an interval, as in (4.4.1), but for any bounded Borel A, a
strengthening considered by Breiman (1965) [see Feller (1966, Section XI.1)
for counterexamples].

An appropriate condition is embodied in the following definition.

Definition 4.4.III. A probability distribution F is spread out if there exists
a positive integer n0 such that Fn0∗ has a nonzero absolutely continuous
component with respect to Lebesgue measure.

The definition implies that Fn0∗ can be written in the form

Fn0∗ = Σ +A, (4.4.7)
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where Σ is singular and A is absolutely continuous with respect to Lebesgue
measure, and A has a nonzero density a(x), so that

σ = ‖Σ‖ = 1−
∫ ∞

0
a(x) dx < 1.

Since the convolution of A with any power of F or Σ is again absolutely
continuous, it follows that the total masses of the absolutely continuous com-
ponents Fn∗ can only increase as n→∞, and in fact must approach 1, since
‖Σk∗‖ = σk → 0. Thus, we might anticipate that the asymptotic behaviour
of the renewal measure for a spread out distribution would approximate the
behaviour to be expected when a density exists. This is the broad content of
the following proposition (see Stone, 1966) from which our further results will
follow as corollaries.

Proposition 4.4.IV. Let F be spread out, U the renewal measure asso-
ciated with F , and UG = G ∗ U the renewal measure associated with the
corresponding delayed renewal process with initial distribution G. Then UG
can be written in the form

UG = U1G + U2G, (4.4.8)
where U1G is absolutely continuous with density u1G(x) satisfying

u1G(x)→ λ, λ−1 =
∫ ∞

0
xdF (x), (4.4.9)

and U2G is totally finite.

Proof. Consider first the ordinary renewal measure U associated with F .
Since the convolution of A with itself can always be taken to dominate a
uniformly continuous function (Exercise 4.4.2), there is no loss of generality
in supposing that the density a(x) of A in (4.4.6) is continuous, bounded, and
vanishes outside some finite interval (0,M).

With this understanding, let U3 denote the renewal measure associated
with the distribution Fn0∗ so that we may write

u3 = δ0 + Fn0∗ + F 2n0∗ + · · ·
and

U = [δ0 + F + F 2∗ + · · ·+ F (n0−1)∗] ∗ U3 = ρ ∗ U3,

where ρ has total mass n0. Also, since U3 satisfies the renewal equation

U3 = δ0 + Fn0∗ ∗ U3 = δ0 + (Σ +A) ∗ U3,

we have U3 ∗ (δ0 − Σ) = δ0 + A ∗ U3. Since δ0 − Σ has total mass less than
unity, this factor may be inverted to yield

U3 = Uσ +A ∗ Uσ ∗ U3,

where Uσ = δ0 + Σ + Σ2∗ + · · · has total mass (1− σ)−1. Thus, we obtain for
U , and then for UG,

UG = G ∗ ρ ∗ Uσ +A ∗G ∗ ρ ∗ Uσ ∗ U3.

This will serve as the required decomposition, with U2G = G ∗ ρ ∗ Uσ totally
finite and U1G = A ∗ G ∗ ρ ∗ Uσ ∗ U3 absolutely continuous, since it is a
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convolution in which one of the terms is absolutely continuous. To show that
its density has the required properties, we note first that the key renewal
theorem applies to U3 in the form

(U3 ∗ g)(t)→ λ

n0

∫ ∞

0
g(x) dx

whenever g is directly Riemann integrable. But then a similar result applies
also to H = G∗ρ∗Uσ ∗U3, which is simply a type of delayed renewal measure
in which the initial ‘distribution’ G ∗ ρ ∗Uσ has total mass 1×n0× (1−σ)−1,
so that

(H ∗ g)(t)→ λ

1− σ

∫ ∞

0
g(x) dx (t→∞).

Finally, since the density of A is continuous and vanishes outside a bounded
set, we can take g(t) = a(t), in which case the left-hand side of the last
equation reduces to u1G(t) and we obtain

u1G(t)→ λ

1− σ

∫ ∞

0
a(x) dx = λ.

We have the following corollary (see Arjas, Nummelin and Tweedie, 1978).

Corollary 4.4.V. If F is spread out and g ≥ 0 is bounded, integrable, and
satisfies g(x)→ 0 as x→∞, then

lim
t→∞

sup
|f |≤g

∣∣∣∣(UG ∗ f)(t)− λ
∫ ∞

0
f(x) dx

∣∣∣∣→ 0. (4.4.10)

Proof. We consider separately the convolution of g with each of the two com-
ponents in the decomposition (4.4.8) of UG. Taking first the a.c. component,
and setting uG(x) = 0 for x < 0, we have

sup
|f |≤g

∣∣∣∣ ∫ t

0
u1G(t− x)f(x) dx− λ

∫ ∞

0
f(x) dx

∣∣∣∣ ≤ ∫ ∞

0

∣∣u1G(t− x)− λ
∣∣ g(x) dx.

Now u1G(t)→ λ so it is bounded for sufficiently large t, |u1G(t)−λ| ≤ C say,
for t > T , and we can write the last integral as∫ t−T

0
g(x)

∣∣u1G(t− x)− λ
∣∣ dx+

∫ T

0

∣∣u1G(s)− λ
∣∣ g(t− s) ds,

where the first integral tends to zero by dominated convergence because
|u1G(t − x) − λ| is bounded, u1G(t − x) → λ for each fixed x, and g(x) is
integrable, while the second tends to zero by dominated convergence since
|u1G(s)− λ| has finite total mass over (0, T ) and by assumption g(t− s)→ 0
for each fixed s.
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Similarly, the integral against the second component is dominated for all
|f | ≤ g by ∫ t

0
g(t− x) dU2G(x),

where again the integrand is bounded and tends to zero for each fixed x,
while U2G has finite total mass, so the integral tends to zero by dominated
convergence.

Corollary 4.4.VI. If F is spread out, then for each finite interval (0,M)

‖StUG − λ�‖M → 0.

The version of the renewal theorem summarized by these results has the
double advantage of not only strengthening the form of convergence but also
replacing the rather awkward condition of direct Riemann integrability by
the simpler conditions of Proposition 4.4.IV. Further variants are discussed in
Exercise 4.4.4 and in the paper by Arjas et al. (1978). With further conditions
on the lifetime distributions—for example, the existence of moments—it is
possible to obtain bounds on the rate of convergence in the renewal theorem.
For results of this type, see Stone (1966), Schäl (1971), and Bretagnolle and
Dacunha-Castelle (1967); for a very simple case, see Exercise 4.4.5(a).

Exercises and Complements to Section 4.4
4.4.1 Conditions for direct Riemann integrability. Let z(x) be a measurable function

defined on [0,∞). Show that each of the following conditions is sufficient to
make z(·) directly Riemann integrable (see also Feller, 1966).
(a) z(x) is nonnegative, monotonically decreasing, and Lebesgue integrable.
(b) z(x) is continuous, and setting αn = supn<x≤n+1 |z(x)|, Σαn < ∞.

[Hint: z(x) is Riemann integrable on any finite interval, and the remainder
term outside this interval provides a contribution that tends to zero.]

(c) z(x) ≥ 0, z(x) is uniformly continuous and bounded above by a monoton-
ically decreasing integrable function.

4.4.2 (a) If g is bounded and continuous and f is integrable, then their convolution
product f ∗ g =

∫
R
g(t− x)f(x) dx is uniformly continuous.

(b) Extend this to the case where g is any bounded measurable function by
approximating g by bounded continuous functions. In particular, therefore,∫
A
f(t− x) dx is uniformly continuous whenever A is a measurable set.

(c) Let F have a.c. component f ; show from (b) that F ∗ F has an a.c. com-
ponent f2, which dominates a uniformly continuous function and hence a
bounded function that vanishes outside a bounded set and is twice contin-
uously differentiable.

4.4.3 Apply the key renewal theorem as around (4.4.5) to show that if F has density
f with fk∗ bounded, and if λ−1 < ∞, then the renewal density u(x) exists
and satisfies

u(x) −
2k−1∑
j=1

f j∗(x) → λ.
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[Hint: u(x) −∑2k−1
j=1 f j∗(x) =

∑∞
j=2k f

j∗(x) satisfies the renewal equation
with z(x) = f2k∗(x), which is uniformly continuous and bounded above by
an integrable function. Necessary and sufficient conditions for u(x) itself to
converge are given in Smith (1962); see also Feller (1966, Section XI.4).]

4.4.4 Strong convergence counterexample. Let Gu denote the distribution of the
forward recurrence time at t = u and G∞ its limit, if it exists, of a renewal
process N(·) with lifetime distribution F with mean 1/λ.
(a) Suppose that F has discrete support but is nonlattice. Show that Gu(x) →

G∞(x) = λ
∫ x
0

[1−F (u)] du, but that ‖Gu−G∞‖ = 2 (all finite u). [Hence,
Gu does not converge in variation norm ‖ · ‖, i.e. strong convergence fails.]

(b) Show that ‖Gu −G∞‖ → 0 (u → ∞) when F is spread out.

4.4.5 Rate of convergence in renewal theorems.
(a) Consider (4.1.8) with z(t) = λ

∫∞
t
F (y) dy, where F (y) = 1 − F (y) and F

has second moment σ2 + µ2. Deduce that Z, the solution of (4.1.8) with
such z, equals φ(t) ≡ U(t) − λt. Use the key renewal theorem to conclude
that for nonlattice F ,

0 ≤ φ(t) = λ

∫ t

0

(∫ ∞

t−u
F (v) dv

)
dU(u) → 1

2λ
2(σ2 +µ2) (0 ≤ t → ∞).

(b) Let the r.v.s T1, T2 be independent with Pr{T1 > t} = z(t) as in (a). Use
the subadditivity of the renewal function U(·) to give, for all t ≥ 0,

U(2t) ≤ 2EU(t+ T1 − T2),

and hence deduce from EU(t−T1) = λt (cf. Example 4.1(c) and Proposition
4.2.I) that

2λt ≤ U(2t) ≤ 2λt+ λ2σ2 + 1.

[See Carlsson and Nerman (1986) for details and earlier references.]
(c) Suppose that the generator z(·) in the general renewal equation (4.1.8) is

positive and decreases monotonically. Show that J1(t) ≡ ∫ t
0
z(u)λdu → ∞

(t → ∞) if and only if J2(t) ≡ ∫ t
0
z(t − u) dU(u) → ∞ (t → ∞) and that

then limt→∞ J1(t)/J2(t) = 1.
Deduce that, when F (·) has infinite second moment, U(t) − λt ∼∫∞

0
λ2 min(v, t)F (v) dv ≡ G(t) (Sgibnev, 1981).

For an alternative proof, show that φ(t) ≤ ∫∞
0
U(min(v, t))λF (v) dv ≡

GU (t) ≥ G(t) by the elementary renewal theorem. Use Blackwell’s theo-
rem to show that lim supt→∞ GU (t)/G(t) ≤ 1.

When F (·) has finite second moment and is nonarithmetic, show that
limt→∞[J1(t) − J2(t)] = 0.

(d) Use the asymptotics of φ(·) to deduce that for a stationary orderly renewal
process N(·), varN(0, t] ∼ (varλX)(λt) when the lifetime d.f. has finite
second moment, and varN(0, t] ∼ λ2t2 − λ3

∫ t
0
(t − v)2F (v) dv otherwise.

[Hint: First, find varN(0, t] from (3.5.2) and (3.5.6).]



92 4. Renewal Processes

4.5. Neighbours of the Renewal Process:
Wold Processes

The specification of a renewal process via independent identically distributed
intervals raises the possibility of specifying other point processes via intervals
that are one step removed from independence. In this section, we consider
point processes for which the successive intervals {Xn} form a Markov chain
so that the distribution of Xn+1 given Xn, Xn−1, . . . in fact depends only
on Xn. Such processes seem to have been considered first by Wold (1948);
accordingly, we call them Wold processes.

Example 4.5(a) A first-order exponential autoregressive process. Suppose
that the family {Xn} of intervals satisfy the relation

Xn+1 = ρXn + εn (4.5.1)

for some 0 ≤ ρ < 1 and family {εn} of i.i.d. nonnegative random variables
(note {Xn} is itself i.i.d. if ρ = 0). For the particular distribution given by

Pr{εn = 0} = ρ and Pr{εn > y} = (1− ρ)e−y (y > 0),

taking Laplace transforms of (4.5.1) shows that if a stationary sequence of
intervals is to exist, the common distribution F of the {Xn} must have its
Laplace–Stieltjes transform F̃ satisfy the functional equation

F̃ (s) =
F̃ (ρs)(1 + ρs)

1 + s
.

The only solution of this equation for which F̃ (0) = F̃ (0+) = 1 is F̃ (s) =
(1 + s)−1. Thus, a stationary version of the Markov chain exists and the
marginal distribution for the intervals is exponential as for a Poisson process.
The parameter ρ controls the degree of association between the intervals. For
ρ > 0, a realization of the process consists of a sequence of intervals each
one of which is an exact fraction of the preceding one, followed by an interval
independently chosen from the same exponential distribution. The construc-
tion can be extended to more general types of gamma distribution and has
been studied extensively by P.A.W. Lewis and co-authors: see, for example,
Gaver and Lewis (1980). They have advocated its use as an alternative to the
Poisson process, partly on the grounds of the very simple behaviour of the
spectrum of the interval process. Other aspects are more intractable, how-
ever, and from a point process viewpoint its partly deterministic behaviour
gives it a rather special character (see Exercises 4.5.2 and 4.5.9).

In general, the interval structure of a Wold process is determined by a
Markov transition kernel P (x,A); that is, a family {P (x, ·): 0 ≤ x < ∞} of
probability measures in [0,∞), and the distribution, P0(·) say, of the initial in-
terval X0, with P (·, A) measurable for each fixed Borel set A ⊆ [0,∞). When
the chain {Xn} is irreducible [see e.g. Harris (1956), Orey (1971) or Meyn and
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Tweedie (1993) for discussions of the precise meaning of irreducibility] and
admits a stationary distribution, π(·) say, so that for all such Borel subsets A

π(A) =
∫ ∞

0−
P (x,A)π(dx), (4.5.2)

an interval sequence {Xn} with a stationary distribution can be specified. The
following construction then leads to a counting process N(·) that is stationary
in the sense of Definition 3.2.I.

First, let {X0, X1, . . .} be a realization of the Markov chain for which X0
has the initial distribution

P0(dx) ≡ Pr{X0 ∈ (x, x+ dx)} =
xπ(dx)∫∞

0− uπ(du)
, (4.5.3a)

where we suppose both π{0} = 0 and finiteness of the normalizing factor; i.e.

λ−1 ≡
∫ ∞

0−
xπ(dx) =

∫ ∞

0
π(u,∞) du < ∞. (4.5.3b)

Next, conditional on X0, let X ′
0 be uniformly distributed on (0, X0), and

determine N by
N(0, x] = #{n:S′

n ≤ x},
where

S′
1 = X ′

0, S′
n+1 = S′

n +Xn (n = 1, 2, . . .).

The relation (4.5.3), in conjunction with the definition of S′
n, states that the

origin is located uniformly at random within an interval selected according
to the length-biased distribution with increment around x proportional to
xπ(dx). Since π{0} = 0, the normalizing constant λ is just the intensity of
the process. Note that the distributions here are consistent with the rela-
tions found in Exercise 3.4.1 for the stationary distributions for the forward
recurrence time and the length of the current interval. Indeed, the construc-
tion here can be rephrased usefully in terms of the bivariate, continuous-time
Markov process

X(t) =
(
L(t), R(t)

)
, (4.5.4)

where L(t) is the length of the interval containing t and R(t) is the forward
recurrence time at time t. The Markovian character of X(t) follows readily
from that of the sequence of intervals. Moreover, it is clear that the process
N(t) is uniquely determined by X(t) and vice versa. By starting the Markov
process with its stationary distribution, we ensure that it remains stationary in
its further evolution, and the same property then holds for the point process.

An immediate point of contrast to the ordinary point process is that it is not
necessary, in (4.5.2), to have

∫
R+
π(dx) <∞. If the underlying Markov chain

is null recurrent, a stationary regime can exist for the point process (though
not for its intervals) in which, because of the dependence between the lengths
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of successive intervals, long runs of very short intervals intervene between the
occurrences of longer intervals; in such situations, divergence of

∫
R+
π(dx) can

coexist with convergence of
∫

R+
xπ(dx) (i.e. near the origin, π may integrate

x but not 1). This leads to the possibility of constructing stationary Wold
processes with infinite intensity but finite mean interval length. One such
construction is given in Daley (1982); another is outlined in Exercise 4.5.1.

With such examples in mind, it is evident that the problem of formu-
lating analogues of the renewal theorems for the Wold process needs to be
approached with some care. One possible approach is through the family of
renewal measures

U(A | x) = E[#{n:Sn ∈ A} | X0 = x]

and their associated cumulative processes U(t | x) ≡ U([0, t] | x). The latter
functions satisfy the renewal-type equations

U(t | x) = I{t≥x}(t) +
∫ ∞

0
U(t− x | y)P (x,dy). (4.5.5)

Unfortunately, these equations seem rather intractable in general. The anal-
ogy with the renewal equations of Section 4.4 becomes clearer on taking
Laplace–Stieltjes transforms of (4.5.5) with respect to t. Introducing the
integral operator Tθ with kernel

tθ(dy, x) = e−θxP (x,dy),

the transform versions of equation (4.5.5) become

Uθ(x) ≡
∫ ∞

0
e−θt U(dt | x) = e−θx + (TθUθ)(x)

with the formal solution Uθ = (1−Tθ)−1eθ, where (eθ)(x) ≡ e−θx, which may
be compared to equation (4.1.6).

Example 4.5(b) Discrete Wold processes. Consider a simple point process
({0, 1}-valued process) on the lattice of integers {0, 1, . . .}; the kernel P (x,dy)
here becomes a matrix pij and in place of the cumulative form in (4.5.5) it
is more natural to consider the renewal functions u(j | i) = Pr

{
N{j} = 1 |

X0 = i
}

. Then

u(j | i) = δij +
∞∑
k=1

piku(j − i | k),

taking the right-hand side here to be zero for j < i. By introducing the
transforms ui(z) =

∑∞
k=i z

ku(k | i), these become

ui(z) = zi +
∞∑
k=1

pikz
iuk(z),

or in matrix-vector form
u(z) = ζ + Pzu(z),
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where Pz = {pikzi}, u(z) = {ui(z)}, and ζ = (1, z, z2, . . .). The asymptotic
behaviour of u(j | i) as j → ∞ is therefore related to the behaviour of the
resolvent-type matrix (I − Pz)−1 as z → 1. When P is finite, this can be
discussed in classical eigenvector/eigenvalue terms; see Exercise 4.5.4 and for
further details Vere-Jones (1975). A particular question that arises relates
to periodicity of the process: nonzero values of u(j | i) may be restricted
to a sublattice of the integers. This phenomenon is not directly related to
periodicity of the underlying Markov chain; again, see Exercise 4.5.4 for some
examples.

A more general approach, which can be extended to the denumerable case
and anticipates the general discussion to be given below, is to consider the
discrete version of the Markov chain X(t) in (4.5.4). When this bivariate
chain is aperiodic and recurrent, returns to any given state pair—for example,
time points at which an interval of specified length i0 is just commencing—
constitute an imbedded renewal process for X(t) and allow standard renewal
theory results to be applied.

Example 4.5(c) Transition kernels specified by a diagonal expansion. Lan-
caster (1963) investigates the class of bivariate probability densities that can
be represented by an expansion of the kind

f(x, y) = fX(x)fY (y)

(
1 +

∞∑
n=1

ρnLn(x)Mn(y)

)
,

where fX(·), fY (·) are the marginal densities and Ln(x), Mn(y) are families of
complete orthonormal functions defined with respect to the marginal distribu-
tions fX(·), fY (·), respectively. When fX and fY coincide (so Ln = Mn), the
bivariate density can be used to define the density of the transition kernel of
a stationary Markov chain with specified stationary distribution fX(x): just
put

p(x, y) =
f(x, y)
fX(x)

= fX(y)

(
1 +

∞∑
n=1

ρnLn(x)Ln(y)

)
.

For many of the standard distributions, this leads to expansions in terms
of classical orthogonal polynomials (see e.g. Tyan and Thomas, 1975). In
particular, when fX(x) and fY (y) are both taken as gamma distributions,

fX(x) = xα−1e−x/Γ(α), say,

the Ln(x) become the Laguerre polynomials of order α. The bivariate expo-
nential density of Example 4.1(e) is a case in point when α = 1 and ρn = ρn.
The resulting Wold process then has exponential intervals, but in contrast to
Example 4.5(a), the realizations have no deterministic properties but simply
appear as clustered groups of small or large intervals, the degree of clustering
being controlled by the parameter ρ. Lampard (1968) describes an electrical
counter system that produces correlated exponential intervals. More gener-
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ally, when α = 1
2d, such correlated gamma distributions can be simulated

from bivariate normal distributions with random variables in common; this
leads to the possibility of simulating Wold processes with correlated gamma
intervals starting from a sequence of i.i.d. normal variates (see Exercise 4.5.7).

Even in such a favourable situation, the analytic study of the renewal
functions remains relatively intractable. Lai (1978) studies the exponential
case in detail and provides a perturbation expansion for the renewal function
and (count) spectral density of the process in terms of the parameter ρ.

As such examples illustrate, explicit computations for the Wold process
are often surprisingly difficult. However, a useful and general approach to the
asymptotic results can be developed by identifying a sequence of regeneration
points within the evolution of the process and by applying to this sequence
the renewal theorems of Section 4.4. It is by no means obvious that any such
sequence of regeneration points exists, but the ‘splitting’ techniques developed
for Markov chains with general state space by Nummelin (1978) and Athreya
and Ney (1978) allow such a sequence to be constructed for a wide class of
examples. The essence of this idea is to identify a particular set A0 in the state
space and a particular distribution φ on A0 such that whenever the process
enters A0, it has a certain probability of doing so ‘according to φ’, when its
future evolution will be just the same as when it last entered A0 ‘according to
φ’. In effect, returns to A0 according to φ can be treated as if they are returns
to a fixed atom in the state space and provide the regeneration points we seek.
The following conditions summarize the requirements on the transition kernel
for this to be possible (see Athreya and Ney, 1978).

Conditions 4.5.I. (Regenerative Homing Set Conditions). For the Markov
chain {Xn} on state space S ⊆ [0,∞) ≡ R+, there exists a homing set A0 ∈
B(R+), A0 ⊆ S, a probability measure φ on A0, and a positive constant c
such that for all x ∈ S,
(i) Pr{Xn ∈ A0 for some n = 1, 2, . . . | X0 = x} = 1; and

(ii) for every Borel subset B of A0, P (x,B) ≥ cφ(B).

The first of these conditions embodies a rather strong recurrence condition;
indeed Athreya and Ney call a chain satisfying Condition 4.5.I ‘strongly ape-
riodic recurrent’ since the conditions imply aperiodicity as well as recurrence.
The second condition is more akin to an absolute continuity requirement on
the transition kernel. In particular, it is satisfied whenever the following sim-
pler but more stringent condition holds.

Condition 4.5.I′. (ii)′ For all x ∈ A0, P (x,B) has density p(x, y) on A0
with respect to φ such that p(x, y) ≥ c > 0 for all y ∈ A0.

Typically, A0 is a set with positive Lebesgue measure and φ the uniform
distribution on A0 (i.e. a multiple of Lebesgue measure scaled to give A0 total
mass unity). In the discrete case, 4.5.I(ii) is equivalent to the assumption
that the matrix of transition probabilities has at least one positive diagonal
element.
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Conditions 4.5.I are trivially satisfied in the independent (renewal) case if
we take S to be the support of the lifetime distribution F and put A0 = S,
φ = F , and c = 1.

Under Conditions 4.5.I, Athreya and Ney (1978) show that the chain is
recurrent in the sense of Harris (1956) and admits a unique finite invariant
measure π(·). The important feature for our purposes is not so much the
existence of the invariant measure as its relation to the sequence {νk} of
‘returns to A0 according to φ’. This aspect is made explicit in the following
proposition [see Athreya and Ney (1978) and Nummelin (1978) for proof].

Proposition 4.5.II. Conditions 4.5.I imply that for the Markov chain {Xn},
(a) there exists a stopping time ν ≥ 1 with respect to the σ-fields generated

by {Xn} such that for Borel subsets B of A0

Pr{Xν ∈ B | X0 · · ·Xν−1; ν} = φ(B); (4.5.6)

(b) {Xn} has an invariant measure π(·) related to φ by

π(B) = Eφ

(
ν−1∑
n=0

IB(Xn)

) (
all B ∈ B(R+)

)
, (4.5.7)

where Eφ refers to expectations under the initial condition that X0 has
distribution φ on A0, i.e. Pr{X0 ∈ B} = φ(B ∩A0) for B ∈ B(R+).

Equation (4.5.7) can be extended by linearity and approximation by simple
functions to ∫

R+

f(x)π(dx) = Eφ

(
ν−1∑
n=0

f(Xn)

)
(4.5.8)

whenever f is Borel-measurable and either nonnegative or π-integrable. Spe-
cial cases of (4.5.8) include

Eφ(ν) =
∫

R+

π(dx) (4.5.9a)

and
Eφ(X0 +X1 + · · ·+Xν−1) =

∫
R+

xπ(dx). (4.5.9b)

Now let Sn =
∑n
i=1Xi, and let {Tk} = {Sνk

− 1} denote the sequence of
times at which the process returns to A0 according to φ. These Tk form the
regeneration points that we seek. If G(·) denotes the distribution function of
the successive differences Tk − Tk−1 so that in particular

G(u) = Eφ{ISν−1 ≤ u} = Prφ{Sν−1 ≤ u}, (4.5.10)

then the Tk form the instants of a renewal process with lifetime distribution
G. We apply this fact, with the theorems of Section 4.4, to determine the
asymptotic behaviour of the Wold process.
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The results are stated for the renewal function

Uφ(C × TtB) = Eφ#{n:Xn ∈ C, Sn ∈ TtB}, (4.5.11)

where TtB is the translate of B through time t. If the process is started from
a general distribution κ for X0, we write Uκ(·) for the corresponding renewal
function. The analogue of Blackwell’s renewal theorem for this function reads,
for B = (0, h) and λ as in (4.5.3b),

Uφ(C × TtB)→ λπ(C)�(B).

We approach these results through an extended version of the key renewal
theorem, fixing a bounded measurable function h(x, y) with support in the
positive quadrant x ≥ 0, y ≥ 0, and setting for t > 0

Z(t) = Eφ

(
N(t)∑
n=0

h(Xn, t−Sn)

)
=
∫ ∞

0

∫ t

0
h(x, t−u)Uφ(dx×du). (4.5.12)

Considering the time T1 to the first return to A0 according to φ, we find that
Z(t) satisfies the renewal equation Z(t) = z(t) +

∫ t
0 Z(t− u) dG(x), where

z(t) = Eφ

(
ν−1∑
n=0

h(Xn, t−Sn)

)
= Eφ

(∫ T

0
h(XN(u), t− u) dN(u)

)
. (4.5.13)

If then we can show that z(t) satisfies the condition of direct Riemann integra-
bility (for Feller’s form of the key renewal theorem in 4.4.II) or the conditions
in 4.4.III for the Breiman form of the theorem, we shall be able to assert that

Z(t)→ λ

∫ ∞

0
z(t) dt (t→∞).

To evaluate the integral, we make use of (4.5.8) so that formally

∫ ∞

0
z(t) dt =

∫ ∞

0
Eφ

(
ν−1∑
n=0

h(Xn, t− Sn)

)
dt

= Eφ

(
ν−1∑
n=0

∫ ∞

Sn

h(Xn, t− Sn) dt

)
= Eφ

(
ν−1∑
n=0

∫ ∞

0
h(Xn, u) du

)

=
∫ ∞

0

∫ ∞

0
h(x, t)π(dx) dt, (4.5.14)

the formal operations being justified by Fubini’s theorem whenever h ≥ 0 or
h is (π × �)-integrable.
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Direct Riemann integrability can be established directly in simple cases, to
which we add the following general sufficient condition. For δ > 0, any α in
0 ≤ α < δ, and Ij(δ) ≡ (jδ, (j + 1)δ], define

mδ(x, α) =
∞∑
j=0

sup
t∈Ij(δ)

h(x, t) and mδ(x) = sup
0≤α<δ

mδ(x, α),

and similarly mδ(x, α) and mδ(x) by replacing sup by inf. For any y, there
is a unique αδ(y) in [0, δ) such that y = j′δ+αδ(y) for some integer j′. Then

∞∑
j=0

sup
t∈Ij(δ)

h(x, t− y) = mδ

(
x, αδ(y)

)
.

Using first Fatou’s lemma and then Fubini’s theorem,

∞∑
j=0

sup
t∈Ij(δ)

z(t) ≤ Eφ

(
ν−1∑
n=0

mδ

(
Xn, αδ(−Sn)

))

≤ Eφ

(
ν−1∑
n=0

mδ(Xn)

)
=
∫ ∞

0
mδ(x)π(dx).

A similar lower bound with sup and mδ replaced by inf and mδ, respectively,
holds. Thus, a sufficient condition for the direct Riemann integrability of z(t)
is that, as δ ↓ 0,

δ

∫ ∞

0
[mδ(x)−mδ(x)]π(dx)→ 0. (4.5.15)

If, alternatively, G is spread out, then it is enough to show that z(t) is inte-
grable and tends to zero as t→∞. Simple sufficient conditions for the latter
(not the most general possible) are that

h(x, t)→ 0 as t→∞ for each fixed x (4.5.16a)

and
|h(x, t)| ≤ h0(x), (4.5.16b)

where h0(x) is π-integrable. This follows readily from (4.5.13) and an appli-
cation of the dominated convergence theorem.

Summarizing these results, we have the following theorem.

Theorem 4.5.III. Suppose that the Markov transition kernel associated
with a Wold process satisfies the regenerative homing set Conditions 4.5.I
and that its invariant measure π has a finite normalizing factor λ−1 as in
(4.5.3b). Also let h(x, t) be a fixed measurable function, vanishing outside
the positive quadrant in R

2 and (π× �)-integrable in R+×R+, and define G,
Uφ, Zφ, and zφ by (4.5.10–13), respectively. If either
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(i) G is nonlattice and zφ is directly Riemann integrable, or
(ii) G is spread out and z(t) is bounded and → 0 as t→∞,
then

Zφ(t) =
∫ ∞

0

∫ t

0
h(x, t− u)Uφ(dx× du)

→ λ

∫ ∞

0

∫ ∞

0
h(x, u)π(dx) du (t→∞). (4.5.17)

In particular, (4.5.15) implies Condition (i) and (4.5.16) Condition (ii).

We now apply this theorem to some important special cases. Consider first
the Blackwell-type result, where

h(x, t) = IA(x)I(0,h)(t).

In general, h(x, t) is only (π × �)-integrable if A is bounded away from zero.
Then, since I(0,h)(t) has only two points of discontinuity, each of unit height,
it is easy to see that for all x ∈ R+,

mδ(x)−mδ(x) ≤ 2IA(x),

so that both (4.5.15) and (4.5.16) are satisfied. Equation (4.5.16) also holds
if the interval (0, h) is replaced by any bounded Borel set B. Finally, if π(·) is
totally finite, the condition on A can be dropped and the same results hold.
Thus, we have the following corollary.

Corollary 4.5.IV. Let A, B be Borel subsets of R+. If G is nonlattice, then

Uφ(A× TtB)→ λπ(A)�(B) (t→∞) (4.5.18)

whenever B is a finite interval (0, h) and A ⊆ [ε,∞) for some ε > 0. If G is
spread out, the same result holds for B any bounded Borel set.

If π(·) is totally finite, these results hold without any further condition
on A.

We next extend the results to an arbitrary initial distribution, κ say, for
X0. If we denote the corresponding renewal functions by Uκ, Zκ, then Zκ
satisfies

Zκ(t) = zκ(t) +
∫ t

0
Zφ(t− u)G(du) (4.5.19)

with

zκ(t) = Eκ

(
ν′−1∑
n=0

h(X ′
n, t− S′

n)

)
, (4.5.20)

where X ′
1, S′

n refer to the sequence of interval lengths and renewals for the
process with initial distribution κ, and ν′ is the time of the first entry to A0
according to φ, again starting from X0 distributed according to κ. It follows
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from Condition 4.5.I(i) that this entry is certain, so ν′ is finite with probability
1. It then follows from (4.5.19) that

Zκ(t)− Zφ(t) = zκ(t)− zφ(t)

so that we need conditions to ensure the convergence of the right-hand side
to zero. This will follow from (4.5.20) if Eκ(ν′) < ∞ and h is bounded and
satisfies (4.5.16a).

Corollary 4.5.V. Suppose that (4.5.17) holds for Uφ and that κ is an arbi-
trary initial distribution for X0. Then (4.5.17) continues to hold with Uκ in
place of Uφ if and only if zκ(t)− zφ(t)→ 0, in particular if h is bounded and
satisfies (4.5.16a), and Eκ(ν′) <∞, Eφ(ν) =

∫
R+

π(dx) <∞.

Finally, we turn to the question of the weak convergence of the process
X(t) in (4.5.4). It somewhat simplifies the algebraic details to work with the
bivariate process Y(t) = (L(t), L(t)−R(t)), i.e. with the backward recurrence
time L(t) − R(t) in place of the forward one. If then ξ(x, y) is any bounded
continuous function of x, y in R+ × R+, we consider ξ(Y(t)), which we may
write in the form

ξ
(
Y(t)

)
=

∞∑
n=0

h(Ln, t− Sn),

where

h(x, t) =
{
ξ(x, t) (0 ≤ t ≤ x),
0 (t > x),

since in fact only the term with n = N(t) contributes to the sum. Suppose
first that G is nonlattice, and define the modulus of continuity ω(x, δ) of h(·)
by

ω(x, δ) = sup
0≤t≤x−δ

sup
0≤u≤δ

|h(x, t)− h(x, t+ u)|.

Then, for the particular choice of h given above,

mδ(x)−mδ(x) ≤ (x/δ)ω(x, δ)

so that
δ

∫
R+

[mδ(x)−mδ(x)]π(dx) ≤
∫

R+

xω(x, δ)π(dx).

For each fixed x > 0, h(x, t) is continuous and nonvanishing on a finite
closed interval so it is uniformly continuous, and hence ω(x, δ) → 0. Also,
ω(x, δ) is uniformly bounded in x and δ, so by dominated convergence, the
integral on the right converges to zero as δ → 0; that is, (4.5.15) holds. Also,

|zκ(t)| ≤ Eκ
[ ∣∣ξ(Y(t)

)∣∣;T > t
]
≤ CPκ{T > t},

where the last term tends to zero from the recurrence property assumed in
Condition 4.5.I(i). Consequently, the conditions for Corollary 4.5.V hold. If,
furthermore, G is spread out, then this result alone is sufficient to ensure the
truth of the Riemann-type theorem. This means the continuity condition on
ξ can be dropped, implying that the weak convergence of Y(t) to its limit
can be replaced by convergence in variation norm.
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Proposition 4.5.VI. Let Pκ,t denote the distribution of X(t) supposing X0
has initial distribution κ, and π∞ the stationary distribution for X(t) with
elementary mass λπ(dx) dy over the region 0 ≤ y ≤ x <∞. If G is nonlattice
and λ−1 =

∫
R+
xπ(dx) < ∞, then Pκ,t → π∞ weakly. If, furthermore, G is

spread out, then Pκ,t → π∞ in variation norm.

Throughout our discussion, we have assumed finiteness of the mean λ−1 [see
(4.5.3b)]. When the mean is infinite, further types of behaviour are possible,
some of which are sketched in Athreya, Tweedie and Vere-Jones (1980).

Exercises and Complements to Section 4.5
4.5.1 A Wold process with infinite intensity. Consider a symmetric random walk

{Xn} with reflecting barrier at the origin, supposing the walk to have den-
sity and be null recurrent; for example, the single-step distribution could be
N(0, 1). Then, the invariant measure for Xn is Lebesgue measure on (0,∞).
Now transform the state space by setting Yn = T (Xn), where for y > 0

x = T−1(y) = y−β(1 + y)−α (α > 0, β > 0);

note that under T the origin is mapped into the point at infinity and vice versa.
Then, the transformed process Yn is Markovian with invariant measure having
density π(y), where near the origin π(y) ∼ y−(1+β) and near infinity π(y) ∼
y−(α+β+1). Choose α and β so that 0 < β < 1, α+β > 1; then

∫∞
0
y π(y) dy <

∞ but
∫ 1

0
π(y) dy = ∞. Complete the construction of a stationary version of

the corresponding Wold process by using the joint distribution of the current
interval and forward recurrence time as indicated in the text following (4.5.4).

4.5.2 Infinitely divisible autoregressive process. Let X ≥ 0 have an infinitely divis-
ible distribution with representation of the form

ψ(θ) = E(e−θX) = exp

(
−
∫ ∞

0

[1 − e−θx]M(dx)

)
( Re(θ) > 0),

where
∫
0,∞)

min(x, 1)M(dx) < ∞. Show that there exists a stationary se-
quence {Xn}, satisfying the autoregressive equation

Xn+1 = ρXn + εn (εn independent of Xn)

and having marginal distribution with Laplace–Stieltjes transform ψ(θ), when-
ever M is absolutely continuous with monotonically decreasing density m(x),
hence in particular whenever the Xn are gamma distributed.
[Hint: If εn is also infinitely divisible, its Laplace–Stieltjes transform, φ(θ) say,
must satisfy φ(θ) = ψ(θ)/ψ(ρθ) = exp (

∫∞
0

(e−θx−1) [M(dx)−M(ρ−1dx)]).]
4.5.3 Let F (t;x, y) be the distribution function of the bivariate process Y(t) =

(L(t), L(t)−R(t)), conditional on an event at the origin and L(0−) = s. Then,
if F has a density f(t;x, y) ≡ f(t;x, y | s), it satisfies for 0 < y < min(x, t)

∂F

∂t
+
∂F

∂y
=
∫ t

0

f(t;u, u)P (u, (0, x]) du−
∫ y

0

f(t;u, u) du,

and if also the density function is sufficiently regular, then for the same x, y,
t,

∂f

∂t
+
∂f

∂y
= 0.
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Argue on probabilistic grounds that f(t;x, y) = f(t−v;x, y−v) for 0 < y−v <
min(x, t− v), so f(t;x, x) = f(t− x;x, 0+) for 0 < x < t, and that

f(t;x, 0+) = p(s, t)p(t, x) +
∫ t

0

f(t;u, u)p(u, x) du. (4.5.21)

When the p.d.f.s p(u, x) are independent of u, this reduces to the renewal
density function equation.

Assuming that the conditions for the limits of Theorem 4.5.III and its corol-
laries are satisfied, identify f(x, y) ≡ limt→∞ f(t;x, y) with the density func-
tion π(x) for the stationary measure π(·) of the theorem, and deduce the
density version of equation (4.5.2) by taking the limit in (4.5.21).

Now let L(0−) be an r.v. with p.d.f. λsπ(s) with λ as in the theorem. Inter-
pret

∫ t
0

dx
∫∞
0
yf(t;x, y | s)λsπ(s) ds as the density of the expectation function

U(·) of the Wold process. [Lai (1978) has other discussion and references.]

4.5.4 Discrete Wold processes.
(a) Suppose integer-valued intervals are generated by a finite Markov chain on

{1, 2, 3} with transition matrices of the forms

(i) P =


0 1 0

0 0 1

1 0 0

 ; (ii) P =


0 0 1
1
2

1
2 0

1
2

1
2 0

 ; (iii) P =


0 1

2
1
2

1 0 0

1 0 0

 .

For which of these P do the corresponding Wold processes show lattice
behaviour? What is the relation of periodicity of P to lattice behaviour of
the associated Wold process?

(b) Define mij(n) = Pr{interval of length j starts at n | X0 = i} and show
that, for n ≥ 0,

mij(n) = δijδ0n +
∑
k

mik(n− k)pkj = δijδ0n +
∑
k

pikmkj(n− i),

where we interpret mij(n) = 0 for n < 0. In matrix form, the p.g.f.s are
given by

M(z) = {m̃ij(z)} ≡
{

∞∑
n=0

mij(n)zn
}

= (I − H(z))−1
,

where H(z) = (hij(z)) ≡ (zipij).
(c) If the Wold process is nonlattice and P is irreducible,

(1 − z)[I − H(z)]−1 = λΠ + (1 − z)Q(z),

where Π is the one-dimensional projection onto the null space of I−P and
Q(z) is analytic within some disk |z| ≤ 1+ ε, ε > 0 (see Vere-Jones, 1975).

4.5.5 Denumerable discrete Wold processes. Consider the bivariate process X(n) =
(L(n), R(n)) [or Y(n) = (L(n), L(n) − R(n))] as a Markov chain with an
augmented space. Show that the Wold process is nonlattice if and only if
this augmented chain is aperiodic, and that if the original Markov chain is
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positive recurrent with stationary distribution {πj}, having finite mean, the
augmented chain X(n) is positive recurrent with stationary distribution

π(h, j) = Pr{Ln = j, Rn = h} =

{
λπj (h = 1, . . . , j),

0 otherwise,

where λ−1 =
∑

jπj < ∞ as before.

4.5.6 Markov chains with kernels generated by a power diagonal expansion.
(a) If {Xn} is generated by a kernel with the structure

p(x, y) = f(y)
∞∑
n=1

ρnLn(x)Ln(y)

for an orthogonal family of functions Ln(·), then the m-step transition
kernel p(m)(x, y) is generated by a kernel with similar structure and ρ
replaced by ρm = ρm.

(b) In the particular case where f(·) is exponential and the {Ln(x)} are La-
guerre polynomials, a key role is played by the Hille–Hardy formula

∞∑
n=0

Ln(x)Ln(y)ρn =
e−(x+y)ρ/(1+ρ)

1 − ρ
I0

( 2
√
xyρ

1 − ρ

)
.

Use this to show the following [see Lai (1978) for details]:
(i) Convergence to the stationary limit as m → ∞ is not uniform in x.
(ii) For every x > 0, the conditional d.f.s F (h | x) =

∫ h
0
p(x, y) dy are

bounded by a common function α(h), where α(h) < 1 for h < ∞.
(iii) If A(θ) is the integral operator on L1[0,∞) with kernel p(x, y)e−θx,

then for all θ with Re(θ) ≥ 0, θ �= 0, ‖A2(θ)‖ < 1, so the inverse
[I−A(θ)]−1 exists and is defined by an absolutely convergent series of
powers of A(θ).

4.5.7 Simulation of Wold process with χ2 interval distribution. Let Z0, Z1, . . . be a
sequence of i.i.d. N(0, σ2) variables; define successively Y1 = Z0/

√
1 − ρ2 and

Yi+1 = ρY1 + Zi (i = 1, 2, . . .). Then {Yi} is a stationary sequence of normal
r.v.s with first-order autoregressive structure. Construct d independent real-
izations of such autocorrelated normal series, {Y1i, . . . , Ydi; i = 1, 2, . . .} say,
and generate a stationary sequence of autocorrelated gamma r.v.s {Xi} by
setting

Xi =
d∑
k=1

Y 2
ki

so EXi = dσ2/(1 − ρ2) ≡ λ−1, varXi = 2dσ4/(1 − ρ2)2, and cov(Xi, Xi+1) =
dσ4(1 + ρ2)/(1 − ρ2)2. These Xi can be used as the intervals of a point
process, but the process so obtained is not initially stationary: to obtain a
stationary version, the length-biased distribution may be approximated by
choosing T � λ−1, selecting a time origin uniformly on (0, T ) and taking
the initial interval to be the one containing the origin so selected, and the
subsequent intervals to be X1, X2 and so on.
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4.5.8 Wold processes with intervals conditionally exponentially distributed. Let
p(x, y) be of the form λ(x)e−λ(x)y.
(a) When λ(x) = λx−1/2, the marginal density π(x) can be found via Mellin

transforms (Wold, 1948).
(b) When λ(x) = λ+ αx, the density π(x) is given by

π(x) = c(λ+ αx)−1e−λx

for finite c > 0 [see Cox (1955), Cox and Isham (1980, pp. 60–62), and
Daley (1982); the model has a simple form of likelihood function and
has been used to illustrate problems of inference for Poisson processes
when the alternative is a Wold process, in particular of the type under
discussion].

4.5.9 Time-reversed exponential autoregression. Let the intervals Yn of a point
process be stationary and satisfy

Yn+1 = min(Yn/ρ, ηn)

for i.i.d. nonnegative ηn and 0 < ρ < 1. Show that when ηn is exponentially
distributed, so also is Yn, with corr(Y0, Yn) = ρ|n|. Furthermore, {Yn} =d

{X−n}, where Xn are as in Example 4.5(a) with Pr{εn > y} = (1 − ρ)e−y

[see Chernick et al. (1988), where it is also shown that this identification
of {Xn} as the time-reversed process of {Yn} characterizes the exponential
distribution].

4.5.10 Lampard’s reversible counter system [see Lampard (1968) and Takacs (1976)].
Consider a system with two counters, one of which is initially empty but
accumulates particles according to a Poisson process of rate λ, the other of
which has an initial content ξ0 + r particles and loses particles according to
a Poisson process of rate µ until it is empty. At that point, the roles of the
two counters are reversed; an additional r particles are added to the number
ξ1 accumulated in the first counter, which then begins to lose particles at
rate µ, while the second counter begins to accumulate particles again at rate
λ. We take X0, X1, . . . to be the intervals between successive reversals of
the counters. Then, the {Xi} form a Markov chain that has a stationary
distribution if and only if µ > λ.

4.5.11 mth-order dependence. Suppose that the intervals {Xi} of a point process
form an mth-order Markov chain. Then, in place of the process (L(t), R(t)),
we may consider the process X(t) = (L−m+1(t), . . . , L−1(t), L(t), R(t)),
where the state is defined as the set of m − 1 preceding intervals, the cur-
rent interval, and the forward recurrence time. The regenerative homing
set conditions can be applied to the discrete time vector process with state
Un = (Xn−m+1, . . . , Xn−1, Xn), which is Markovian in the simple sense. Es-
tablish analogues to Theorem 4.5.III and its corollaries. [See Chong (1981)
for details.]

4.5.12 A non-Poisson process with exponentially distributed intervals. Let the in-
tervals τ1, τ2, . . . of a point process on R+ be defined pairwise by i.i.d. pairs
{(τ2n−1, τ2n)}, n = 1, 2, . . . as follows. For each pair, the joint density func-
tion f(u, v) = e−u−v + fε(u, v), where fε(u, v) = 0 except for (u, v) in the
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set A = {0 < u < 2 and 2 < v < 4, or 0 < v < 2 and 2 < u < 4}, where
it equals ε for u ∈ (0, 1) and v ∈ (2, 3); u ∈ (1, 2) and v ∈ (3, 4); v ∈ (0, 1)
and u ∈ (3, 4); and v ∈ (1, 2) and u ∈ (2, 3); and fε = −ε on the complement
in A of these four unit squares. Check that τ2n−1 and τ2n are not inde-
pendent, that each τi is exponentially distributed with unit mean, and that
every pair (τi, τi+1) has Pr{τi + τi+1 ≤ y} =

∫ y
0
we−w dw. Conclude that for

any k = 1, 2, . . . , the length of k consecutive intervals has the same distribu-
tion as for a Poisson process at unit rate and hence that N(a, b] for a < b
is Poisson-distributed with mean b − a. [This counterexample to Theorem
2.3.II is due to Moran (1967).]

4.5.13 A stationary point process N with finite second moment is long-range de-
pendent when

lim sup
x→∞

varN(0, x]
x

= ∞.

(a) A renewal process is long-range dependent if and only if the lifetime dis-
tribution has infinite second moment (Teugels, 1968; Daley, 1999).

(b) Construct an example of a stationary Wold process that is long-range
dependent but for which the marginal distribution of intervals has finite
second moment. [Daley, Rolski and Vesilo (2000) note two examples.]

4.6. Stieltjes-Integral Calculus and Hazard Measures

The results in this section can be regarded as being a prelude to the gen-
eral discussion of conditional intensities and compensators in Chapters 7 and
14. The simplest case concerns a renewal process whose lifetime distribution
function F (·) is absolutely continuous with density f(·). An important role
is played by the hazard function q(x) = f(x)/S(x) [see (1.1.3)], particularly
in applications to forecasting because we can interpret q(x) as the risk of an
event occurring in the next short time interval, given the time elapsed since
the last renewal; that is,

q(x) dt = Pr{event in t, t+ dt | last event at t− x}.

Example 4.6(a) Prediction of the time to the next event in a renewal process.
Suppose a renewal process has hazard function q(·) as just described and that
at time t the time back to the last event is observed to be x. Then, the
distribution of the time to the next event has hazard function

qx(y) = q(x+ y) (y ≥ 0),

corresponding to a d.f. with tail (i.e. conditional survivor function)

Sx(y) = 1− Fx(y) = exp
(
−
∫ y

0
q(x+ u) du

)
=

1− F (x+ y)
1− F (x)

.
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Note that x here denotes an observation, and that for a stationary Poisson
process, the risk qx(y) is everywhere constant.

What of the nonabsolutely continuous case in this example? An appropri-
ate extension of the hazard function is the hazard measure Q(·) in Definition
4.6.IV below. Our discussion of Q(·) is facilitated by two results for Lebesgue–
Stieltjes integrals. The first is just the formula for integration by parts in the
Lebesgue–Stieltjes calculus. The second is much more remarkable: it is the
exponential formula, which has been used mainly in connection with martin-
gale theory without its being in any sense a martingale result; it is in fact a
straightforward (if unexpected) theorem in classical real analysis.

Lemma 4.6.I (Integration-by-Parts Formula). Let F (x) and G(x) be mono-
tonically increasing right-continuous functions of x ∈ R. Then∫ b

a

F (x) dG(x) = F (b)G(b)− F (a)G(a)−
∫ b

a

G(x−) dF (x). (4.6.1)

This is a standard result on Lebesgue–Stieltjes integrals; it can be proved
directly from first principles or as an application of Fubini’s theorem (see e.g.
Brémaud 1981, p. 336). Note that the last term of (4.6.1) contains the left-
continuous function G(x−); also, recall the convention for Lebesgue–Stieltjes
integrals that ∫ b

a

u(x) dG(x) =
∫ ∞

−∞
I(a,b](x)u(x) dG(x);

if we wish to include the contribution from a jump of G at a itself, then we
write the integral as ∫ b

a−
u(x) dG(x);

similarly,
∫ b−
a

u(x) dG(x) excludes the effect of any jump of G at b.

Lemma 4.6.II (Exponential Formula). Suppose F (x) is a monotonically
increasing right-continuous function of x ∈ R and that u(x) is a measurable
function for which

∫ t
0 |u(x)|dF (x) < ∞ for each t > 0. Let {xi} be the set

of discontinuities of F in [0,∞); set ∆F (xi) = F (xi) − F (xi−) and write
Fc(x) = F (x) −

∑
0<xi≤t ∆F (xi) for the continuous part of F (·). Then, the

function

H(t) = H(0) exp
(∫ t

0
u(x) dFc(x)

) ∏
0<xi≤t

(
1 + u(xi)∆F (xi)

)
(4.6.2)

is the unique solution in t ≥ 0 of the integral equation

H(t) = H(0) +
∫ t

0
H(x−)u(x) dF (x) (4.6.3)

satisfying sup0≤s≤t |H(s)| <∞ for each t > 0.
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Proof. We outline a proof (see Brémaud, 1981, pp. 336–339; Andersen et
al., 1993, Theorem II.6.1). Write

G1(t) = H(0)
∏

0<xi≤t

(
1 + u(xi)

)
∆F (xi)

and

G2(t) = exp
(∫ t

0
u(x) dFc(x)

)
.

Then, the relation between (4.6.2) and (4.6.3) is just an application of the
integration-by-parts formula to obtain an expression for G1(t)G2(t), noting
that G1(·) increases by jumps only at the points t = xi, where in fact the
jump is equal to

G1(xi)−G1(xi−) =
(
1 + u(xi)

)
G1(xi−)−G1(xi−) = u(xi)G1(xi−).

To show that (4.6.2) is the unique bounded solution to (4.6.3), let

D(t) = H1(t)−H2(t)

be the difference between any two bounded solutions. Then D(t) itself is
bounded in every finite interval, and we can form the estimate, using (4.6.3)
and for fixed finite s and t with 0 < s < t,

|D(s)| ≤
∫ s

0
|D(x−)| |u(x)|dF (x) ≤M

∫ s

0
|u(x)|dF (x),

where M = sup0≤s≤t |D(s)|. Now feeding this estimate back into (4.6.3) yields

|D(s)| ≤M
∫ s

0

(∫ x

0
|u(y)|dF (y)

)
|u(x)|dF (x) ≤ M

2

(∫ s

0
|u(x)|dF (x)

)2

.

Evidently, this iteration may be continued and yields for general n ≥ 1

|D(s)| ≤ M

n!

(∫ s

0
|u(x)|dF (x)

)n
.

This last expression converges to zero as n→∞, so D(s) ≡ 0.

Corollary 4.6.III. Lemmas 4.6.I and 4.6.II remain true when the functions
F and G are of bounded variation on finite intervals.

Proof. For Lemma 4.6.I, use the fact that any function of bounded variation
is the difference of two monotonically increasing right-continuous functions.
For Lemma 4.6.II, observe that the argument depends only on the use of the
formula for integration by parts and the estimate, for any bounded interval
A, ∣∣∣∣ ∫

A

u(x) dF (x)
∣∣∣∣ ≤ ∫

A

|u(x)|dVF (x),

where VF is the total variation of F .

We now specialize these results to the case where F is a distribution func-
tion of a positive random variable, so F (0+) = 0, F (∞) = limx→∞ F (x) ≤ 1.
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Definition 4.6.IV. The hazard measure Q(·) associated with the distribu-
tion F on [0,∞) is the measure on [0,∞) for which

Q(dx) =
F (dx)
S(x−)

=
F (dx)

1− F (x−)
;

in integrated form, the integrated hazard function (IHF) is the function

Q(t) =
∫ t

0

dF (x)
1− F (x−)

.

In the case where F has a density f , we have simply

Q(t) =
∫ t

0
q(x) dx = − logS(t),

where q(x) = f(x)/S(x) is the hazard function and S(x) = 1 − F (x) the
survivor function of F . However, this logarithmic relation holds only in the
continuous case; in the discrete case, it must be replaced by a relation analo-
gous to (4.6.2) (Kotz and Shanbhag (1980) or Andersen et al. (1993, Theorem
II.6.6)].

Proposition 4.6.V. The IHF of a right-continuous d.f. F is monotonically
increasing and right continuous, and at each discontinuity xi of F it has a
jump of height

∆Q(xi) =
∆F (xi)
S(xi−)

≤ 1.

Conversely, any monotonically increasing right-continuous nonnegative
function Q with discontinuities of magnitude < 1, except perhaps for a final
discontinuity of size 1, can be the IHF of some d.f. F given by the inversion
formula

S(t) = 1− F (t) =
∏

0≤xi≤t

(
1−∆Q(xi)

)
exp
(
−
∫ t

0
dQc(x)

)
, (4.6.4)

where ∆Q(xi) is the jump of Q at its discontinuity xi and Qc the continuous
part of Q.

Proof. Given a d.f. F on [0,∞), observe first that when F has a jump ∆F (xi)
at the discontinuity xi, the corresponding jump in the IHF is ∆F (xi)/S(xi−)
by Definition 4.6.IV. Since ∆F (xi) = F (xi)−F (xi−) ≤ 1−F (xi−) = S(xi−)
with equality if and only if F (xi) = 1—that is, xi is a discontinuity of F and is
the supremum of the support of F—we must have ∆Q(xi) ≤ 1 with equality
possible only for such xi.

The inversion formula (4.6.4) is an immediate application of the exponential
formula. To see this, we have from Definition 4.6.IV

dF (xi) = S(xi−) dQ(xi)
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with

S(t) = 1− F (t) = 1−
∫ t

0
dF (x) = 1−

∫ t

0
S(x−) dQ(x).

Taking u(x) = −1 in (4.6.3), S(·) is the unique solution of the equation
satisfying

∫ t
0 |S(x)|dQ(x) <∞ for t <∞, so (4.6.4) holds.

Corollary 4.6.VI. The d.f. F is uniquely determined by its IHF and con-
versely.

This corollary is simply a formalization and extension of the fact that a
renewal process is determined entirely by its lifetime d.f. The fact that the
hazard measure is also the central concept in estimating the time to the next
renewal has been shown already in Example 4.6(a) which we now continue
but without any assumption of absolute continuity.

Example 4.6(a) (continued). Recall the setting leading to the density qx(y)
earlier. If the lifetime has a jump at x, then we should think of the risk as
having a δ-function component at x, the weight associated with the δ-function
being given by ∆Q(x) as above. Then, in place of the survivor function Sx(y)
given earlier, we now appeal to the corresponding modification of (4.6.4),
namely

Sx(y) =
∏

x≤xi≤x+y

(
1−∆Q(xi)

)
exp
(
−
∫ x+y

x

dQc(u)
)
.

In a Wold process, the risk has to be conditioned not only by the time since
the last event but also by the length of the most recently observed complete
interval as in the following example.

Example 4.6(b) Wold process with exponential conditional distributions (see
Exercise 4.5.8). Wold (1948) and Cox (1955) both considered processes with
Markov-dependent intervals, where the transition kernel has the form

P (x,dy) = p(x, y) dy = λ(x) exp[−λ(x)y] dy (x, y > 0),

corresponding to the assumption that, conditional on the length x of the last
interval, the current interval is exponentially distributed with parameter λ(x).

In this case, if we observe the process at time t and the length of the last
completed interval is x, the risk is constant at λ(x) until the occurrence of
the next event. As a stochastic process, the conditional risk appears as a step
function, constant over intervals, the constant for any one interval being a
function of the length of the preceding interval.

Clearly, the ideas in these two examples can be generalized to situations
where the dependence on the past extends to more than just the time since
the last event or the length of the last completed interval. Such extensions
and further examples are explored in Chapters 7 and 14.



CHAPTER 5

Finite Point Processes

The Poisson process can be generalized in many directions. We have already
discussed some consequences of relaxing the independency assumptions while
retaining those of stationarity and orderliness of a point process on the line. In
this chapter we examine generalizations in another direction, stemming from
the observation in Chapter 2 that, for a Poisson process, conditional on the
total number of points in a bounded region of time or space, the individual
points can be treated as independently and identically distributed over the
region. This prompts an alternative approach to specifying the structure of
point processes in a bounded domain or, more generally, of any point process
in which the total number of points is finite with probability 1. Such a process
is called a finite point process.

Such finite point processes arise naturally as models for populations of
animals, insects, and plants in the ecological field and as models for particle
processes in physics, which was also the context of the first general theory of
point processes given by Moyal (1962a) following earlier work by Yvon (1935),
Bogoliubov (1946), Janossy (1950), Bhabha (1950) and Ramakrishnan (1950).
More recently, spatial point processes have been extensively studied with an
emphasis on finite models. Useful reviews can be found in Ripley (1981),
Diggle (1983), Stoyan, Kendall and Mecke (1987, 1995), Baddeley and Møller
(1989), Cressie (1991), Stoyan and Stoyan (1994), Baddeley et al. (1996), and
Barndorff-Nielsen (1998), amongst others.

In this chapter, we give a somewhat informal introduction to concepts and
structure theorems for finite point processes, with a sketch of some of their
applications. In contrast to the methods of the previous two chapters, the
order properties of the real line here play no role in the discussion, and the
theory can be developed as easily for a general state space as it can for the
real line. In this sense, the present chapter serves as a precursor to the general
theory developed more systematically in Volume Two.

111
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The approach we take is first to specify the distribution of the total number
N of points, and then, givenN , to specify the joint distribution of theN points
over the region. This leads to a treatment of point process probabilities as
probability measures over the space X∪ introduced formally above Proposition
5.3.II and of the associated battery of Janossy measures, moment measures,
cumulant measures, etc., all of which are recurrent themes in the development
of the general theory.

A special feature of the treatment of finite point processes is its dependence
on combinatorial arguments. The reader may find it helpful to brush up on
the definitions of binomial and multinomial coefficients and their relation to
the number of ways of sorting a set of objects into various subsets. Closely
related to these ideas are the results collected together in Section 5.2 concern-
ing some basic tools for handling discrete distributions: factorial moments
and cumulants and their relation with probability generating functions. The
importance of this material for the theory of point processes would be hard to
overemphasize. Most of the results of this chapter, and much of the general
theory also, may be seen as extensions of the results for discrete distributions
summarized in that section.

5.1. An Elementary Example: Independently and
Identically Distributed Clusters

We start with an elementary example that may help to illustrate and moti-
vate the more general discussion. Let a random number N of particles be
independently and identically distributed (i.i.d.) over a Euclidean space X
according to some common probability measure F (·) on the Borel sets of X .
Then, given N , the number of particles in any subregion A is found by ‘bino-
mial sampling’: each particle, independently of the others, may fall in A with
probability p = F (A), so, conditional on N , the number of particles in A has
the binomial distribution

p(n;A | N) =
(
N

n

)
(F (A))n(1− F (A))N−n.

Similarly, given any finite partition A1, . . . , Ak of X , the joint distribution of
the number of particles is given by the multinomial probability

p(n1, . . . , nk;A1, . . . , Ak | N) =
(

N

n1 · · · nk

)
(F (A1))n1 . . . (F (Ak))nk .

Unconditionally, the joint distribution of the numbers N(A1), . . . , N(Ak) of
particles in A1, . . . , Ak is found by averaging over N :

Pr{N(Ai) = ni (i = 1, . . . , k)} =
∞∑
n=0

Pr{N = n} p(n1, . . . , nk;A1, . . . , Ak | n).
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The procedure just outlined is most readily carried out in terms of proba-
bility generating functions (p.g.f.s). Let PN (z) = E(zN ), and write for conve-
nience pi = F (Ai). Then, the joint p.g.f. of N(Ai) (i = 1, . . . , k) is

P (A1, . . . , Ak; z1, . . . , zk) ≡ E(zN(A1)
1 · · · zN(Ak)

k )
= PN (p1z1 + · · ·+ pkzk). (5.1.1)

More generally, for A1, . . . , Ak just a set of mutually disjoint subregions,

P (A1, . . . , Ak; z1, . . . , zk) = PN (p1z1 + · · ·+pkzk+(1−p1−· · ·−pk)); (5.1.2)

in effect, we have introduced a further subset Ak+1 = (A1∪ · · ·∪Ak)c and set
zk+1 = 1 on Ak+1.

As special cases, when N is Poisson-distributed with parameter λ, the
N(Ai) are independent Poisson random variables with parameters λF (Ai).
In this case, (5.1.1) reduces to the identity

P (A1, . . . , Ak; z1, . . . , zk) = exp

(
λ

[
k∑
i=1

zif(Ai)− 1

])

=
k∏
i=1

exp[λF (Ai)(zi − 1)].

When N has a negative binomial distribution on {0, 1, . . .} so that PN (z) =
(1 + µ(1 − z))−α for some µ, α > 0, {N(Ai)} is a set of mutually correlated
binomial random variables with joint p.g.f.

P (A1, . . . , Ak; z1, . . . , zk) =
(

1 + µ

k∑
i=1

F (Ai)(1− zi)
)−α

.

In particular, from (5.1.2), the distribution of N(Ai) itself has the p.g.f.

P (Ai; z) = [1 + µF (Ai)(1− z)]−α

and is again negative binomial with parameters µF (Ai), α.
It is not only the distributions of the N(Ai) that may be of interest but also

their moments. Consider, for example, the problem of finding the covariance
of the number of points in two complementary subsets A1, A2 = Ac1. For any
given N , we have from the binomial sampling property that

E[N(A1)N(A2) | N ] = N(N − 1)F (A1)(1−F (A1)) = N(N − 1)F (A1)F (A2).

Hence,
E(N(A1)N(A2)) = m[2]F (A1)F (A2) (5.1.3)

and
cov(N(A1), N(A2)) = c[2]F (A1)F (A2), (5.1.4)

where m[2] is the second factorial moment, and c[2] the second factorial cumu-
lant, of the total number N of points. In the Poisson case, the covariance is
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zero, and in the negative binomial case it is positive; both contrast with the
more familiar case of fixed N when the covariance is clearly negative.

Note that both the second moment and the covariance have the form of
a measure evaluated on the product set A1 × A2. This is also the case in
general and anticipates the introduction of the factorial moment and cumulant
measures in Section 5.4.

5.2. Factorial Moments, Cumulants, and Generating
Function Relations for Discrete Distributions

Factorial moments and cumulants are natural tools for handling nonnegative
integer-valued random variables, a characteristic they bequeath to their off-
spring, the factorial moment and cumulant measures, in the point process
context. We begin by recalling some basic definitions.

For any integers n and r, the factorial powers of n, written n[r], may be
defined by

n[r] =
{
n(n− 1) · · · (n− r + 1) (r = 0, . . . , n),
0 (r > n).

We then have the following definition.

Definition 5.2.I. For r = 0, 1, . . . , the rth factorial moment m[r] of the
nonnegative integer-valued random variable N is m[r] ≡ E(N [r]).

Thus, when N has probability distribution {pn} = {Pr{N = n}},

m[r] =
∞∑
n=0

n[r]pn. (5.2.1)

Consequently, when the distribution is concentrated on a finite range 0, 1, . . . ,
n0, all factorial moments of order larger than n0 are zero.

It is useful to be able to convert from factorial moments to ordinary mo-
ments and back again. The coefficients that arise in these conversions are
the Stirling numbers of the first and second kinds, defined, respectively, as
the coefficients arising in the expansion of x[r] and xr in powers or factorial
powers of x, where, by analogy with the definition of n[r],

x[r] = x(x− 1) · · · (x− r + 1)

for any real x and positive integer r. We follow the notation of David and
Barton (1962) in denoting them by Dj,r and ∆j,r.

Definition 5.2.II. The Stirling numbers of the first kind Dj,r and second
kind ∆j,r are defined by the relations

n[r] =
r∑
j=1

Dj,r(−1)r−jnj (n ≥ r) (5.2.2)
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and

nr =
r∑
j=1

∆j,rn
[j] (n ≥ r). (5.2.3)

Replacing n in (5.2.2) and (5.2.3) by the random variable N and taking
expectations, we obtain the corresponding relations between moments:

m[r] =
r∑
j=1

Dj,rmj(−1)r−j , (5.2.4)

mr ≡ E(Nr) =
r∑
j=1

∆j,rm[j]. (5.2.5)

It is clear that, for a nonnegative random variable, the rth factorial moment
is finite if and only if the ordinary rth moment is finite.

Some useful recurrence relations for the Stirling numbers are given in Ex-
ercise 5.2.1. For further properties, relation to Bernoulli numbers, and so on,
see David and Barton (1962, Chapter 15) and texts on finite differences.

The factorial moments of the random variable N are related to the Taylor
series expansion of the p.g.f.

P (z) = E(zN ) (|z| ≤ 1)

about z = 1 in much the same way as the ordinary moments arise in the ex-
pansion of the characteristic or moment generating function about the origin.

Proposition 5.2.III. For a nonnegative integer-valued random variable N
whose kth factorial moment is finite, the p.g.f. is expressible as

P (1 + η) = 1 +
k∑
r=1

m[r]η
r

r!
+ o(ηk) (5.2.6)

for all η such that |1 + η| ≤ 1. The complete Taylor series expansion of the
p.g.f.,

P (1 + η) = 1 +
∞∑
r=1

m[r]η
r

r!
, (5.2.7)

is valid for some nonzero η if and only if all moments exist and the series in
(5.2.7) has nonzero radius of convergence in η; equivalently, if and only if the
p.g.f. P (z) is analytic in a disk |z| < 1 + ε for some ε > 0. Equation (5.2.7)
then holds for |η| < ε.

Proof. To establish (5.2.6), write

(1 + η)N = 1 +
k∑
r=1

N [r]ηr

r!
+Rk(N, η) (k = 1, 2, . . .)

for remainder terms Rk(N, η) that we now investigate. For k = 0, set

R0(N, η) = (1 + η)N − 1
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and observe that |R0(N, η)| ≤ 2 under the condition of the theorem that
|1 + η| ≤ 1. For general k = 1, 2, . . . , repeated integration of R0(N, ·) shows
that ∣∣Rk(N, η)

/
ηk
∣∣ ≤ 2N [k]/k! (|1 + η| ≤ 1).

Since the left-hand side of this inequality→ 0 (η → 0) for each fixed N and the
right-hand side has finite expectation under the assumption of the theorem,
it follows by dominated convergence that E

(
Rk(N, η)

)
= o(ηk), which is the

result required.
To establish (5.2.7), consider the binomial expansion

(1 + η)N = 1 +
∞∑
r=1

N [r]ηr

r!
.

For η > 0, the finiteness of the expectation on the left is equivalent to requiring
the p.g.f. to be analytic for |z| < 1 + η. When this condition is satisfied, it
follows from Fubini’s theorem that for such η the expectation can be taken
inside the summation on the right, leading to the right-hand side of (5.2.7).

Conversely, suppose all moments exist and that the sum on the right-
hand side of (5.2.7) is at least conditionally convergent for some nonzero η0.
Then m[r]η

r
0/r! → 0 as r → ∞, and it follows from a standard power series

argument that the series in (5.2.7) is absolutely convergent for |η| < |η0|
and so defines an analytic function of η there. Since each m[r] = E(N [r]) is
nonnegative, we can now take any positive η < |η0| and use Fubini’s theorem
to reverse the argument used earlier to deduce that because (5.2.7) holds for
all 0 ≤ η ≤ |η0|, P (z), being a power series with nonnegative coefficients, has
its first singularity on the positive half-line outside |z| < 1 + |η0|.

In the sequel, we also require the version of Proposition 5.2.III in which the
remainder term is bounded by a term proportional to the (k + 1)th moment.
The proof, which is along similar lines, is left to the reader. An alternative
approach is indicated in Exercise 5.2.2.

A similar expansion holds for logP (1 + η), the coefficients of ηr/r! being
the factorial cumulants c[r] (r = 1, 2, . . .). If P (·) is analytic in a disk as below
(5.2.7), then the infinite expansion

logP (1 + η) =
∞∑
r=1

c[r]η
r

r!
(5.2.8a)

is valid, while under the more limited assumption that mk <∞, we have the
finite Taylor series expansion

logP (1 + η) =
k∑
r=1

c[r]η
r

r!
+ o(ηk) (η → 0), (5.2.8b)

valid for |1 + η| < 1; verification is left to the reader.
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The factorial cumulants are related to the factorial moments by the same
relations as hold between the ordinary cumulants and moments. The first
few relations between the ordinary cumulants cr, central moments m′

r, and
factorial moments and cumulants are useful to list as below:

c[1] = c1 = µ = m[1] , (5.2.9a)

c[2] = c2 − c1 = σ2 − µ = m[2] −m2
[1] , (5.2.9b)

c[3] = c3 − 3c2 + 2c1 = m′
3 − 3σ2 + 2µ = m[3] − 3m[2]m[1] + 2m3

[1]. (5.2.9c)

Generally, the factorial moments and cumulants provide a much simpler
description of the moment properties of a discrete distribution than do the
ordinary moments. In particular, for the Poisson distribution {pn(λ)},

m[r] = λr, c[1] = λ, c[r] = 0 (r = 2, 3, . . .).

This vanishing of the factorial cumulants of the Poisson distribution is remi-
niscent of the vanishing of the ordinary cumulants of the normal distribution
and is perhaps one indication of why the Poisson process plays such an out-
standing role in the theory of point processes.

There are in fact four expansions of the p.g.f. of possible interest, according
to whether we expand P (z) itself or its logarithm and whether the expansion is
about z = 0 or z = 1. The expansions about z = 1 yield the factorial moments
and factorial cumulants, and the expansion of P (z) about z = 0 yields the
probability distribution {pn}. This leaves the expansion of logP (z) about
z = 0, an expansion that, while rarely used, has an important interpretation
in the case of an infinitely divisible (compound Poisson) distribution. Since
the analogous expansion for the probability generating functional (p.g.fl.) of
a point process is also important, again in the context of infinite divisibility,
we now consider the last case in some detail.

Proposition 5.2.IV. If p0 > 0, the p.g.f. P (·) can be written in the form

logP (z) = −q0 +
∞∑
n=1

qnz
n (|z| < R) (5.2.10)

where p0 = e−q0 and R is the distance from the origin to the nearest zero
or singularity of P (z). When P (·) is the p.g.f. of a compound Poisson dis-
tribution, the terms qn are nonnegative and q0 =

∑∞
n=1 qn, so the sequence

{πn:n = 1, 2, . . .} ≡ {qn/q0} can be interpreted as the probability distribution
of the cluster size, given that the cluster is nonempty; in this case, (5.2.10)
can be rewritten as

logP (z) = −q0
∞∑
n=1

πn(1− zn) (|z| < R).

Proof. The structure of the compound Poisson distribution follows from an-
alysis in Chapter 2 (see Theorem 2.2.II and Exercise 2.2.2). The other remarks
are standard properties of power series expansions of analytic functions.
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Example 5.2(a) Negative binomial distribution and generating functions. To
illustrate these various expansions consider the p.g.f. of the negative binomial
distribution,

P (z) = [1 + µ(1− z)]−α (µ > 0, α > 0, |z| ≤ 1).

Putting z = 1 + η, we find

P (1 + η) = (1− µη)−α = 1 +
∞∑
r=1

(
α+ r − 1

r

)
µrηr

so that
m[r] = α(α+ 1) · · · (α+ r − 1)µr.

Taking logarithms,

logP (1 + η) = −α log(1− µη) = α

∞∑
r=1

µrηr

r
,

and hence
c[r] = (r − 1)!αµr.

For the expansions about z = 0, we have

P (z) =
1

(1 + µ)α

(
1− µz

1 + µ

)−α
=

1
(1 + µ)α

∞∑
n=0

(
α+ n− 1

n

)( µz

1 + µ

)n
,

so

pn =
(
α+ n− 1

n

)
1

(1 + µ)α
( µ

1 + µ

)n
,

and
logP (z) = −α log(1 + µ)− α log

(
1− µz

1 + µ

)
= −[α log(1 + µ)]

(
1−

∞∑
n=1

πnz
n

)
,

where πn = [n log(1 + µ)]−1[µ/(1 + µ)]n. Clearly, these {πn} constitute a
probability distribution, namely the logarithmic distribution, illustrating the
well-known fact that the negative binomial is infinitely divisible and hence
must be expressible as a compound Poisson distribution.

Corresponding to the four possible expansions referred to above, there are
twelve sets of conversion relations between the different coefficients. One of
these, the expression for factorial moments in terms of the probabilities, is a
matter of definition: what can be said about the others?

Formally, either expansion about z = 1 can be converted to an expansion
about z = 0 by a change of variable and expansion, for example, in (formally)
expressing the probabilities in terms of the factorial moments via

P (z) = 1 +
∞∑
r=1

m[r](z − 1)r

r!
;
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expanding (z − 1)r and equating coefficients of zn, we obtain

pn =
∑
r≥n

(−1)r−n
m[r]

r!

(
r

n

)
or, in the more symmetrical form,

n! pn =
∞∑
r=n

(−1)r−n
m[r]

(r − n)!
=

∞∑
r=0

(−1)r
m[n+r]

r!
. (5.2.11)

This relation may be compared with its converse

m[r] =
∞∑
n=r

n[r]pn =
∞∑
n=0

Jr+n
n!

, (5.2.12)

where Jn+r = (n + r)!Pn+r. Thus, to display the symmetry in these (for-
mal) relations to best advantage, we need to use the quantities Jn, which are
analogues of the Janossy measures to be introduced in Section 5.3.

Under what circumstances can the converse relation (5.2.11) be established
rigorously? For the derivation above to be valid, we must be able to expand
P (z) about z = 1 in a disk |z − 1| < 1 + ε for some ε > 0, requiring P (z)
itself to be analytic at all points on the line segment (−ε, 2 + ε). Since P (z)
has nonnegative coefficients, its radius of convergence is determined by the
first singularity on the positive real axis. Consequently, in order for (5.2.11)
to hold for all r = 1, 2, . . . , it is sufficient that P (z) should be analytic in the
disk |z| < 2 + ε for some ε > 0.

A finite version of (5.2.11) with remainder term is due to Fréchet (1940);
extensions are given in Takacs (1967) and Galambos (1975) (see also Daley
and Narayan, 1980). We give a simple result in the theorem below, with some
extensions left to Exercises 5.2.2–4.

Proposition 5.2.V. If the distribution {pn} has all its moments finite and
its p.g.f. P (z) is convergent in a disk |z| < 2 + ε for some ε > 0, then (5.2.11)
holds. Without assuming such analyticity, the finiteness of m[k] ensures that
for integers n = 0, 1, . . . , k − 1,

n! pn =
k−1∑
r=n

(−1)r−n
m[r]

(r − n)!
+R

(n)
k , (5.2.13a)

where
0 ≤ (−1)k−nR

(n)
k ≤ m[k]

/
(k − n)! . (5.2.13b)

If all moments are finite and for some integer n0

m[k] = o
(
(k − n0)!

)
(k →∞), (5.2.14a)

then

lim
k→∞

k∑
r=n

(−1)r−nm[r]
/

(r − n)! (5.2.14b)

exists for n = 0, 1, . . . , n0 and the formal relation (5.2.11) holds for such n.
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Proof. When P (z) is analytic for |z| < 2 + ε, the expansion

P (z) =
∞∑
r=0

m[r](z − 1)r

r!

is valid for |z − 1| < 1 + ε, within which region, and at z = 0 in particular, it
can be differentiated n times, leading at once to (5.2.11).

Under the weaker condition that m[k] < ∞, n-fold differentiation in the
definition P (z) = E(zN ) is possible for all |z| ≤ 1 for n = 1, . . . , k, leading
to P (n)(z) = E(N (n)zN−n). Now P (n)(z) is (k − n) times differentiable in
|z| ≤ 1, so the Taylor series expansion

P (n)(z) =
k−n−1∑
r=0

(z − 1)rP (n+r)(1)
r!

+
(z − 1)k−nP (k)(1 + (z − 1)ν)

(k − n)!

holds for real z in |z| ≤ 1 for some ν ≡ ν(z) in (0, 1). In particular, (5.2.13a)
results on putting z = 0 with

R
(n)
k = (−1)k−nE(N (k)(1− ν)N−k)

(k − n)!
,

from which relation the inequalities in (5.2.13b) follow. When (5.2.14) holds,
R

(n)
k → 0 (k → ∞) for each fixed n, and hence (5.2.11) holds in the sense

indicated.

Special cases of (5.2.13) give the Bonferroni inequalities (see Exercise 5.2.5).
Similar relations can be obtained between the factorial cumulants and the

quantities πn of Proposition 5.2.IV. Thus, when logP (z) is analytic in a disk
|z| < 1 + ε for some ε > 0, r-fold differentiation of (5.2.10) and then setting
z = 1 yields

c[r] =
∞∑
n=r

qnn
[r] = q0µ[r] , (5.2.15)

where µ[r] in the case of a compound Poisson process is the rth factorial
moment of the cluster-size distribution. Reversing the exercise, when logP (z)
is analytic in the disk |z| < 2 + ε, we have [see the derivation of (5.2.11)]

n! qn =
∞∑
r=n

(−1)r−n
c[r]

(r − n)!
. (5.2.16)

The most difficult relations to treat in a general form are those between the
moments and cumulants, or between the {pn} and the {qn}; these arise from
taking exponentials or logarithms of a given series and expanding it by formal
manipulation. The feature of these relations is that they involve partitions.
For given positive integers j and k with j ≤ k, we define a j-partition of k as
a partition of the set of k numbers {1, . . . , k} into j nonempty subsets.
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Let Pjk denote the collection of all such j-partitions and write T = {S1(T ),
. . . , Sj(T )} for an element of Pjk, noting that the order in which the subsets
S.(T ) are labelled or written is immaterial. Thus, for example, the collection
of sets {1, 2, 4}, {3, 5}, {6, 8}, {7} is a 4-partition of 8 and is the same as
{1, 2, 4}, {6, 8}, {7}, {3, 5}. The following lemma is basic (see e.g. Andrews,
1976); in it, |Sj(T )| denotes the number of elements in Sj(T ) ⊂ {1, . . . , k}.
Lemma 5.2.VI. Let {cj : j = 1, 2, . . .} be a sequence satisfying

∑∞
j=1 |cj |/j!

<∞. Then

exp

( ∞∑
j=1

cjz
j

j!

)
=

∞∑
k=0

dkz
k

k!
(all |z| ≤ 1), (5.2.17)

where d0 = 1 and for k = 1, 2, . . . ,

dk =
k∑
j=1

∑
T ∈Pjk

j∏
i=1

c|Si(T )| , (5.2.18)

ck =
k∑
j=1

(−1)j−1(j − 1)!
∑

T ∈Pjk

j∏
i=1

d|Si(T )| . (5.2.19)

Proof. Establishing (5.2.18) and (5.2.19) is essentially a matter of counting
terms. For (5.2.18), consider the expansion 1+Σ+Σ2/2!+ · · · of the exponen-
tial function in (5.2.17) (here, Σ =

∑∞
j=1 cjz

j/j!), and concentrate attention
on all the terms in a specified product of coefficients such as c3c22c1. Observe
first that such terms involve z to the power of the sum of the indices, here
3 + 2 + 2 + 1 = 8, and thus they contribute to the term d8. Second, if
we transfer the coefficient 1/k! of dkzk to the multiplier k! on the opposite
side, each particular term c3c

2
2c1 is then multiplied by the ratio of factorials

8!/3! 2! 2! 1! arising from the factorials associated with the cj and dk. Third,
the number of such terms obtained from expanding Σ4 equals the multinomial
coefficient 4!/1! 2! 1! , which on division by the factorial 4! from the expansion
of exp(Σ) leaves the factor 1!/1! 2! 1! . Thus, altogether the contribution of
the coefficient of c3c22c1 to d8 is 8!/{(3! 2! 2! 1!) (1! 2! 1!)}.

On the other hand, in the expression asserted for dk in (5.2.18), we have
to look at 4-partitions of 8 into subsets of sizes 3, 2, 2, 1. The number of such
subsets is just 8!/3! 2! 2! 1! , which must be divided by 2! because there are
two subsets of size 2. Thus, the coefficient of c3c22c1 is of the form implied by
(5.2.18).

Arguing this way in general establishes (5.2.18), and a similar kind of ar-
gument leads to (5.2.19).

We remark that the advantage of working with j-partitions, rather than
with additive partitions as in David and Barton (1962), is that the counting
procedure automatically takes into account repeated terms without requiring
explicit notation for the number of repetitions; such notation would make
(5.2.18) and (5.2.19) appear much more cumbersome. Examples of full ex-
pansions are given in Exercises 5.2.6–8.
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Corollary 5.2.VII.
(a) Factorial moments m[k] and factorial cumulants c[k] are related as in

(5.2.18) and (5.2.19) via the substitutions cj = c[j] and dk = m[k].
(b) In equation (5.2.10), the probabilities pn and qn are also related as at

(5.2.18) and (5.2.19) with cj = j! qj/(− log p0) and dk = k! pk/p0.

Exercises and Complements to Section 5.2
5.2.1 Recurrence relations for Stirling numbers. Use n[r+1] = (n − r)n[r] to show

that

∆j,r+1 = j∆j,r + ∆j−1,r, ∆1r = 1 (r ≥ 1), ∆j0 = 0 (j ≥ 1),

Dj,r+1 = rDj,r +Dj−1,r, D0r = 0 (r ≥ 1), D11 = 1, Dj1 = 0 (j ≥ 2).

5.2.2 Show that when P (z) is any p.g.f. with finite first moment P ′(1), the function
(1 −P (z))/P ′(1)(1 − z) is also a p.g.f. Use this fact in an induction argument
to show that (see Proposition 5.2.III) when m[k] = P (k)(1) < ∞, the function
mk(z) in the expansion

P (z) = 1 +
k−1∑
r=1

(z − 1)rm[r]

r!
+

(z − 1)kmk(z)
k!

equals m[k] times a p.g.f. Since mk(z) = m[k] + o(1) as z → 1 through val-
ues |z| ≤ 1, (5.2.6) follows, as well as the alternative version with remainder
bounded by m[k]. Equations (5.2.13) can also be derived by n-fold differenti-
ation of an expansion to k − n terms (e.g. Daley and Narayan, 1980).

5.2.3 Let the nonnegative integer-valued r.v.N have all factorial momentsm[r] finite
and lim supr→∞(m[r]/r!)1/r = 1/ε for some ε > 0. Show that the p.g.f. P (z)
of N has radius of convergence 1+ε, and hence deduce that the moments m[r]

determine the distribution of N uniquely. Relate P (z) to a moment generating
function and deduce that 1+ ε = exp ε′, where 1/ε′ ≡ lim supr→∞(mr/r!)1/r.

5.2.4 (Continuation). By using an analytic continuation technique (see Takacs,
1965), show that when ε > 0 and for any nonnegative z > ε−2 − 1,

pn =
∞∑
r=n

(
r

n

)
1

(1 + z)r+1

r∑
s=n

(−1)s−n
(
r − n

s− n

)
zr−s

m[s]

s!
.

5.2.5 Bonferroni inequalities. Let the r.v. N count the number of occurrences
amongst a given set of ν events A1, . . . , Aν . Show that

Sr ≡
∑
(r)

Pr(Ai ∩Aj ∩ · · ·) = E(N (r))/r! ,

where the summation
∑

(r) extends over all
(
ν
r

)
distinct subsets {i, j, . . .} of

size r from the index set {1, . . . , ν}. [Hint: Using indicator r.v.s, write

N (r) = r!
∑
(r)

I(Ai ∩Aj ∩ · · ·),
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where the term r! arises from the r! ordered subsets of {1, . . . , ν} yielding the
same (unordered) subset {i, j, . . .} containing r indices.] Deduce from (5.2.13)
the Bonferroni inequalities

0 ≤ Sn −
(
n+ 1

1

)
Sn+1 + · · · +

(
n+ k

k

)
Sn+k − pn ≤

(
n+ k + 1
k + 1

)
Sn+k+1 ,

where k is an even integer (see e.g. Moran, 1968, pp. 25–31).

5.2.6 For given positive integers j and k with j ≤ k, define P(j, k) = {positive
integers {r1, . . . , rp} and {π1, . . . , πp} such that

∑p

i=1 πi = j,
∑p

i=1 πiri = k}
= set of all j-partitions of k. Write the series (5.2.7) in the form P = 1 + Σ
so that

logP (z) = Σ − Σ2/2 + Σ3/3 − · · · ,
and expand the series Σn as a multinomial expansion. By equating coefficients
of zk, show formally that the factorial cumulants in (5.2.8) are given by

c[k] = k!
k∑
j=1

(−1)j−1(j − 1)!
∑

P(j,k)

1
π1!

(m[r1]

r1!

)π1

· · · 1
πp!

(m[rp]

rp!

)πp

.

5.2.7 Apply Lemma 5.2.VI to show that

c[4] = m[4] − 4m[3]m[1] − 3m2
[2] + 12m[2]m

2
[1] − 6m4

[1],

m[4] = c[4] + 4c[3]c[1] + 3c2[2] + 6c[2]c
2
[1] + c4[1] .

5.2.8 Investigate the use of Lemma 5.2.VI in deriving explicit expressions for prob-
abilities of
(i) the ‘doubly Poisson’ compound Poisson distribution with p.g.f. P (z) =

exp{−µ[1 − exp(−λ(1 − z))]};
(ii) the Hermite distribution with p.g.f. P (z) = exp(az + bz2) for appropriate

constants a and b (see Milne and Westcott, 1993).

5.3. The General Finite Point Process:
Definitions and Distributions

We now drop any special assumptions and suppose only that the following
conditions hold concerning a finite point process.

Conditions 5.3.I. (a) The points are located in a complete separable metric
space (c.s.m.s.) X , as, for example, X = R

d.
(b) A distribution {pn} (n = 0, 1, . . .) is given determining the total number
of points in the population, with

∑∞
n=0 pn = 1.

(c) For each integer n ≥ 1, a probability distribution Πn(·) is given on the
Borel sets of X (n) ≡ X × · · · × X , and it determines the joint distribution of
the positions of the points of the process, given that their total number is n.
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Such a definition is both natural and powerful. In particular, it provides
a constructive definition that could be used to simulate the process: first,
generate a random number N according to the distribution {pn} (and note
that Pr{0 ≤ N < ∞} = 1), and then, supposing N = n and excepting the
case n = 0 in which case there is nothing else to do, generate a random vector
(x1, . . . , xn) according to the distribution Πn(·).

At this stage, the distinction between ordered and unordered sets of points
should be clarified. In talking of stochastic point processes, we make the tacit
assumption that we are dealing with unordered sets of points: points play the
role of locations at which a given set of particles might be found. We talk of
the probability of finding a given number k of points in a set A: we do not
give names to the individual points and ask for the probability of finding k
specified individuals within the set A. Nevertheless, this latter approach is
quite possible (indeed, natural) in contexts where the points refer to individual
particles, animals, plants, and so on. Moreover, it is actually this latter point
of view that is implicit in Conditions 5.3.I, for as yet there is nothing in them
to prevent x1, say—that is, the first point or particle named—from taking its
place preferentially in some part of the space, leaving the other particles to
distribute themselves elsewhere.

To be consistent with treating point processes as a theory of unordered sets,
we stipulate that the distributions Πn(·) should give equal weight to all n!
permutations of the coordinates (x1, . . . , xn), i.e. Πn(·) should be symmetric.
If this is not already the case in Condition 5.3.I(c), it is easily achieved by
introducing the symmetrized form for any partition (A1, . . . , An) of X ,

Πsym
n (A1 × · · · ×An) =

1
n!

∑
perm

Πn(Ai1 × · · · ×Ain), (5.3.1)

where the summation
∑

perm is taken over all n! permutations (i1, . . . , in)
of the integers (1, . . . , n) and the normalizing factor 1/n! ensures that the
resulting measure still has total mass unity.

An alternative notation, which has some advantages in simplifying combi-
natorial formulae, utilizes the nonprobability measures

Jn(A1 × · · · ×An) = pn
∑
perm

Πn(Ai1 × · · · ×Ain)

= n! pnΠsym
n (A1 × · · · ×An).

(5.3.2)

We follow Srinivasan (1969) in referring to these as Janossy measures after
their introduction by Janossy (1950) in the context of particle showers. By
contrast, Yvon (1935), Bogoliubov (1946) and Bhabha (1950) worked with
the form (5.3.1), as have also Macchi (1975) and co-workers, who refer to
quantities such as Πsym

n (·) in (5.3.1) as exclusion probabilities.
An important feature of Janossy measures is their simple interpretation

when derivatives exist. If X = R
d and jn(x1, . . . , xn) denotes the density of
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Jn(·) with respect to Lebesgue measure on (Rd)(n) with xi �= xj for i �= j,
then

jn(x1, . . . , xn) dx1 · · ·dxn = Pr

{ there are exactly n points in the
process, one in each of the n distinct

infinitesimal regions (xi, xi + dxi)

}
.

This interpretation gives the Janossy densities a fundamental role in the struc-
tural description and likelihood analysis of finite point processes. Thus, they
appear as likelihoods in Chapter 7, where they play a key role in the study
of spatial point patterns (see also Chapter 15 and references there) and also
in pseudolikelihoods. They are well adapted to describing the behaviour on
observational regions, which, being finite, are typically bounded.

Example 5.3(a) I.i.d. clusters (continued from Section 5.1). In this case,
X = R

d and, assuming F (A) =
∫
A
f(x) dx for some density function f(·), the

joint density function for the ordered sequence of n points at x1, . . . , xn is

πn(x1, . . . , xn) = f(x1) · · · f(xn),

which is already in symmetric form. Here

jn(x1, . . . , xn) = pnn! f(x1) · · · f(xn),

and it is jn(· · ·), not πn(· · ·), that gives the probability density of finding one
particle at each of the n points (x1, . . . , xn), the factorial term giving the
number of ways the particles can be allocated to these locations.

Example 5.3(b) Finite renewal processes and random walks. Suppose X =
R

1 and that, given N = n, the points of the process are determined by the
successive points S1, . . . , Sn of a simple renewal process for which the common
distribution of the lifetimes Sj − Sj−1 (where S0 ≡ 0 and j = 1, . . . , n) has a
density function f(·). Then

πn(S1, . . . , Sn) =
n∏
j=1

f(Sj − Sj−1). (5.3.3)

In moving to the symmetrized form, some care is needed. For any x1, . . . ,
xn, we have, formally,

πsym
n (x1, . . . , xn) =

1
n!

∑
perm

f(xi1)f(xi2 − xi1) · · · f(xin − xin−1).

Let x(1), . . . , x(n) denote the set {x1, . . . , xn} in ascending order. Then, at
least one term in each product in

∑
perm will vanish (since f(x) = 0 for x < 0)

unless we already have x1, . . . , xn ordered; that is, xj = x(j) for j = 1, . . . , n.
Hence,

πsym
n (x1, . . . , xn) =

1
n!
f(x(1))f(x(2) − x(1)) · · · f(x(n) − x(n−1)). (5.3.4)
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Comparing (5.3.3) and (5.3.4), 1/n! in the latter is seemingly a discrepant
factor. The reconciliation lies in the fact that (5.3.3) vanishes outside the
hyperoctant x1 < x2 < · · · < xn, whereas (5.3.4) repeats itself symmetrically
in all n! hyperoctants.

Finally, the Janossy densities are given by

jn(x1, . . . , xn) = pn f(x(1))f(x(2) − x(1)) · · · f(x(n) − x(n−1)), (5.3.5a)

where as before pn is the probability that the process contains just n points.
Again it is to be noted that (5.3.3) vanishes outside the first hyperoctant,
whereas (5.3.5) gives positive measure to all hyperoctants.

Once the unidirectional character of each step is lost, these simplifications
do not occur. What is then available for a general random walk is confined
to the forms (5.3.3) and the corresponding expression

jn(x1, . . . , xn) = pn
∑
perm

f(xi1)f(xi2 − xi1) · · · f(xin − xin−1). (5.3.5b)

The simplest renewal example occurs when f has an exponential density.
The joint density (5.3.3) then reduces to

πn(x1, . . . , xn) =
{
λn exp(−λxn) (0 ≤ x1 ≤ xn),
0 otherwise,

or in terms of (5.3.5),
jn(x1, . . . , xn) = pnλ

ne−λx(n) .

Remarkably, the joint distribution depends only on the position of the extreme
value x(n); given this value, the other points are distributed uniformly over
(0, x(n)).

The simplest example of a symmetric random walk is probably that for
which the individual steps are normally distributed N(0, 1). The successive
Si are then the partial sums of a sequence of independent normal variates

Si =
i∑

j=1

Zj

and for any given n are therefore jointly normally distributed with zero mean
vector and covariance matrix having elements

σij = min(i, j) (1 ≤ i, j ≤ n).

No dramatic simplifications seem possible, but some further details are given
in Exercise 5.3.1.

Example 5.3(c) Gibbs processes: processes generated by interaction po-
tentials. A fundamental class of point processes arising in statistical physics
is described by means of forces acting on and between particles. The total
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potential energy corresponding to a given configuration of particles is assumed
to be decomposable into terms representing the interactions between the par-
ticles taken in pairs, triples, and so on; first-order terms representing the
potential energies of the individual particles due to the action of an external
force field may also be included. This leads to a representation of the total
potential energy for a configuration of n particles at x1, . . . , xn by a series of
the form

U(x1, . . . , xn) =
n∑
r=1

∑
1≤i1<···<ir≤n

ψr(xi1 , . . . xir ), (5.3.6)

where ψ(·) is the rth-order interaction potential. Frequently, it is supposed
that only the first- and second-order terms need be included, so that the
process is determined by the point pair potentials, and

U(x1, . . . , xn) =
n∑
i=1

ψ1(xi) +
n−1∑
i=1

n∑
j=i+1

ψ2(xi, xj). (5.3.7)

It is then one of the fundamental principles of statistical mechanics that in
equilibrium the probability density of a particular configuration is inversely
proportional to the exponential of the potential energy. In terms of Janossy
densities, this means that

jn(x1, . . . , xn) = C(θ) exp[−θU(x1, . . . , xn)] (5.3.8)

for some constant of proportionality C(θ) and parameter θ related to the
temperature of the system. The normalizing constant is referred to as the
partition function. The major difficulty in handling processes of this type lies
in expressing the partition function as a function of θ (or, indeed, of any other
parameters that may occur in the description of the system).

It is important to note that for finite point processes for which the Janossy
densities exist, there is a converse to equation (5.3.8) where the densities jn(·)
are expressed in terms of the interaction potentials ψr(·) via the function U(·).
Specifically, Exercise 5.3.7 describes ψk(·) in terms of jr(·) (r = 1, . . . , k).

In fact, two slightly different situations may be considered. In the first of
these, the canonical ensemble, the number n of particles is regarded as fixed
and the normalizing constant is chosen to satisfy

1
C(θ)

=
∫

X (n)
exp[−θU(x1, . . . , xn)] dx1 · · · dxn.

In the second, the grand canonical ensemble, both the number of particles
and their locations are regarded as variable, and the partition function has to
be chosen to satisfy (5.3.9) below.

Here we examine two special cases; further discussion is given around Ex-
amples 7.1(c)–(f).
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(i) No interactions (ideal gas). Here,

jn(x1, . . . , xn) = C(θ) exp
(
− θ

n∑
i=1

ψ(xi)
)

= C(θ)
n∏
i=1

exp[−θψ(xi)].

Integrating over (x1, . . . , xn) ∈ X (n) and summing, using (5.3.9), we obtain

1 = C(θ)
∞∑
n=0

[Λ(θ)]n

n!
= C(θ)eΛ(θ),

setting j0 = J0 = C(θ) and Λ(θ) =
∫

X e−θψ(x) dx. Thus, C(θ) = e−Λ(θ) and
the process is just an inhomogeneous Poisson process with intensity e−θψ(x).
(ii) Repulsive interactions. Consider next the case of a homogeneous process in
which the potential is specified entirely by the pairwise interactions ψ2(x, y),
which are assumed to be a function φ(r) of the distance r = |x− y| between
the pair of points. A large variety of special forms have been considered
for the function φ(·) both in the statistical mechanics literature (e.g. Ruelle,
1969; Preston, 1976) and more recently as models for spatial point processes
in other contexts (see e.g. Ripley, 1977; Ogata and Tanemura, 1984). Typical
examples include

φ1(r) = − log(1− e−(r/σ)2),
φ2(r) = (σ/|r|)n (n = 4, 6, etc.),
φ3(r) =∞ or 0 as r ≤ or > σ.

The function φ1(·) represents relatively weak repulsive forces, even for r near
zero, and it is therefore described as a ‘soft-core’ model. φ3(·) corresponds to
the ‘hard-core’ model; every point pair has a separation > σ, and no other
interaction occurs. The second model is of intermediate type, approximating
the behaviour of the hard-core model for large n. None of these models is easy
to handle analytically, and special expansion techniques have been developed
to approximate the partition functions.

For the subsequent discussions, we use mainly the Janossy measures. In
this formulation, the normalization condition

∑
pn = 1 takes the form

∞∑
n=0

Jn(X (n))
n!

= 1 (5.3.9)

since we may interpret J0(X (0)) = p0 and, for n ≥ 1, we have

Jn(X (n)) = pn
∑
perm

Πn(X (n)) = pn n! .

It is clear that from any family of symmetric measures Jn(·) satisfying
(5.3.9), we can construct a probability distribution {pn} and a set of symmet-
ric probability measures {Πsym

n (·)} satisfying Conditions 5.3.I, and conversely.
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Either specification is equivalent to specifying a global probability measure
P on the Borel sets A of the countable union (with X (0) interpreted as an
isolated point)

X∪ = X (0) ∪ X (1) ∪ X (2) ∪ · · · ; (5.3.10)

Moyal (1962a) takes (X∪,P) as the canonical probability space of a finite
point process. Given such a measure P, the measure pnΠsym

n , or equivalently,
(n!)−1Jn, appears as the restriction of P to the component X (n). The situa-
tion is summarized in the following proposition.

Proposition 5.3.II. Let X be a complete separable metric space, and let
B(n)

X be the product σ-field on X (n)i, with the added convention that the set
X (0) denotes an ideal point such that X (0) × X = X × X (0) = X . Then,
the following specifications are equivalent, and each suffices to define a finite
point process on X :
(i) a probability distribution {pn} on the nonnegative integers and a family

of symmetric probability distributions Πsym
n (·) on B(n)

X , n ≥ 1;

(ii) a family of nonnegative symmetric measures Jn(·) on B(n)
X , n ≥ 1, satis-

fying the normalization condition (5.3.9) and with J0(X (0)) = p0;
(iii) a symmetric probability measure P on the symmetric Borel sets of the

countable union in (5.3.10).

There is one point of principle to be noted here concerning the canonical
choice of state space for a finite point process. To be consistent with treating
a point process as a set of unordered points, a realization with, say, k points
should be thought of not as a point in X (k) but as a point in the quotient space
of X (k) with respect to the group of permutations amongst the k coordinates.
For example, when X = R and k = 2, then in place of all pairs (x1, x2), with
(x1, x2) and (x2, x1) being treated as equivalent, we should consider some
representation of the quotient space such as the set {(x1, x2):x1 ≤ x2}. The
difficulty with this approach in general is that it is often hard to find a conve-
nient concrete representation of the quotient space (consider for example the
case just cited with R replaced by the unit circle or sphere), with the atten-
dant problems of visualizing the results and bringing geometric intuition to
bear. We have therefore preferred the redundant representation, which allows
a distinction between the points but then gives all permutations amongst the
labelling of the points equal weight in the measure. It must be borne in mind
that there is then a many–one relation between the points in the space X∪

and the set of all totally finite counting measures.
Another way of treating the same problem is to introduce the σ-algebra of

symmetric sets in X (k), that is, the sets invariant under permutations of the
coordinate axes. A symmetric set in X∪ is a set whose projections onto X (k)

are symmetric for each positive integer k.
Then, any event defined on the point process represents a symmetric set

in X∪, and thus the natural σ-algebra to use in discussing point process
properties is this σ-algebra of symmetric sets. We do not emphasize this
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approach because our main development in Chapter 9 is given in terms of
counting measures; we merely refer the reader seeking details to Moyal (1962a)
and Macchi (1975) (see also Exercises 5.3.4–6).

Now let us turn to the problem of expressing in terms of Janossy mea-
sures (or one of their equivalents) the probability distributions of the random
variables N(Ai). If (A1, . . . , Ak) represents a finite partition of X , the prob-
ability of finding exactly ni points in Ai (i = 1, . . . , k) can be written, with
n1 + · · ·+ nk = n, as

Pk(A1, . . . , Ak; n1, . . . , nk) =
Jn(A(n1)

1 × · · · ×A(nk)
k )

n1! · · · nk!

= pn

(
n

n1 · · · nk

)
Πsym
n (A(n1)

1 × · · · ×A(nk)
k ), (5.3.11)

where the multinomial coefficient can be interpreted as the number of ways
of grouping the n points so that ni lie in Ai (i = 1, . . . , k).

It is important in (5.3.11) both that the sets Ai are disjoint and that they
have union X (i.e. they are a partition of X ). For any i for which ni = 0, the
corresponding term is omitted from the right-hand side.

From (5.3.11), it follows in particular that the probability of finding n
points in A, irrespective of the number in its complement Ac, is given by

n!P1(A;n) =
∞∑
r=0

Jn+r(A(n) × (Ac))(r))
r!

. (5.3.12)

Similarly, if A1, . . . , Ak are any k disjoint Borel sets, C = (A1∪· · ·∪Ak)c, and
n = n1 + · · ·+nk, the probability of finding just ni points in Ai, i = 1, . . . , k,
is given by

n1! · · · nk!Pk(A1, . . . , Ak; n1, . . . , nk) =
∞∑
r=0

Jn+r(A
(n1)
1 × · · · ×A(nk)

k × C(r))
r!

.

(5.3.13)
These probabilities are in fact the joint distributions of the random vari-

ables N(Ai), i = 1, . . . , k. The fact that they do form a consistent set of
finite-dimensional (fidi) distributions is implicit in their derivation, but it can
also be verified directly, as we show following the discussion of such conditions
in Chapter 9.

An alternative approach, following Moyal (1962a), starts from the obser-
vation that each realization can be represented as a random vector Y ∈ X (n)

for some n ≥ 0. Any such vector defines a counting measure on X , through

N(A) = #{i: yi ∈ A},

where the yi are the components of the random vector Y . The random vector
thus gives rise to a mapping from X (n) into the space N#

X of all counting
measures on X . It is easy to see that this mapping is measurable so it defines
a point process (see Chapter 9). This being true for every n, the whole
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process is a point process, and since (5.3.13) are its fidi distributions, they are
necessarily consistent. As Moyal pointed out, this approach to the existence
of finite point processes can be extended to more general cases by considering
the restrictions of the process to an increasing family of Borel sets (spheres,
say) chosen so that they expand to fill the whole space but with probability
1 have only a finite number of points in each. The main difficulty with this
approach from our point of view is that it does not extend readily to random
measures, which we require for their own sake and for applications in later
chapters.

We conclude this section with a lemma that will play a useful role in sim-
plifying the relations amongst various measures introduced in the sequel. It
is needed in particular in checking that the distributions defined by (5.3.13)
satisfy the consistency conditions of Chapter 9.

Lemma 5.3.III. Let A be a Borel subset of X and S a symmetric measure
defined on X (n) for some n > 0. Then, for any partition {A1, . . . , Ak} of A,

S(A(n)) =
∑(

n

j1 · · · jk

)
S(A(j1)

1 × · · · ×A(jk)
k ), (5.3.14)

where the summation extends over all nonnegative integers j1, . . . , jk for which
j1 + · · ·+ jk = n.

Proof. Equation (5.3.14) expresses the fact that the partitioning of A in-
duces a partitioning of A(n) into kn subsets, which are grouped together into
classes that are identified by vectors (j1, . . . , jk): within any given class, each
constituent subset has Ai appearing as a coordinate or ‘edge’ ji times. The
symmetry of S implies that all subsets in the same class have the same S
measure; hence, (5.3.14) follows.

Exercises and Complements to Section 5.3
5.3.1 [see Example 5.3(b)]. For a finite random walk with normally distributed

N(0, 1) steps, show that

πsym
2 (x, y) =

(e−x2/2 + e−y2/2)e−(x−y)2/2

4π
and

πsym
3 (x, y, z) =

f(x, y, z) + f(y, z, x) + f(z, x, y)
12π(2π)1/2

,

where f(x, y, z) = e−(x2+(y−z)2)/2(e−(y−x)2/2 + e−(z−x)2/2).

5.3.2 Check Proposition 5.3.II in detail.

5.3.3 Show that, by a suitable choice of metric, X ∪ in (5.3.10) becomes a c.s.m.s.
[Recall the assumption, made in Condition 5.3.I(a), that X is a c.s.m.s.]

5.3.4 Let A(k) denote the k-fold product A × · · · × A. Show that a symmetric
measure on the Borel sets of X (2) is determined by its values on sets of the
form A(2) but that the corresponding statement for X (k) with k ≥ 3 is false.
[Hint: Consider first X = {1, 2} and k = 2, 3.]
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5.3.5 (Continuation). Let B(k)
sym be the smallest σ-algebra containing the sets A(k)

for Borel subsets A of X . Show that B(k)
sym consists of all symmetric Borel

subsets of X (k) and that any symmetric measure µ on B(k) is completely
determined by its values on B(k)

sym. Show also that a symmetric measure µ on
B(k) is completely determined by integrals of the form∫

X (k)
ζ(x1) · · · ζ(xk)µ(dx1 × · · · × dxk)

for functions ζ in the class U of Definition 5.5.I.

5.3.6 Let X (n)
0 denote the quotient space X (n)/Π(n), where Π(n) is the permutation

group over the coordinates of a point in X (n). Prove that there is a one-to-one
correspondence between measures on the Borel subsets of X (n)

0 and symmetric
measures on the Borel subsets of X (n). [Macchi (1975) uses

⋃∞
n=0 X (n)

0 in place
of X ∪ in (5.3.10) as the sample space for finite point processes.]

5.3.7 Let {jk(·): k = 1, 2, . . .} be a family of positive Janossy densities for an a.s.
finite point process. Define functions ψ1(x) = − log j1(x),

ψk(x1, . . . , xk) = − log jk(x1, . . . , xk) −
k−1∑
r=1

∑
1≤i1<···<ir≤k

ψr(xi1 , . . . , xir ).

Show that {jk(·)} thereby defines recursively a unique family of interaction
potentials for a Gibbs process [see Example 5.3(c), especially (5.3.8)].

5.3.8 Let f(·) be a bounded or nonnegative functional of an a.s. finite point process
with Janossy measures Jn(·). Show that

E[f(N)] =
∞∑
n=0

1
n!

∫
X (n)

f(δx1 + · · · + δxn) Jn(dx1 × · · · × dxn).

5.4. Moment Measures and Product Densities

We now investigate the moment structure of finite point processes, extending
to counting measures the notions of ordinary and factorial moments and cu-
mulants developed for nonnegative integer-valued r.v.s in Section 5.2. In fact,
because we require a general point process to be finite a.s. on bounded sets,
the definitions can be extended almost immediately to the general case (these
extensions are treated in Chapter 9).

Suppose then that the total population has finite kth moment µk =
E
(
[N(X )]k

)
for some k = 1, 2, . . . . Then, for any Borel set A ∈ BX , de-

fine
Mk(A(k)) = E

(
[N(A)]k

)
, (5.4.1)

where we choose to regard the left-hand side as the value on the product
set A(k) of a set function defined on the product σ-field B(k)

X in X (k). In
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particular, if the total population has finite mean µ1 = E[N(X )], we can
define the expectation measure M(·) by

M(A) ≡M1(A) = E[N(A)] (A ∈ BX ). (5.4.2)

Here it is clear from Fubini’s theorem that M(·) inherits countable additivity
from N(·) so that it does in fact define a measure on BX .

For k > 1, we can extend the definition of Mk to arbitrary rectangle sets
of the form

A
(k1)
1 × · · · ×A(kr)

r ,

where {k1, · · · , kr} is a partition of k (so kr ≥ 1 and k1 + · · · + kr = k) and
the Ai are disjoint sets of BX , by setting

Mk(A(k1)
1 × · · · ×A(kr)

r ) = E
(
[N(A1)]k1 · · · [N(Ar)]kr

)
. (5.4.3)

It is not difficult to check thatMk is countably additive on these k-dimensional
rectangle sets and hence can be extended to a measure on the Borel sets B(k)

X .
In fact, Mk can be regarded as the expectation measure of a point process
on X (k): the point process consists of all k-tuples (allowing repetitions and
distinguishing the order in this k-tuple) of points from the original realization;
that is, it consists of the k-fold product N (k) of N with itself. Thus, Mk gives
the expected number of such k-tuples in arbitrary sets from B(k)

X . Since N (k)

is a symmetric measure on X (k), so too is its expectation measure Mk. We
call Mk the kth moment measure of N .

Similarly, we can introduce the kth factorial moment measure M[k]. Here,
M[1] = M1 = M , and for k > 1 the ordinary powers inside the expectation in
(5.4.3) are replaced by factorial powers: with Ai and ki as in (5.4.3), we set

M[k](A
(k1)
1 × · · · ×A(kr)

r ) = E
(
[N(A1)][k1] · · · [N(Ar)][kr]). (5.4.4)

As for Mk, the set function on the left-hand side of this defining relation is
countably additive on rectangle sets in X (k) and can be interpreted as the
expectation measure of a certain point process in X (k). In this case, the
realizations of the new process consist of all k-tuples of distinct points from
the original process, still distinguishing the order within the k-tuple but not
allowing repetitions. (Note that if the original process N has multiple points,
each such point is to be enumerated according to its multiplicity: for example,
a double point of N should be regarded as two distinct points having the
same coordinates when constructing the k-tuples.) Then M[k](A) represents
the expected number of such k-tuples falling in A ∈ B(k)

X .

Proposition 5.4.I. If µk = E([N(X )]k) < ∞, the set functions Mk and
M[k] defined by (5.4.3) and (5.4.4) are countably additive on rectangle sets
and have unique extensions to symmetric measures Mk and M[k], respectively,
on B(k)

X .
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Using the identities (5.2.2) and (5.2.3) that relate ordinary and factorial
powers, it is possible to write down explicit expressions for Mk on certain sets
in terms of {M[j], j = 1, . . . , k} and for M[k] in terms of {Mj , j = 1, . . . , k}.
Directly from (5.2.5), we have the important special case

E
(
[N(X )]k

)
= Mk(A(k)) =

k∑
j=1

∆j,kM[j](A(j)). (5.4.5)

Such relations are particularly useful when the factorial moment measures are
absolutely continuous so that the right-hand side of (5.4.5) can be expressed
as a sum of integrals of the product densities introduced below Lemma 5.4.III.
Note also relations such as

M[2](A×B) = E[N(A)N(B)]− E[N(A ∩B)]
= M2(A×B)−M(A ∩B) (A, B ∈ BX ) (5.4.6)

(see Exercises 5.4.1–6 for a more systematic exposition of such relations).
Applications of these moment measures appear in subsequent chapters;

here we explore their relation to the Janossy measures and their interpretation
in terms of product densities.

Since (5.4.4) is simply the factorial moment of a fidi distribution, which can
be expressed in terms of the Janossy measures by means of (5.3.11), we can
obtain an expression for M[k](·) in terms of Janossy measures. To examine
this expression, we return to the case where A1, . . . , Ar is a partition of X .
Assuming E([N(X )][k]) < ∞, we have directly from the definitions, when
k1 + · · ·+ kr = k, that

M[k](A
(k1)
1 × · · · ×A(kr)

r ) =
∑

ji≥ki, i=1,...,r

j
[k1]
1 · · · j[kr]

r Pr(A1, . . . , Ar; j1, . . . , jr)

=
∑
ji≥ki

Jj1+···+jr (A(j1)
1 × · · · ×A(jr)

r )∏r
i=1(ji − ki)!

.

To simplify the last sum, put ni = ji − ki and group together the terms for
which n1 + · · ·+ nr = n. Setting k = k1 + · · ·+ kr, we obtain

M[k](A
(k1)
1 × · · · ×A(kr)

r )

=
∞∑
n=0

1
n!

∑∑
ni=n

(
n

n1 · · ·nr

)
Jk+n(A(k1+n1)

1 × · · · ×A(kr+nr)
r ).

The inner sum can be reduced by Lemma 5.3.III, taking A = X and defining
S by

S(B) = Jk+n(A(k1)
1 × · · · ×A(kr)

r ×B) (B ∈ B(n)
X ),

thereby yielding the equation

M[k](A
(k1)
1 × · · · ×A(kr)

r ) =
∞∑
n=0

Jk+n(A(k1)
1 × · · · ×A(kr)

r ×X (n))
n!

.
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Using the countable additivity of both sides, this extends to the following
elegant generalization of (5.2.12),

Mk(B) =
∞∑
n=0

Jk+n(B ×X (n))
n!

(all B ∈ B(k)
X ). (5.4.7)

To obtain the inverse relation, suppose that all factorial moments µ[k] of
N(X ) exist and that the p.g.f.

P (1 + η) =
∞∑
k=0

µ[k]η
k

k!
(5.4.8)

is convergent in a disk |η| < 1 + ε for some ε > 0 [equivalently, that P (z) =
E(zN(X )) is analytic in some disk |z| < 2+ε]. Then, the inverse relation (5.2.1)
can be applied to yield, with the same notation as in (5.4.7) and following a
parallel route,

Jn(A(k1)
1 × · · · ×A(kr)

r ) =
∞∑
k=0

(−1)k
M[n+k](A

(k1)
1 × · · · ×A(kr)

r ×X (k))
k!

=
∑
ji≥ki

r∏
i=1

(−1)ji−ki
M[j1+···+jr](A

(j1)
1 × · · · ×A(jr)

r )
(ji − ki)!

so that for general B ∈ B(n)
X ,

Jn(B) =
∞∑
k=0

(−1)k
M[n+k](B ×X (k))

k!
. (5.4.9)

These results may be summarized for reference in the following theorem.

Theorem 5.4.II. If the total population size has finite kth moment, then
the kth factorial moment measure is defined and finite and can be represented
in terms of the Janossy measures by (5.4.7). Conversely, if all moments are
finite and for some ε > 0 the p.g.f. (5.4.8) is convergent for |η| < 1 + ε, then
the Janossy measures can be represented in terms of the factorial moment
measures by (5.4.9).

Example 5.4(a) Avoidance function. To illustrate the application of Theorem
5.4.II, consider the set function

P0(A) ≡ Pr{N(A) = 0} = P1(A; 0);

that is, the probability of finding no points in a given subset A of X , or,
equivalently, the probability that the support of N avoids A. Taking n = 0
in (5.4.9) and restricting X to A itself, we obtain immediately

P0(A) = J0(A) =
∞∑
k=0

(−1)k
M[k](A(k))

k!
. (5.4.10)
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An important feature of (5.4.10) is that it is not necessary to know anything
about the nature of the moment measure outside A to determine the probabil-
ity. In the case X = R and A equal to the interval (0, t], the result in (5.4.10)
gives the survivor function for the forward recurrence time in terms of the
moment measures on (0, t]. Of course, from another point of view, (5.4.10) is
just a special case of equation (5.2.11) giving the probabilities of a discrete
distribution in terms of the factorial moments.

We now turn and consider densities for the moment measures, assuming
X to be a real Euclidean space (or well-behaved subset thereof). Recall the
standard result, which follows from Fubini’s theorem, that if a totally finite
measure can be represented as the superposition of a finite or countably in-
finite family of component measures, then it is absolutely continuous with
respect to a given measure if and only if each component is absolutely con-
tinuous, the density of the superposition being represented a.e. by the sum of
the densities. Applied to the representation (5.4.7), this yields immediately
the following lemma.

Lemma 5.4.III. If the kth factorial moment measureM[k](·) exists, then it is
absolutely continuous if and only if the Janossy measures Jn(·) are absolutely
continuous for all n ≥ k, in which case the densities m[k](·) and jn(·) are
related by the equations, for k = 1, 2, . . . ,

m[k](x1, . . . , xk) =
∞∑
n=0

1
n!

∫
X
· · ·
∫

X
jk+n(x1, . . . , xk, y1, . . . , yn) dy1 · · · dyn.

The inverse relation follows in a similar way: if all the factorial moment
measures exist and are absolutely continuous, and if the series (5.4.9) is ab-
solutely convergent, then the corresponding Janossy measure is absolutely
continuous with density given by

jn(x1, . . . , xn) =
∞∑
k=0

(−1)k

k!

∫
X
· · ·
∫

X
mn+k(x1, . . . , xn, y1, . . . , yk) dy1· · ·dyk.

(5.4.11)
Historically, the introduction of factorial moment densities, also referred to

as product densities in Bhabha (1950) and Ramakrishnan (1950) and as co-
incidence densities in Macchi (1975), considerably preceded the more general
treatment as above using factorial moment measures. This is easily under-
stood in view of the simple physical interpretation of the densities: equations
(5.4.7) and (5.3.9) imply that if m[k](x1, . . . , xk) is bounded in a neighbour-
hood of (x1, . . . , xk), then we can write

m[k](x1, . . . , xk) dx1 · · · dxk =
∞∑
n=0

Jk+n(dx1 × · · · × dxk ×X (n))
n!

= Pr
{

one particle located in each of the
infinitesimal subsets dxi (i = 1, . . . , k)

}
, (5.4.12)

where dxi denotes both the infinitesimal set (xi, xi + dxi) and its Lebesgue
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measure. This interpretation may be contrasted with that for the density

jk(x1, . . . , xk) dx1 · · · dxk

= Pr
{

exactly k points in realization, one in each
subset dxi (i = 1, . . . , k), and none elsewhere

}
. (5.4.13)

From an experimental point of view, (5.4.12) can be estimated from the results
of k observations at specific times or places, whereas the Janossy measure
requires indefinitely many observations to determine the exact (total) number
of occurrences. For this reason, the densities (5.4.12) are in principle amenable
to experimental determination (through ‘coincidence’ experiments, hence the
name coincidence densities) in a way that Janossy measures are not, at least
in the context of counting particles. However, as Macchi (1975) has stressed,
the Janossy measures, and hence the joint distributions, can be determined
by the converse relations (5.4.9) and (5.4.11).

Moment measures also have the important feature, in common with rela-
tions such as (5.4.10), that they are global in character, in contrast to the
local character of the Janossy measures. We mean by this that the form of
the moment measures is not influenced by the nature of the region of obser-
vations: if two observation regions overlap, the moment measures coincide
over their common region. On the other hand, the Janossy measures depend
critically on the observation regions: just as the number of points observed
in the region depends on its size and shape, so also the Janossy measures
are exactly tailored to the particular region. This feature lends further im-
portance to the converse relations (5.4.9) and (5.4.11): knowing the moment
densities, the Janossy densities for any observation region A can be calculated
by taking X = A in (5.4.11), a remark that continues to have force even when
the point process is not totally finite over the whole of X . Thus, the one set
of moment measures suffices to determine the Janossy measures for as many
observation regions as one cares to nominate. When the region of interest is
indeed a bounded subset A of the space X where the point process is defined,
we introduce the following definition.

Definition 5.4.IV (Local Janossy Measures and Densities). Given any
bounded Borel set A, the Janossy measures localized to A are the measures
Jn(· | A) (n = 1, 2, . . .) satisfying, for locations xi ∈ A (i = 1, . . . , n),

Jn(dx1 × · · ·dxn | A) = Pr
{

exactly n points in A at
locations dx1, . . . ,dxn

}
.

When these measures have densities, they define the local Janossy densities.

Such local functions have particular importance when the process is no
longer a.s. finite-valued on the whole space X . For these local functions the
identities in (5.4.9) and (5.4.11) continue to hold with X (k) replaced by A(k)
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(and the local functions on the respective left-hand sides), as for example

jn(x1, . . . , xn | A)

=
∞∑
k=0

(−1)k

k!

∫
A

· · ·
∫
A

mn+k(x1, . . . , xn, y1, . . . , yk) dy1· · ·dyk. (5.4.14)

What is remarkable about such a relation is that by merely changing the
range of integration of a function defined globally, we can recover the local
probabilistic structure when all the moments exist [see Example 5.5(b)].

Local Janossy densities jn(x1, . . . , xn | A) feature prominently in the dis-
cussion of point process likelihoods in Section 7.1.

The existence of densities is closely linked to the concept of orderliness, or
more properly, simplicity, in the sense of Chapter 3, that with probability 1
there are no coincidences amongst the points. Suppose on the contrary that,
for some population size n, the probability that two points coincide is positive.
In terms of the measure Jn(·), the necessary and sufficient condition for this
probability to be positive is that Jn(·) should allot nonzero mass to at least
one (and hence all) of the diagonal sets {xi = xj}, where xi is a point in the
ith coordinate space. Thus, we have the following proposition.

Proposition 5.4.V. (a) A necessary and sufficient condition for a point
process to be simple is that, for all n = 1, 2, . . . , the associated Janossy
measure Jn(·) allots zero mass to the ‘diagonals’ {xi = xj}.
(b) When X = R

d, the process is simple if for all such n the Janossy measures
have densities jn(·) with respect to (nd)-dimensional Lebesgue measure.

It is more convenient to frame an analogous condition in terms of the
moment measures (assuming they exist). From the preceding result and the
representation (5.4.7), we have immediately the following proposition.

Proposition 5.4.VI. Suppose the second factorial moment measure M[2](·)
exists. Then, a necessary and sufficient condition for the point process to be
simple is that M[2](·) allots zero mass to the ‘diagonal’ set {xi = xj}. In
particular, for X = R

d, the process is simple whenever M[2](·) has a density
m[2](·) with respect to 2d-dimensional Lebesgue measure.

An alternative approach to this proposition can be given in the context
of random measures: for the stationary case, see Proposition 8.1.IV and its
Corollary 8.1.V.

In some applications, we may wish to verify that a given family of densities
constitutes the product densities of some point process. The following result
gives a simple sufficient condition, which, however, is far from necessary (see
remarks after the proof).

Proposition 5.4.VII. Let m[k](·) on X (k) (k = 1, 2, . . .) be a family of sym-
metric nonnegative functions with finite total integrals

µ[k] =
∫

X (k)
m[k](x) dx,
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and suppose that for some ε > 0 the series
∑∞
k=1 µ[k]z

k is convergent for
|z| < 1 + ε. Then, a necessary and sufficient condition for the family {m[k](·)}
to be factorial moment densities of a finite point process is that the integrals
in (5.4.11) should be nonnegative for every n = 1, 2, . . . and every vector
x = (x1, . . . , xn). These factorial moment densities then determine the process
uniquely.

Proof. The integrals are convergent by assumption and clearly define a fam-
ily of nonnegative symmetric functions. The only other requirement needed
for them to form a set of Janossy functions is the normalization condition
(5.4.9). On integrating (5.4.11) over x1, . . . , xn, the required condition is seen
to be equivalent to demanding that if we define {pn} by

N ! pn =
∞∑
k=0

(−1)k
µ[k+n]

k!
,

then the {pn} should sum to unity. But this reduces to the condition µ[0] =
m[0] = 1, which may be assumed without loss of generality.

Remarks. The constraint that
∑∞
k=1 µ[k]/k! converges for |z| < 1+ε is stronger

than is needed: it is enough that lim supr→∞(µ[r]/r!)1/r < ∞, but a more
complicated definition of pn may then be needed (see Exercises 5.4.3–4). Also,
for the product densities to define a point process that is not necessarily a
finite point process, it is enough for the result to hold (with either the given or
modified conditions on {µ[r]}) with the state space X replaced by a sequence
{An} of bounded sets for which An ↑ X as n→∞.

Example 5.4(b) Moment densities of a renewal process (Macchi, 1971a). It
is well known (see Chapter 4) that the moment properties of a renewal pro-
cess are completely specified by the renewal function. Although the renewal
process is not a finite point process, the machinery developed in this section
can be carried over to give a particularly succinct formulation of this result
in terms of the factorial moment densities, where for ease of exposition it is
assumed that the renewal density exists, u(·) say. In these terms, and assum-
ing stationarity, the renewal density is just a multiple of the second-moment
density since for s < t and with m = M[1]((0, 1]),

m[2](s, t) dsdt = Pr{renewals in (s, s+ ds) and (t, t+ dt)}
= mds u(t− s) dt.

Similarly, exploiting the regenerative property, we have for t1 < · · · < tk that

m[k](t1, . . . , tk) dt1· · ·dtk = Pr{renewals in (ti, ti + dti), 1 ≤ i ≤ k}
= mdt1 u(t2 − t1) dt2 · · ·u(tk − tk−1) dtk. (5.4.15)

Thus, when the moment densities exist, a necessary condition for a point
process to be a stationary renewal process is that the densities be expressible
in the product form (5.4.15).
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This condition is also sufficient. To see this, assume (5.4.15) holds for
some constant m and some function u(·) for each k = 1, 2, . . . . From the
cases k = 1, 2, first the constant m and then the function u(·) are identified
in terms of first- and second-moment densities. From (5.4.11), we can obtain
an expression for the density of the interval distribution by taking X = [0, t]
and requiring exactly two events, one at 0 and one at t, thus yielding for the
lifetime density f(·) the relation

mf(t) = m
∞∑
k=0

(−1)k

k!

∫
· · ·
∫

[0,t](k)

u(x1)u(x2 − x1) · · ·u(t− xk) dx1 · · · dxk

= m

∞∑
k=0

(−1)k
∫
· · ·
∫

0<x1<···<xk<t

u(x1)u(x2 − x1) · · ·u(t− xk) dx1 · · · dxk

This identifies f(·) as the solution to an inverse of the renewal equation in the
form f = u−f ∗u. Finally, uniqueness follows from the fact that the moment
measures, which coincide with those constructed from a renewal process with
this density f(·), determine the process uniquely.

Example 5.4(c) The fermion process (Macchi, 1975). The renewal process
of the previous example generally produces a spacing or ‘antibunching’ effect,
at least if its lifetime distribution has its coefficient of variation less than
unity. Such behaviour is characteristic of fermions (e.g. electrons) as distinct
from bosons (e.g. photons) in the elementary particle context. Benard and
Macchi (1973) and Macchi (1975) developed a remarkable dual theory for
both types of particles. This theory, while derived in the the first instance
from considerations of quantum mechanics, leads to a dual family of point
processes of considerable general interest. The first family coincides with the
family of renewal processes under suitable conditions; we describe a typical
member shortly. The dual family is described in Example 6.2(b) and consists
of a doubly stochastic processes.

A striking application concerns the zeros of the Riemann zeta function.
Coram and Diaconis (2002) provide statistical tests that illustrate aspects of
a considerable literature on close connections between blocks of n ‘adjacent’
zeros and eigenvalues of random unitary matrices in the unitary group Un
furnished with Haar measure, for suitably chosen n. This statistical work
includes comparisons of spacings (between adjacent zeros and eigenvalues),
traces (of blocks of n zeros and eigenvalues of random elements of Un), and
correlation studies of points in intervals. D.E. Littlewood’s immanants (e.g.
Littlewood, 1950, Chapter 6), of which permanents and determinants as lin-
ear forms of all n-fold products over n points of the kernel C(·, ·) below are
extremes, can be viewed as interpolating between boson and fermion point
processes, respectively, via the group characters (Diaconis and Evans, 2001).
Given C(·, ·) and a character group, the immanant, if positive, is proportional
to the Janossy density of a simple point process with n points.
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Our state space X is a general d-dimensional Euclidean space, and we use
A to denote a closed bounded subset (e.g. a rectangle) within X . Let C(x, y)
be a covariance function defined on X so that with

C̃

x1 · · · xk
y1 · · · yk

 = det


C(x1, y1) · · · C(x1, yk)

...
. . .

...
C(xk, y1) · · · C(xk, yk)

 ,

the symmetric determinant

C̃

x1 · · · xk
x1 · · · xk

 ≥ 0.

In general, C(·, ·) may be complex-valued and therefore Hermitian so that
C(x, y) = C(x, y), but for ease of writing we assume here that C(·, ·) is real.

It follows from nonnegativity that for λ > 0 the function

m[k](x1, . . . , xk) = λk C̃

x1 · · · xk
x1 · · · xk

 (5.4.16)

is at least a possible candidate for the kth factorial moment density of some
orderly point process on X . To decide whether this is a legitimate choice,
we need to investigate whether the corresponding Janossy densities, given
formally by (5.4.11), are well defined and nonnegative.

In fact, the Janossy densities have a representation parallel to (5.4.16) in
terms of the solution Rλ(x, y) of the resolvent equation

Rλ(x, y)− λ
∫
A

C(x, y)Rλ(u, y) du = C(x, y). (5.4.17)

It is well known in the theory of integral equations (see e.g. Pogorzelski, 1966,
p. 47) that Rλ(x, y) can be expressed as a series in λ with terms involving
(5.4.16); specifically, λRλ(x, y) equals

1
d(λ)

[
λC(x, y) + λ

∞∑
j=1

(−λ)j

j!

∫
A

· · ·
∫
A

C̃

x x1 · · · xj
y x1 · · · xj

 dx1 · · · dxj

]
,

where

d(λ) = 1 +
∞∑
j=1

(−λ)j

j!

∫
A

· · ·
∫
A

C̃

u1 · · · uj
u1 · · · uj

du1 · · ·duj

is the Fredholm determinant associated with equation (5.4.17). More gener-
ally, the k × k ‘Fredholm minor’ associated with this equation, obtained by
replacing C by Rλ in the basic determinant (5.4.16), is given by

λkR̃λ

x1 · · · xk
y1 · · · yk


=

1
d(λ)

[
λk C̃

x1 · · · xk
y1 · · · yk


+ λk

∞∑
j=1

(−1)j

j!

∫
A

· · ·
∫
A

C̃

x1 · · · xk u1 · · · uj
y1 · · · yk u1 · · · uj

du1 · · ·duj

]
(5.4.18)
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(see e.g. Pogorzelski, 1966, p. 52). Now (5.4.18) has the same form as (5.4.11)
if we identify the factorial moment densities by (5.4.16) and the Janossy mea-
sures by

jn(x1, . . . , xk) = λkd(λ) R̃λ
x1 · · · xk
x1 · · · xk

 . (5.4.19)

The convergence of (5.4.18) is ensured by the general theory, using the Hada-
mard inequality to bound the determinants appearing therein. Thus, only the
nonnegativity of the functions (5.4.19) needs to be checked. While these func-
tions need not be nonnegative in general, an appropriate sufficient condition
can easily be stated in terms of λ and the eigenvalues of (5.4.17); that is, the
values of λ for which the homogeneous equation corresponding to (5.4.17) [i.e.
(5.4.17) with the right-hand side replaced by zero] admits a nontrivial solu-
tion. In fact, the determinant R̃λ in (5.4.19) is nonnegative if the function Rλ
is itself a covariance function, for which it suffices that the eigenvalues µi(λ)
of Rλ be nonnegative. Now these eigenvalues are related to those of C by the
equation

µi(λ) = λi − λ,

so a necessary and sufficient condition for Rλ to be a covariance function is
that λ < min{λi}, in which case d(λ) is also nonnegative. It is now easy
to check that this condition is necessary and sufficient for the existence of a
well-defined point process with factorial moments and Janossy densities given
by (5.4.16) and (5.4.19).

A great virtue of this model is that it provides a rather general model for
‘antibunching’ with repulsive rather than attractive points for which moment
and probability densities can be given explicitly, or at least be computed
numerically, and is not restricted to the state space R.

Further details of the process, including a discussion of the corresponding
discrete process in which the integral operator is replaced by a matrix, are
given in Exercises 5.4.7–10.

Exercises and Complements to Section 5.4
5.4.1 (see Proposition 5.4.I). Show that for disjoint sets A and B,

M[2]((A ∪B)(2)) = M[2](A
(2)) +M[2](B

(2)) + 2M[2](A×B).

5.4.2 Establish the analogues below of (5.4.6), where
∑∗ denotes summation over

all distinct terms of like kind:

M [3](A1 ×A2 ×A3) = E[N(A1)N(A2)N(A3)]

−∑∗E[N(A1)N(A2 ∩A3)] + 2E[N(A1 ∩A2 ∩A3)],

M[4](A1 ×A2 ×A3 ×A4)

= E[N(A1)N(A2)N(A3)N(A4)]

−∑∗E[N(A1)N(A2)N(A3 ∩A4)] +
∑∗E[N(A1 ∩A2)N(A3 ∩A4)]

+ 2
∑∗E[N(A1)N(A2 ∩A3 ∩A4)] − 6E[N(A1 ∩A2 ∩A3 ∩A4)].
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5.4.3 (Continuation). Find the generalization for M[k](A1 × · · · ×Ak) for general k,
and discuss the relation to the Stirling numbersDj,k. Observe that the relation
is essentially one between the ordinary product counting measure N (k) and the
modified product counting measure consisting of distinct ordered k-tuplets.

5.4.4 Show that M3(dx1 × dx2 × dx3) equals

M[3](dx1 ×dx2 ×dx3)+
∑∗

M[2](dx1 ×dx2)δ(x2, x3)+M[1](dx1)δ(x1, x2, x3),

where δ(x1, x2) and δ(x1, x2, x3) vanish outside the hyperplane x1 = x2 and
x1 = x2 = x3, respectively, and

∑∗ is as in Exercise 5.4.2.

5.4.5 (Continuation). Show that in general

Mk(dx1 × · · · × dxk) =
k∑
j=1

∑
V

M[j]

(
j∏
i=1

dyi(V)

)
δ(V),

where the inner sum is taken over all partitions V of the k coordinates into j
nonempty subsets, the yi(V) constitute an arbitrary selection of one coordinate
from each subset, and δ(V) is a δ-function that equals zero unless equality holds
among the coordinates in each of the nonempty subsets of V (see Krickeberg,
1974).

5.4.6 (Continuation). Show that if a point process is simple, the moment measure
Mk completely determines Mj for j ≤ k. [Hint: Consider the representation
of Mk in terms of the factorial moment measures M[j] with j ≤ k. If the
process is simple, each diagonal term for Mk can be identified with one of the
M[j].] Provide a counterexample showing that for point processes that are not
simple, two distinct processes may have the same M2 but different M1 (see
Krickeberg, 1974, Theorem 3, Corollary 3).

5.4.7 Discrete fermion process. As an analogue of Example 5.4(c), let X be a discrete
space of K points labelled 1, . . . ,K, and for k ≥ 1 set

mk(i1, . . . , ik) = E[N{i1} · · ·N{ik}] ≡ λkC̃

 i1 · · · ik
i1 · · · ik

 ,

where C̃ = (cij) is a k×k covariance matrix. Observe that the determinant on
the right vanishes if an index is repeated (and hence, in particular, if k > K),
so that the function mk(·) is nonzero only for combinations of distinct indices.

Define

P (1 + η1, . . . , 1 + ηK) = 1 +
K∑
k=1

λk
∑
comb

C̃

 i1 · · · ik
i1 · · · ik

ηi1 · · · ηik

= det(I + λDηC),

where Dη = diag(η1, . . . , ηK), C is the K ×K matrix with elements cij , and∑
comb is taken over all distinct combinations of k indices from K. Show that,

with zi = 1 + ηi, P (·) is a proper multivariate p.g.f. [Hint: Use the identity

(I + λDzRλ)(I − λC) = I + λDηC,
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where Rλ = C(I − λC)−1, leading to P (z1, . . . , zK) = d(λ) det(I + λDzRλ),
where d(λ) = det(I − λC) and thus

jk(i1, . . . , ik) = d(λ)λkR̃λ

 i1 · · · ik
i1 · · · ik


= Pr{N{i1} = · · · = N{ik} = 1, N{j} = 0 (j /∈ {i1, . . . , ik}) }.

Check that this expression is nonnegative provided 0 < λ < min{λi}, where
the λi solve d(λ) = 0.]

5.4.8 (Continuation). Show that the process of Exercise 5.4.7 satisfies the following:
(i) The process is simple, i.e. Pr{N{j} = 0 or 1 for j = 1, . . . ,K} = 1;
(ii) E[N{i}N{j}] = λ2(ciicjj − |cij |2) < λ2ciicjj = E[N{i}] E[N{j}], and

hence the values are negatively correlated for all i, j;
(iii) N(X ), the total number of points on X , has p.g.f. d(λ(z − 1));
(iv) Pr{N(X ) = 0} = d(λ).
For a dual model, see Exercises 6.2.3–5.

5.4.9 Derive the results asserted in Example 5.4(c) by a passage to the limit from
the discrete analogue described in the preceding exercises assuming C(x, y)
is bounded and continuous on A and imitating the proofs of the Fredholm
theory approach to integral equations. For a dual model, see Exercise 6.2.6.

5.4.10 For the special case of Example 5.4(c) with X = R and C(x, y) = ρ e−|x−y|/L,
the fermion process reduces to a stationary renewal process with interval
distributions having density

f(x) =
2ρ√

1 − 2ρL
e−x/L sinh [(x/L)

√
1 − 2ρL ]

(see Macchi, 1971b). More generally, a reduction to a renewal process is
possible whenever

C(x, y)C(y, z) = C(x, z)C(y, y) (x ≤ y ≤ z).

For a dual model, see Exercise 6.2.7.

5.5. Generating Functionals and Their Expansions

The factorial moment densities are closely linked, as are the factorial moments
in the univariate and finite multivariate cases, to an appropriate version of
the generating function concept. In the point process context, the appropri-
ate generalization is the probability generating functional, which we introduce
as follows. Let ζ(·) be any bounded complex-valued Borel measurable func-
tion; then, for a realization {Xi: i = 1, . . . , N} of a finite point process, the
(random) product

∏N
i=1 ζ(xi) is well defined, and on imposing the further

requirement that |ζ(x)| ≤ 1 (all x ∈ X ), its expectation will exist and be
finite.

When p.g.fl.s return in Chapter 9, they are defined first much as here and
then extended.
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Definition 5.5.I. Let U :X �→ C be the class of complex-valued Borel meas-
urable functions satisfying the condition |ζ(x)| ≤ 1. Then, for a finite point
process, the probability generating functional (p.g.fl.) is defined for ζ ∈ U by

G[ζ] = E

(
N∏
i=1

ζ(xi)

)
, (5.5.1)

where the product is zero if N > 0 and ζ(xi) = 0 for some i, and is unity if
N = 0.

We can get some feel for the p.g.fl. by taking A1, . . . , Ar to be a measurable
partition of X and setting

ζ(x) =
r∑
i=1

ziIAi(x), (5.5.2)

where IA(x) is the indicator function of the set A and |zi| ≤ 1 for i = 1, . . . , r.
The function ζ in (5.5.2) belongs to U , and substitution in (5.5.1) leads to

G

[
r∑
i=1

ziIAi(·)
]

= E

(
r∏
i=1

z
N(Ai)
i

)
,

which is just the multivariate p.g.f. of the number of points in the sets of the
given partition. The case of a general function ζ ∈ U may be regarded as a
limiting form of this result, where every infinitesimal region dx is treated as a
separate set in a grand partition of X , and ζ(x) is the coefficient (z value) of
the corresponding indicator function in (5.5.2). In this way, the p.g.fl. provides
a portmanteau description of the p.g.f. of all possible finite or infinite families
of counting r.v.s N(·). As in the case of an ordinary discrete distribution,
the p.g.fl. provides a useful way of summarizing and illuminating the complex
combinatorial results associated with the moments and a convenient formal
tool for deriving relations between them.

In further analogy to the univariate case, there are two useful expansions
of the p.g.fl., the first about ζ ≡ 0 and the second about ζ ≡ 1. The first
results directly from the definition (5.5.1) when the expectation is written
out in terms of the elements {(pn,Πn)} of the point process or, equivalently,
in terms of the Janossy measures Jn(·) [see Conditions 5.3.I and equation
(5.3.11)]. For all ζ ∈ U , we have

G[ζ] = p0 +
∞∑
n=1

pn

∫
X (n)

ζ(x1) · · · ζ(xn) Πn(dx1 × · · · × dxn) (5.5.3a)

= J0 +
∞∑
n=1

1
n!

∫
X (n)

ζ(x1) · · · ζ(xn) Jn(dx1 × · · · × dxn). (5.5.3b)

The second expansion can be derived as a generalization from the case where
ζ has the particular form (5.5.2) when the p.g.fl. reduces to a multivariate
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p.g.f., and the expansion can be expressed in terms of the multivariate factorial
moments. Assuming as in (5.4.8) that the series

∑∞
k=0 µ[k]z

k is convergent for
|z| < ε for some ε > 0 and expressing the factorial moments of the counting
r.v.s in terms of the factorial moment measures (5.4.4), we obtain

G

[
r∑
i=1

ziIAi

]
= G

[
1 +

r∑
i=1

(zi − 1)IAi

]

= 1 +
∞∑
k=1

1
k!

∑
k1+···+kr=k

(
k

k1 · · · kr

) r∏
i=1

(zi − 1)kiM[k](A
(k1)
1 × · · · ×A(kr)

r ).

The final sum here can be identified with the integral with respect to M[k](·)
of the product

∏r
i=1(zi − 1)kiIAi(xj) so we have

G[1 + η] = 1 +
∞∑
k=1

1
k!

∫
X (k)

η(x1) · · · η(xk)M[k](dx1 × · · · × dxk), (5.5.4)

where η(x) =
∑r
i=1(zi − 1)IAi

(x) in the special case considered. Since any
Borel measurable function can be approximated by simple functions such
as η, the general result follows by familiar continuity arguments, using the
dominated convergence theorem and the assumed convergence of

∑
µ[k]z

k in
|z| < ε, supposing that |η(x)| < ε for x ∈ X .

By taking logarithms of the expansions in (5.5.3) and (5.5.4), we can obtain
expansions analogous to those in (5.2.10) and (5.2.8). The first of these takes
the form, under the condition that J0 > 0,

logG[ζ] = −K0 +
∞∑
n=1

1
n!

∫
X (n)

ζ(x1) · · · ζ(xn)Kn(dx1 × · · · × dxn), (5.5.5)

where J0 = exp(−K0) and the Kn(·) (n = 1, 2, . . .) are symmetric signed mea-
sures, which, following Bol’shakov (1969), we call Khinchin measures. This
expansion is important when the point process is infinitely divisible and can
be given a cluster interpretation generalizing that of the compound Poisson
distribution (see Section 6.3). Here we note that in this case the measures
Kn(·)/K0 can be identified as the Janossy measures of the process charac-
terizing the clusters, so K0 =

∑∞
n=1Kn(X (n))/n! , and the expansion can be

rewritten in the form

logG[ζ] =
∞∑
n=1

1
n!

∫
X (n)

[ζ(x1) · · · ζ(xn)− 1]Kn(dx1 × · · · × dxn). (5.5.6)

Taking logarithms of the expansions (5.5.4) leads to a development in terms
of factorial cumulant measures C[k], namely

logG[1 + η] =
∞∑
k=1

1
k!

∫
X (k)

η(x1) · · · η(xk)C[k](dx1 × · · · × dxk). (5.5.7)



5.5. Generating Functionals and Their Expansions 147

This expansion converges under the same conditions as (5.5.4) itself, namely
that the factorial moments µ[k] of the total population size should satisfy∑
µ[k]ε

k <∞ for some ε > 0 or, equivalently, that the p.g.f. of the total popu-
lation size should be analytic within a disk |z| < 1 + ε. Note that the scope
of application of these results can be increased considerably by recalling that
X itself can be deliberately restricted to a subspace such as a finite interval
or rectangle of the original space in which the process may not even be finite.

Relations between the factorial cumulant measures and factorial moment
measures can be derived from the expansions (5.5.4) and (5.5.7) by formal
substitution or by recalling that the measures appearing in those expansions
are symmetric: without this restriction, they are not uniquely defined by
integral representations such as (5.5.7). For example, by comparing the linear
and quadratic terms of ζ, we have∫

ζ(x1)C[1](dx1) =
∫
ζ(x1)M[1](dx1), (5.5.8a)∫

X (2)
ζ(x1)ζ(x2)C[2](dx1 × dx2) =∫

X (2)
ζ(x1)ζ(x2)M[2](dx1 × dx2)−

∫
X
ζ(x1)M[1](dx1)

∫
X
ζ(x2)M[1](dx2),

(5.5.8b)

which can be abbreviated to

C[1](dx1) = M[1](dx1), (5.5.8c)
C[2](dx1 × dx2) = M[2](dx1 × dx2)−M[1](dx1)M[1](dx2). (5.5.8d)

The latter statement follows because any Borel measure on X (2) is determined
by its values on rectangles A×B, which in the case of a symmetric measure
may be taken to be squares A×A for which the indicator functions have the
form ζ(x1)ζ(x2). In the sequel, we repeatedly use such infinitesimal notation
to represent equality of measures on product spaces. Using this notation,
the general relation between C[k] and the factorial moment measures M[j] for
j ≤ k is most conveniently written in the form, analogous to (5.2.19),

C[k](dx1 × · · · × dxk)

=
k∑
j=1

(−1)j−1(j − 1)!
∑

T ∈Pjk

j∏
i=1

M[|Si(T )|](dxi1 × · · · × dxi,|Si(T )|). (5.5.9)

To check that (5.5.9) holds, apply Lemma 5.2.VI to the expansions (5.5.4) for
the p.g.fl. and (5.5.7) for its logarithm. Note that in (5.5.9), unlike (5.2.19),
here we must take explicit note of the elements xi1, . . . , xi,|Si(T )| of each con-
stituent set Si(T ) in each partition T in Pjk.
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In practice, it is convenient to group together those partitions T in Pjk
that have common numbers of elements in their subsets: using

∑∗ to denote
summation over such groups, (5.5.9) then yields, for example when k = 4,

C[4](dx1 × · · · × dx4) = M[4](dx1 × · · · × dx4)
−
∑∗

M[1](dx1)M[3](dx2 × dx3 × dx4)
−
∑∗

M[2](dx1 × dx2)M[2](dx3 × dx4)
+ 2
∑∗

M[1](dx1)M[1](dx2)M[2](dx3 × dx4)
− 6M[1](dx1) · · ·M[1](dx4). (5.5.10)

Here, the first two
∑∗ terms come from P24, with four terms in the former sum

and three terms in the latter, while the other
∑∗ term comes from P34 and

has six terms. This expression then compares immediately with the relation
in Exercise 5.2.7.

Inverse relations can be derived in the same way and take the form

M[k](dx1 × · · · × dxk) =
k∑
j=1

∑
T ∈Pjk

j∏
i=1

C[|Si(T )|](dxi1 × · · · × dxi,|Si(T )|).

(5.5.11)
Just as with integer-valued r.v.s, expansions such as (5.4.9) and (5.5.11)

can in principle be combined to provide expressions for the Janossy measures
in terms of the factorial cumulant measures and vice versa. While they may
appear to be too clumsy to be of any great practical value, when one or more of
the entities concerned has a relatively simple structure, as occurs for example
with the Poisson process, they can in fact provide a usable theoretical tool
(see e.g. Proposition 7.1.III). Similar comments apply to the relations between
the Khinchin measures and the factorial moment measures.

For ease of reference, we give at the end of this section a summary of the
various expansions of the p.g.fl. G[·] of an a.s. finite point process N , together
with the corresponding relations between the associated families of measures.
First, we illustrate uses of the p.g.fl. in three examples; for the third of these,
concerning branching processes, it is convenient to present here a range of
results needed later in the book.

Example 5.5(a) I.i.d. clusters [continued from Section 5.1 and Example
5.3(a)]. Returning to our initial example, we see that equation (5.1.1) for
the joint p.g.f. of this example is a special case of the general form for the
p.g.fl.

G[ζ] = PN

( ∫
X ζ(x)F (dx)

)
, (5.5.12)

where as before PN (·) is a p.g.f. of the cluster size and F (·) is the distribution
of the individual cluster members about the origin.

The case where PN (·) has the compound Poisson form (see Theorem 2.2.II)

PN (z) = e−λ[1−Π(z)]
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and Π(·) is the p.g.f. of the compounding distribution, is of interest. Expand-
ing logG[ζ], we have

logG[ζ] = λ

[
Π
(∫

X ζ(x)F (dx)
)
− 1
]

= λ

∞∑
n=1

πn

[(∫
X
ζ(x)F (dx)

)n
− 1
]
;

hence, K0 = λ and for n = 1, 2, . . . ,

Kn(dx1 × · · · × dxn) = λπnn!F (dx1) · · ·F (dxn).

This can be compared with the form for the Janossy measures for which
J0 = e−λ and for n = 1, 2, . . . ,

Jn(dx1 × · · · × dxn) = πnn!F (dx1) · · ·F (dxn),

the interpretation being as follows. The process can be regarded as the super-
position of ν i.i.d. nonempty subclusters, where ν has a Poisson distribution
with mean λ, and for each subcluster, Kn(dx1 × · · · × dxn)/K0 is the prob-
ability that the subcluster consists of n points and that they are located at
{x1, . . . , xn}. The Janossy measure yields as Jn(dx1 × · · · × dxn) the prob-
ability that the superposition of the ν subclusters results in n points in all,
with these points being located at {x1, . . . , xn}.

In this particular case, the measures Jn(·) and Kn(·) for n = 1, 2, . . . differ
only by a scale factor that depends on n: this is a consequence of the i.i.d.
nature of the locations of the points. In the more complex examples studied
in Chapters 6 and 10, this no longer need hold [see also Example 7.1(e)].

Example 5.5(b) P.g.fl. for the local process on A. Let V(A) denote the space
of all measurable functions h on A satisfying 0 ≤ h ≤ 1, and for h ∈ V(A)
extend h to all X by putting h∗(x) = h(x)IA(x). Then, the p.g.fl. GA[h] of the
local process on A is defined in terms of the global p.g.fl. G by the equation

GA[h] = G[1− IA + h∗] (h ∈ V(A)). (5.5.13)

This representation follows immediately from the interpretation of the p.g.fl.
as the expectation

GA[h] = E

[ ∏
xi∈A

h(xi)

]
= E

[ ∏
xi∈X

[1− IA(xi) + h∗(xi)]

]
.

Thus, the local Janossy measures can be obtained from an expansion of the
p.g.fl. about the function 1− IA(·) rather than about 0. Specifically,

GA[ρh] = G[1− IA + ρh∗]

= p0(A) +
∞∑
n=1

ρn

n!

∫
A(n)

h(x1) · · ·h(xn) Jn(dx1 × · · · × dxn | A).

(5.5.14)
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A similar comment applies to the Khinchin measures arising from the ex-
pansion of the log p.g.fl. We can introduce local Khinchin measures, Kn(· | A)
say, via the expansion [see equation (5.5.5)] of logGA[ρh] as

logG[1− IA + ρh∗]

= −K0(A)−
∞∑
n=1

ρn

n!

∫
A(n)

h(x1) · · ·h(xn)Kn(dx1 × · · · × dxn | A),

(5.5.15)
where p0(A) = exp[−K0(A)].

Example 5.5(c) General branching processes; multiplicative population
chains. This basic model stimulated much of the early discussion of gener-
ating functionals and moment measures (see e.g. Bartlett and Kendall, 1951;
Moyal, 1962a, b) and may be described as follows. A population evolves in
discrete time or generations t = 0, 1, . . . . The members of each generation
are characterized by both their total number and their locations in the state
space X in such a way that the population consisting of the tth generation can
be described by a finite point process on X . The fundamental multiplicative
property of the process expresses the fact that the population at the (t+ 1)th
generation is built up as the sum or, more properly, the superposition of the
contributing processes representing the offspring from each of the members
of the tth generation. Here we shall assume that, given the number Zt and
the locations {xti: i = 1, . . . , Zt} of the members of the tth generation, the
contributing processes to the (t + 1)th generation are mutually independent
and independent of both Zt and all generations prior to t. This relation is
then expressible in the form

Nt+1(A) =
Zt∑
i=1

N(A | xti) (A ∈ BX , t = 0, 1, . . .), (5.5.16)

where the Zt finite point processes {N(· | xti): i = 1, . . . , Zt} are mutually
independent. The distributions of the contributing or offspring processes
N(· | x) may depend on the location x of the parent. They can be specified
by probability distributions {pn(x):n = 0, 1, . . .} and symmetric distributions
Πn(· | x) as in Conditions 5.3.I with the additional requirement that, for fixed
values of their other arguments, the pn(x) and Πn(· | x) are all assumed to be
measurable functions of x for each n = 0, 1, . . . . Then, the offspring p.g.fl.,
G[ζ | x] say, will also be a measurable function, and the relation (5.5.16) can
be expressed as

Gt+1[ζ | Nt] =
Zt∏
i=1

G[ζ | xti], (5.5.17)

where the left-hand side represents the conditional p.g.fl. for the (t+1)th gen-
eration given the number and locations of the members of the tth generation
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as specified by the point process Nt. It is clear that the right-hand side is a
measurable function of {Zt, xti (i = 1, . . . , Zt)} and hence that the left-hand
side is a measurable function of the finite process Nt. We may therefore take
expectations over the left-hand side with respect to Nt, thus obtaining the
relation

Gt+1[ζ] = Gt
[
G[ζ | ·]

]
, (5.5.18)

where G[ζ | · ] is to be treated as the argument of Gt (note that G[ζ | · ] ∈
U whenever ζ ∈ U). Equation (5.5.18) is a far-reaching generalization of
the functional iteration relation for the p.g.f.s of the number of offspring in
successive generations of the Galton–Watson process (see also Exercise 5.5.3).

Analogous formulae for the factorial moment measures can be established
by similar conditioning arguments or else more formally by expanding the
p.g.fl. in powers of ζ and equating like terms. We illustrate these procedures
for the expectation measures, denoting by M(· | x) the expectation measure
for the offspring process N(· | x) with a parent at x and by M(t)(·) the ex-
pectation measure for the population at the tth generation. Corresponding
to (5.5.17), we have

M(t+1)(A | Nt) =
Zt∑
i=1

M(A | xti) =
∫

X
M(A | x)Nt(dx), (5.5.19)

where again the measurability of M(A | x) as a function of x is clear from the
assumptions. Taking expectations with respect to Nt, we then have

M(t+1)(A) =
∫

X
M(A | x)M(t)(dx), (5.5.20)

showing that the expectation measures for successive generations are obtained
by operating on M(0)(·) by successive powers of the integral operator with
kernel M(· | x). As in the case of a multitype Galton–Watson process (which
indeed is the special case when the state space consists of a finite number
of discrete points), this operator governs the asymptotic behaviour of the
process. In particular, its maximum eigenvalue determines the asymptotic
rate of growth (or decay) of the mean population size.

These and many other properties are discussed in standard references on
general branching processes (see e.g. Moyal, 1962b; Harris, 1963; Athreya and
Ney, 1972; Jagers, 1975). Most attention has been given to the case where X
is compact, which results in behaviour similar to that of the finite multitype
case. New types of behaviour occur in the noncompact case: for example,
M(A | ·) may be the kernel of a transient Markov chain, in which case the
total mass is preserved but, in contrast to the compact case, the population
need not necessarily become extinct—it may continue ‘moving’ indefinitely
across the state space as a kind of population wave. Some further aspects and
examples are taken up in the exercises [see also Chapter 12 of MKM (1978)
and Liemant et al. (1988)]
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For an alternative derivation of (5.5.20), write ζ = 1 + η in (5.5.18) and
expand the two sides. We have

1 +
∫

X
η(x)M(t+1)(dx) + · · · = 1 +

∫
X

(G[1 + η(x)]− 1)M(t)(dx) + · · ·

= 1 +
∫

X
M(t)(dx)

(∫
X
η(u)M(du | x) + · · ·

)
+ · · · ,

where all terms omitted involve product terms in η. Equating the measures
with respect to which η is integrated on each side of the equation, we obtain
(5.5.20). This brief illustration is a typical example of the fact that the p.g.fl.
acts as a portmanteau device for condensing a broad range of formulae (see
also Exercise 5.5.4).

We conclude this section with a summary of the various expansions of the
p.g.fl. G[·] of an a.s. finite point process N , together with the corresponding
relations between the associated families of measures. For brevity of notation,
the latter are written in density form: they can easily be translated into
measure notation [for example, equation (5.5.11) is an analogue of (5.5.28)
both for measure notation and analogous expansions]. For point processes
that are not a.s. finite, the expansions must be applied to the local process
on A, N(· ∩A) say, for any bounded A ∈ BX [see Example 5.5(b)].

Some statements below have already been proved; proofs of the rest are
left to the reader.

(I) G[h]
Janossy measures

(II) G[1 + η]
Factorial moment measures

(III) logG[h]
Khinchin measures

(IV) logG[1 + η]
Factorial cumulant measures

(A) Definitions, Ranges of Validity

For suitable measurable functions h and family of measures {µn:n = 0, 1, . . .}
with µ0 a constant and µn defined on B(X (n)), write

Y [h, {µn}] =
∞∑
n=1

1
n!

∫
X (n)

h(x1) · · ·h(xn)µn(dx1 × · · · × dxn), (5.5.21)

where V denotes the class of measurable functions h:X �→ [0, 1] such that
h(x) = 1 for x outside some bounded Borel set. R denotes the radius of
convergence of the p.g.f. P (z) =

∑∞
n=0 pnz

n = E(zN(X )). Always, R > 1.
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(I) Janossy Measures {Jn}.
G[h] = J0 + Y [h, {Jn}], (5.5.22)

valid for h ∈ V and subject to {Jn} satisfying the normalizing condition

1 = G[1] = J0 +
∞∑
n=1

Jn(X (n))
n!

. (5.5.23)

{Jn(·)/n! } is a probability measure on X∪ =
⋃∞
n=0 X (n), with pn =

Jn(X (n))/n! (n = 0, 1, . . . ).

(II) Factorial Moment Measures {M[n]}.
G[1 + η] = 1 + Y [η, {M[n]}], (5.5.24)

valid for |1 +η| ∈ V for which |η(x)| < ε (all x) provided R ≥ 1 + ε > 1, imply
that all M[n](X (n)) <∞, M[0] = 1.

(III) Khinchin Measures {Kn}.
logG[h] = −K0 + Y [h, {Kn}], (5.5.25)

valid for h ∈ V with K0 > 0 and {Kn} satisfying the normalizing condition

K0 =
∞∑
n=1

Kn(X (n))
n!

. (5.5.26)

For n ≥ 1, Kn(·) need not necessarily be nonnegative; if every Kn(·) ≥ 0,
then N is infinitely divisible.

(IV) Factorial Cumulant Measures {C[n]}.
logG[1 + η] = Y [η, {C[n]}], (5.5.27)

valid for η as in (II), with R ≥ 1 + ε > 1 implying that |C[n](X (n))| < ∞ for
all n, C[0] = 0.

(B) Relations Between Measures in Different Expansions
The conditions given for validity are sufficient but not always necessary.

(I) → (II). This is a matter of definition! For n such that M[n](X (n)) <∞,

m[n](x1, . . . , xn) =
∞∑
r=0

1
r!

∫
X (r)

jn+r(x1, . . . , xn, y1, . . . , yr) dy1 · · ·dyr.

(5.5.28)
(II) → (I). For R > 2,

jn(x1, . . . , xn) =
∞∑
r=0

(−1)r

r!

∫
X (r)

m[n+r](x1, . . . , xn, y1, . . . , yr) dy1 · · ·dyr.

(5.5.29)
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(I) → (III). K0 = −J0 (and hence needs J0 > 0) and R > 1.

kn(x1, . . . , xn) =
n∑
r=1

(−1)r−1(r − 1)!
∑

T ∈Prn

r∏
i=1

j|Si(T )|(xi1, . . . , xi,|Si(T )|).

(5.5.30)
(III) → (I). J0 = exp(−K0) (and hence needs K0 <∞) and R > 1.

jn(x1, . . . , xn) = J0

(
n∑
r=0

∑
T ∈Prn

r∏
i=1

k|Si(T )|(xi1, . . . , xi,|Si(T )|)

)
. (5.5.31)

(III)→ (IV) and (IV)→ (III). These are the direct analogues of the relations
between (I) and (II), noting that C[0] = 0. Valid for R > 2.

(II) → (IV) and (IV) → (II). These are the direct analogues of the relations
between (I) and (III), noting that M[0] = 1. Valid for R > 2.

Exercises and Complements to Section 5.5

5.5.1 [ Section 5.1 and Examples 5.3(a) and 5.5(a)]. Derive (5.1.1) from (5.5.12) by
putting ξ(x) =

∑j

i=1 ziIAi(x), where {A1, . . . , Aj} is a finite partition of X .
Put ξ = 1 + η to establish the formal relation

G[1 + η] = 1 +
∞∑
k=1

µ[k]

k!

∫
X

· · ·
∫

X
η(x1) · · · η(xk)Π(dx1) · · · Π(dxk),

and hence, when µ[k] = E(N (k)) < ∞,

M[k](dx1 × · · · × dxk) = µ[k]Π(dx1) · · · Π(dxk),

of which the case k = 2 appears in (5.1.3).

5.5.2 For a Gibbs process as in Example 5.3(c), express the Khinchin densities in
terms of the interaction potentials ψr(·).

More generally, for finite point processes for which the Janossy densities
exist, explore the relationship between Khinchin densities and the interaction
potentials ψr(·) (see Exercise 5.3.7).

5.5.3 Branching process [continued from Example 5.5(c)]. Let Gt[ζ | x] denote the
p.g.fl. for the point process Nt(· | x) describing the points that constitute the
tth generation of the process of Example 5.5(c) starting from a single ancestor
at x; so, G1[ζ | x] = G[ζ | x]. Show that for all k = 1, . . . , t− 1,

Gt[ζ | x] = Gt−k[Gk[ζ | · ] | x] = G(t)[ζ | x],

where G(t)[ζ | x] is the tth functional iterate of G[ · | · ] [see (5.5.18)].
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5.5.4 (Continuation). Let qt(x) denote the probability of extinction within t gener-
ations starting from a single ancestor at x, so that qt(x) = Pr{Nt(X | x) = 0}.
Show that for each fixed x ∈ X , {qt(x): t = 0, 1, . . .} is a monotonically de-
creasing sequence and that, for k = 1, . . . , t− 1,

qt(x) = Gt−k[qk(·) | x],

so, in particular, qt+1(x) = G[qt(·) | x]. Deduce that the probability of ulti-
mate extinction starting from an initial ancestor at x, q(x) say, is the smallest
nonnegative solution of the equation q(x) = G[q(·) | x].

5.5.5 (Continuation). Show that the first-moment measure M(t)(· | x) of Nt(· | x)
and the second factorial cumulant measure, C(t)

[2] (A × B | x) say, of Nt(· | x)
satisfy the recurrence relations (with M ≡ M(1))

M(t+1)(A | x) =
∫

X
M(t)(A | y)M(dy | x),

C
(t+1)
[2] (A×B | x) =

∫
X (2)

M(t)(A | y)M(t)(B | z)C[2](dy × dz)

+
∫

X
C

(t)
[2] (A×B | y)M(dy | x).

[Hint: Use Nt+1(A | X) =d

∑
xi
Nt(A | xi), where the {xi} denote the indi-

viduals of the first generation; see also equations (6.3.3–5).]

5.5.6 (Continuation). Let Ht[ζ | x] denote the p.g.fl. for all individuals up to and
including those in the tth generation starting from an initial ancestor at x.
Show that these p.g.fl.s satisfy the recurrence relations

Ht+1[ζ | x] = ζ(x)G[Ht[ζ | · ] | x].

Show also that, if extinction is certain, the total population over all generations
has p.g.fl. H[ζ | · ], which for 0 < ζ < 1 is the smallest nonnegative solution
to the functional equation

H[ζ | x] = ζ(x)G[H[ζ | · ] | x],

and find equations for the corresponding first two moment measures.

5.5.7 Model for the spread of infection. Take X = R
d, and suppose that any indi-

vidual infected at x in turn gives rise to infected individuals according to a
Poisson process with parameter measure µ(· | x) = µ(· − x | 0) ≡ µ(· − x),
where

∫
X µ(du) = ν < 1. Show that the total number N(X | 0) of infected in-

dividuals, starting from one individual infected at 0, is finite with probability
1 and that the p.g.fl. H[· | · ] for the entire population of infected individuals
satisfies the functional equation

H[ζ | 0] = ζ(0) exp

(
−
∫

X
(1 −H[ζ | u])µ(du)

)
,

where H[ζ | u] = H[Tuζ | 0] and Tuζ(v) = ζ(v + u).
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Deduce, in particular, the following:
(i) The p.g.f. of N(X | 0) satisfies f(z) ≡ EzN(X|0) = z exp[−ν(1 − f(z))].
(ii) The expectation measure M(· | 0) for the total population of infected in-

dividuals, given an initial infected individual at the origin, satisfies

M(A | 0) = δ0(A) +
∫

X
M(A− u | 0)µ(du)

= δ0(A) + µ(A) + µ2∗(A) + · · · .
(iii) The second factorial moment measure M[2](A×B | 0) of N(· | 0) satisfies

M[2](A×B | 0) = M(A | 0)M(B | 0)

+
∫

X
M[2](A− u,B − u | 0)µ(du) − δ0(A)δ0(B).

(iv) The Fourier transforms for M(· | 0) and M[2](· | 0) are expressible in terms
of µ̃(θ) =

∫
X eiθ·x µ(dx) thus:

M̃(θ | 0) =
∫

X
eiθ·xM(dx | 0) =

1
1 − µ̃(θ)

,

M̃[2](θ, φ | 0) =
∫ ∫

ei(θ·x+φ·y)M[2](dx× dy | 0) =
M̃(θ | 0)M̃(φ | 0) − 1

1 − µ̃(θ + φ)
.

5.5.8 Age-dependent branching process. Let X = R, and suppose that an individ-
ual born at time u produces offspring according to a Poisson process with
parameter measure µ(· | u) = µ(· −u | 0) ≡ µ(· −u) for some boundedly finite
measure µ(·) that vanishes on (−∞, 0]. Let Gt[h | 0] denote the p.g.fl. for the
ages of individuals present in the population at time t starting from a single
newly born individual at time 0.
(a) Show that Gt satisfies the equation

Gt[h | 0] = h(t) exp

(
−
∫ t

0

(1 −Gt[h | u])µ(du)

)
,

where Gt[h | u] = Gt−u[h | 0] for 0 < u < t.
(b) When µ(A) = µ�(A ∩ R+), show that

Gt[h | 0] = h(t)

[
1 + µ

∫ t

0

[1 − h(u)]eµ(t−u) du

]−1

.

5.5.9 Equation (5.5.29) expresses Janossy densities in terms of factorial moment
densities when R > 2. Investigate whether the relation in Exercise 5.2.4 has
an analogue for densities valid when only R > 1.



CHAPTER 6

Models Constructed via Conditioning:
Cox, Cluster, and Marked Point Processes

In this chapter, we bring together a number of the most widely used classes
of point process models. Their common theme is the generation of the final
model by a two-stage construction: first, the generation of an indexed family
of processes, and then an operation applied to members of the family to
produce the final process. The first two classes (Cox and cluster processes)
extend the simple Poisson process in much the same way that the mixed
and compound Poisson distributions extend the basic Poisson distribution.
Independence plays a central role and leads to elegant results for moment
and generating functional relationships. Both processes are used typically
in contexts where the realizations are stationary and therefore define infinite
collections of points. To deal with these issues, we anticipate the transition
from finite to general point processes to be carried out in Chapter 9 and
present in Section 6.1 a short review of some key results for more general
point processes and random measures.

The third class of processes considered in this chapter represents a general-
ization in a different direction. In many situations, events are characterized by
both a location and a weight or other distinguishing attribute. Such processes
are already covered formally by the general theory, as they can be represented
as a special type of point process on a product space. However, marked point
processes are deserving of study in their own right because of their wide range
of applications, such as in queueing theory, and their conceptual importance
in contexts such as Palm theory (see [MKM] especially).

6.1. Infinite Point Families and Random Measures
Although the framework developed for finite point processes in Chapter 5
needs to be extended, it nevertheless contains the essential ingredients of the
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more general theory. We retain the assumption that the points are located
within a complete, separable metric space (c.s.m.s.) X , and will generally
interpret X as either R

1 or R
2.

The space X∪ as in (5.3.10) is no longer the appropriate space for defining
the realizations; instead we move to a description of the realizations in terms
of counting measures, meaning measures whose values on Borel sets are non-
negative integers. The interpretation is that the value of the measure on such
a set counts the number of points falling inside that set.

A basic assumption, which really defines the extent of current point pro-
cess theory, is that the measures are boundedly finite: only a finite number
of points fall inside any bounded set (i.e. there are no finite accumulation
points). In the martingale language of Chapters 7 and 14, this is equivalent
to requiring the realizations to be ‘nonexplosive’. The space X∪ is then re-
placed by the space1 N#

X of all boundedly finite counting measures on X . A
remarkable feature is that a relatively simple and natural distance between
counting measures can be defined and allows N#

X to be interpreted as a met-
ric space in its own right. It then acquires a natural topology and a natural
family of Borel sets B(N#

X ) that can be used to define measures on N#
X . We

shall not give details here but refer to Chapter 9 and Appendix A2.6.
Thus, the way is open to formally introducing a point process on X as a

random counting measure on X , meaning technically a measurable mapping
from a probability space (Ω, E ,P) into the space (N#

X ,B(N#
X )). Often, the

latter space itself is taken as the canonical probability space for a point process
on X . Every distinct probability measure on (N#

X ,B(N#
X )) defines a distinct

point process.
As in the finite case, specific examples of point processes are commonly

specified by their finite-dimensional distributions, or fidi distributions for
short. These can no longer be defined globally, as was done through the
Janossy measures for a finite point process, but are introduced by specifying
consistent joint distributions

Pk(A1, . . . , Ak; n1, . . . , nk) = Pr{N(A1) = n1, . . . , N(Ak) = nk} (6.1.1)

for the number of points in finite families of bounded Borel sets. Indeed, this
was the way we introduced the Poisson process in Chapter 2.

Consistency here combines conditions of two types: first, the usual con-
ditions (analogous to those for any stochastic process) for consistency of
marginal distributions and invariance under simultaneous permutation of the
sets and the numbers falling into them; second, conditions to ensure that the
realizations are almost surely measures, namely that

N(A ∪B) = N(A) +N(B) a.s. and N(An)→ 0 a.s. (6.1.2)

1 In this edition, we use M#
X (and N#

X ) to denote spaces of boundedly finite (counting)

measures on X where in the first edition we used M̂X (and N̂ X ), respectively.
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for (respectively) all disjoint Borel sets A, B, and all sequences {An} of Borel
sets with An ↓ ∅. These two conditions reduce to the requirements on the
fidi distributions that, for all finite families of disjoint bounded Borel sets,
(A1, . . . , Ak),

n∑
r=0

Pk(A1, A2, A3, . . . , Ak; n− r, r, n3, . . . , nk)

= Pk−1(A1 ∪A2, A3, . . . , Ak; n, n3, . . . , nk), (6.1.3)

and
P1(Ak; 0)→ 1 (6.1.4)

for all sequences of bounded Borel sets {Ak} with Ak ↓ ∅. Moreover, for point
processes defined on Euclidean spaces, it is enough for these relationships to
hold when the sets are bounded intervals.

Example 6.1(a) Simple Poisson process on R. Recall equation (2.2.1):

Pr{N(ai, bi] = ni, i = 1, . . . , k} =
k∏
i=1

[λ(bi − ai)]ni

ni!
e−λ(bi−ai). (6.1.5)

Consistency of the marginals means that if one of the variables, say N(a1, b1],
is integrated out (by summing over n1), the resulting quantity is the joint
probability corresponding to the remaining variables. Invariance under per-
mutations of the variables means that if the sets and the number of points
falling into them are written down in a different order, the resulting probabil-
ity is not affected. In the present example, both conditions are obvious from
the product form of the joint distributions. The additivity requirement (6.1.3)
comes from the additivity property of the Poisson distribution: for Poisson
random variables N1 and N2 that are independent (as is implied here by the
product form of the distributions), their sum again has a Poisson distribution.
Finally, (6.1.4) follows from the property e−δn → 1 when δn → 0.

Moment measures, factorial moment measures, and probability generating
functionals can be defined as in Sections 5.4 and 5.5. The main differences are
that in defining the moment measures we should restrict ourselves to bounded
sets and that in defining the p.g.fl. we should confine ourselves to functions
h in V(X ), the space of nonnegative, measurable functions bounded by unity
and such that 1 − h(x) vanishes outside some bounded set. Within these
constraints, the relations between generating functionals, moment measures,
and all the various quantities derived from these in Chapter 5 hold much as
they did there. A more detailed account, examining existence and convergence
conditions, is given in Chapter 9.

For many of the examples that we consider, the point processes will be
defined on a Euclidean space and stationary, meaning that their fidi distri-
butions are invariant under simultaneous shifts of their arguments: writing
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A+ u = {x+ u, x ∈ A}, stationarity means that, for all real u,

Pk(A1, . . . , Ak; n1 . . . nk) = Pk(A1 + u, . . . , Ak + u; n1, . . . , nk). (6.1.6)

The full consequences of this assumption are quite profound (see the foretaste
in Chapter 3), but for the present it is enough to note the following.

Proposition 6.1.I (Stationarity Properties).
(i) A point process with p.g.fl. G[h] is stationary if and only if for all real u,

G[(Suh)] = G[h], where (Suh)(x) = h(x− u).
(ii) If a point process is stationary and the first-moment measure M1 ex-

ists, then M1 reduces to a multiple of the uniform measure (Lebesgue
measure), M1(dx) = m�(dx) = mdx, say.

(iii) If a point process is stationary and the second-moment measure M2 ex-
ists, then M2 reduces to the product of a Lebesgue component along the
diagonal x = y and a reduced component2, M̆2(du) say, where u = x−y,
orthogonal to the diagonal.

Proof. The fidi distributions as above are determined by the p.g.fl. and
can be evaluated by taking h to be the sum of simple functions on disjoint
sets; conversely, the fidi distributions determine the p.g.fl., which has the
shift-invariance properties under stationarity. Property (ii) can be proved
from Cauchy’s functional equation (see Section 3.6), while property (iii) is
the measure analogue of the familiar fact that the covariance function of a
stationary time series is a function of the difference in the arguments only:

c(x, y) = c̆(x− y).

Similar expressions for the moment densities follow from property (iii) when-
ever the moment measures have densities, but in general they have a singular
component along the diagonal x = y, which reappears as an atom at the
origin in the reduced measure M̆2(·) (see also Section 8.1). General routes to
these reduced measures are provided by the factorization theorems in Section
A2.7 or by the disintegration theory outlined in Section A1.4 (see Chapter 8
for further discussion and examples). Estimation of these reduced moment
measures and their Fourier transforms (spectral measures) is a key issue in the
statistical analysis of point process data and will be taken further in Chapter 8
and in more detail in Chapter 12.

We shall also need the idea of a random measure, so we note some el-
ementary properties. The general theory of random measures is so closely
interwoven with point process theory that the two can hardly be separated.
Point processes are indeed only a special class (integer-valued) of the former,

2 In this edition, we use M̆2(·) and C̆2(·) to denote reduced second moment and covariance
measures (and m̆ and c̆ for their densities) where in the first edition we wrote M̂2(·) and
Ĉ(·), etc.
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and much of the general theory runs in parallel for both cases, a fact exploited
more systematically in Chapter 9. Here we provide just sufficient background
to handle some simple applications.

The formal definition of a random measure ξ(·) proceeds much as in the
discussion for point processes given above. Once again, the realizations ξ(·)
are required to be a.s. boundedly finite and countably additive, and their
distributional properties are completely specified by their finite-dimensional
distributions. Since the values of the measure are no longer integer-valued in
general (although still nonnegative), these take the more general form

Fk(A1, . . . , Ak;x1, . . . , xk) = Pr{ξ(Ai) ≤ xi, i = 1, . . . , k}. (6.1.7)

The moment measures are defined as for point processes, although the spe-
cial role played by the factorial moment measures is not sustained, particularly
when the realizations are continuous. In place of the p.g.fl., the most useful
transform is the Laplace functional, defined for f ∈ BM+(X ), the space of all
nonnegative f ∈ BM(X ), by

L[f ] ≡ Lξ[f ] = E
[

exp
(
−
∫

X f(x) ξ(dx)
)]
. (6.1.8)

[We sometimes write Lξ as a reminder of the random measure ξ to which the
Laplace functional L relates and

∫
f dξ as shorthand for the integral in (6.1.8).]

Of course, the Laplace functional can also be defined for point processes and
is therefore the natural tool when both are discussed together.

Although Lξ defines (the fidi distributions of) a random measure ξ uniquely,
via appropriate inversion theorems, there is no easy counterpart to the expan-
sion of the p.g.fl. about the zero function as in equations (5.5.3). There is,
however, a Taylor series expansion for the Laplace functional about f ≡ 0,
corresponding to the p.g.fl. expansion about h ≡ 1. It takes the form

L[sf ] = 1− s
∫

X
f(x)M1(dx) +

s2

2!

∫
X (2)

f(x1)f(x2)M2(dx1 × dx2)− · · ·

+
(−s)r
r!

∫
X (r)

f(x1) . . . f(xr)Mr(dx1 × · · · × dxr) + · · · . (6.1.9)

This expression is just the expectation of the expansion of the ordinary
Laplace transform of the linear functional Y =

∫
X f(x) ξ(dx). Its validity

depends first on the existence of all moments of the random measure ξ and
second on the convergence, typically in a disk around the origin s = 0 with
radius determined by the length of the largest interval (0, r) within which the
Laplace transform is analytic. Finite Taylor series expansions, when just a
limited number of moment measures exist, are possible for imaginary values
of s, corresponding to the use of the characteristic functional, and are set out
in Chapter 9.
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Example 6.1(b) Gamma random measures (stationary case). Suppose that
the random variables ξ(Ai) in (6.1.7) are independent for disjoint Borel sets
Ai in R

d and have the gamma distributions with Laplace–Stieltjes transforms

E(e−sξ(Ai)) = ψ(Ai, s) = (1 + λs)−α�(Ai) (λ > 0, α > 0, Re(s) ≥ 0),
(6.1.10)

where �(·) denotes Lebesgue measure. By inspection, ψ(Ai, s)→ 1 as s→ 0,
showing that ξ(A) is a.s. finite for any fixed bounded set A. Then, since X
is separable, it can be represented as a denumerable union

⋃
Ai of such sets

and

Pr{at least one ξ(Ai) is infinite} ≤
∞∑
i=1

Pr{ξ(Ai) =∞} = 0.

As in the case of a Poisson process, additivity of ξ is a consequence of in-
dependence and the additivity property of the gamma distribution. Also,
ψ(Ai, s) → 1 as �(Ai) → 0, implying the equivalent of (6.1.4), which guar-
antees countable additivity for ξ and is equivalent to stochastic continuity of
the cumulative process ξ((0, t]) when the process is on R

1.
The Laplace functional of ξ can be found by extending (6.1.10) to the case

where f is a linear combination of indicator functions and generalizing: it
takes the form

L[f ] = exp
(
−
∫

X
log[1 + λf(x)]α �(dx)

)
.

Expanding this expression as in (6.1.9) and examining the first and second
coefficients, we find

E
(
ξ(dx)

)
= λα �(dx),

E
(
ξ(dx) ξ(dy)

)
= λ2α2 �(dx) �(dy) + δ(x− y)λ2α �(dx).

(6.1.11)

Thus, the covariance measure for ξ(·) vanishes except for the diagonal com-
ponent along x = y, or, equivalently, the reduced covariance measure is just
an atom of mass λ2α at the origin. These features are consequences of the
independence of the increments and the purely atomic nature of the sample
paths ξ(·), equivalent when X = R

1 to the pure jump character of the cu-
mulative process (see Section 8.3 for further discussion). From these results,
we can also confirm the expressions for the moments as follow directly from
(6.1.10), namely

Eξ(A) = λα �(A) and var ξ(A) = λ2α �(A).

Exercise 6.1.1 gives a more general version of a gamma random measure.

Example 6.1(c) Quadratic random measure. Let Z(t) be a Gaussian process
with a.s. continuous trajectories, and consider, for any Borel set A, the set
function

ξ(A) =
∫
A

Z2(u) du.
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Since Z is a.s. continuous, so is Z2, so the integral is a.s. well defined and
is additive on disjoint sets. In particular, when Z has zero mean, each value
Z2(t) is proportional to a chi-square random variable, so ξ(A) for suitably
‘small’ sets A is also approximately a chi-square r.v. Generally, ξ(A) can
be defined (being an integral) as a limit of linear combinations of Z2(ti) for
points ti that become dense in A, and this is quadratic in the Z, hence the
name. The random measure properties of ξ are discussed in more detail in
Chapter 9. See Exercise 6.1.3 for the first two moments of ξ.

The next example has a long history. It was originally introduced in early
work by Campbell (1909) to describe the properties of thermionic noise in
vacuum tubes. Moran (1968, pp. 417–423) gives further details and references.
In his work, Campbell developed formulae for the moments, such as

E
[ ∫

g(x)N(dx)
]

=
∫
g(x)M(dx),

which led Matthes et al. (1978) to adopt the term Campbell measure for the
concept that underlies their treatment of moments and Palm distributions
(see also Chapter 13). Since that time, the ideas have appeared repeatedly
in applications [see e.g. Vere-Jones and Davies (1966), where the model is
referred to as a ‘trigger process’ and used to describe earthquake clustering].
Here we introduce it as a prelude to the major theme of this chapter. It is,
like the other models in the chapter, a two-stage model, for which we consider
here only the first stage.

Example 6.1(d) Intensity of a shot-noise process. A model for a shot-noise
process is that the observations are those of a Poisson point process with a
random intensity λ(·) with the following structure. A stochastic process λ(t)
is formed as a filtered version of a simple stationary Poisson process N(·) on
R at rate ν with typical realization {ti}, the filtering being effected by
(1) a nonnegative function g that integrates to unity and vanishes on (−∞, 0],

and
(2) random ‘multiplier’ effects, {Yi}, a series of i.i.d. nonnegative random

variables with common distribution F (·).
We then define λ(t) by

λ(t) =
∑
i:ti<t

Yig(t− ti) =
∫ ∞

0
Y (u)g(t− u)N(du), (6.1.12)

where Y (u) is a (fictitious) process of i.i.d. variables with distribution F .
Since λ(t), when finite, is stationary in t and is measurable, it is locally

integrable: indeed, since its arguments are nonnegative, if it has finite expec-
tation it must be finite a.s. For Borel sets A, the integral

ξ(A) ≡
∫
A

λ(u) du =
∑
i

Yi

∫
A+ti

g(u) du

is then well defined, though possibly infinite (see Exercise 6.1.4).
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The Laplace functional of ξ can be evaluated as follows. We require

L[f ] = E
[

exp
(
−
∫

R

f(u)λ(u) du
)]
.

Now, from (6.1.12), the integral can be written as a sum of terms∫
R

f(u)λ(u) du =
∑
i

Yi

∫
R

f(u)g(u− ti) du ≡
∑
i

Zi, say.

If the points ti are treated as given (i.e. fixed), then the Zi are independent
and, with φ(·) denoting the common Laplace–Stieltjes transform of the Yi,
Zi = Yi

∫
R
f(u)g(u− ti) du has the transform

E(e−Zi) = E
[

exp
(
− Yi

∫
R
f(u)g(u− ti) du

)]
= φ
[ ∫

R
f(u)g(u− ti) du

]
≡ ζ(ti),

say, which lies in (0, 1] because f , g and the Yi are all nonnegative. Proceeding
formally, the last three equations give us

L[f ] = E
[∏

ti∈N ζ(ti)
]

= GN [ζ], by definition of a p.g.fl.,

= exp
[
ν
∫

R
[ζ(t)− 1] dt

]
, GN is the p.g.fl. of a Poisson process,

= exp
{
ν
∫

R

[
φ
( ∫

R
f(u)g(u− t) du

)
− 1
]

dt
}
.

It is clear from the random measure analogue of Proposition 6.1.I that the
random measure ξ(·) here is stationary (we can easily check that L[Suf ] =
L[f ]). With a view to applying the expansion (6.1.9), we find after some
manipulation that L[f ]− 1 equals

ν

∫ [
− µ1

∫
f(u)g(u− t) du+ 1

2µ2

∫
f(u)g(u− t) du

∫
f(v)g(v − t) dv − · · ·

]
dt

+ 1
2ν

2
∫ ∫ [

µ2
1

∫
f(u)g(u− t) du

∫
f(v)g(v − s) dv + · · ·

]
dt ds+ · · · ,

where µj = E(Y j) for j = 1, 2. Collect terms, identify the measures associated
with first and second powers of f(·), and recall that

∫∞
−∞ g(u) du = 1 and

g(u) = 0 for u < 0; then

M1(dt) = νµ1 dt,

M2(ds× dt) =
[
ν2µ2

1 + νµ2

∫ min(s,t)

−∞
g(s− u)g(t− u) du

]
dsdt,

so that M1 has constant density νµ1 and M2 has the density

m(s, t) = m̆2(v) = ν2µ2
1 + νµ2

∫ ∞

0
g(y)g(y + |v|) dy, where v = s− t.
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The fact that M2 is absolutely continuous stems from the absolute continuity
of the trajectories. The appearance of the reduced density m̆2 here is charac-
teristic of the stationary form of the moment measures (see Proposition 8.1.I
and onward).

While these arguments appear intuitively reasonable, to make them rig-
orous we must check two further points. First, we must establish that the
random measure ξ is well defined in the sense that, despite the infinite sums
in the definition, the realizations are a.s. boundedly finite; see Exercise 6.1.4.

Second, the implicit conditioning step, consisting here of being given a re-
alization {ti} of the Poisson process and then taking expectations over such
realizations, needs to be justified. In a more general context, this task hinges
on the technical concept of measurability and is the subject of the next propo-
sition; it appears repeatedly in this and later chapters.

As in Example 6.1(d), the models considered in this chapter are defined
in two steps: first, an initial process is laid down and then a secondary pro-
cess is defined, with distributions conditional on the realization of the initial
process. The existence and other properties of such processes depend on
extensions of standard theorems concerning the structure of bivariate distri-
butions. Because a realization of a point process (or indeed a more general
random measure) can be thought of as a point in a metric space, the same
basic apparatus for describing the distributions conditional on the realization
of a random measure is available as for dealing with bivariate distributions
in R

2. A general discussion of conditions for a bivariate random system in
which each component takes its value in a c.s.m.s. is in Proposition A1.5.II.
To apply the concepts in a point process context, the key idea we utilize is
that of a measurable family of point processes or random measures.

Suppose there is given a family {N(· | y): y ∈ Y} of point processes taking
their values in the c.s.m.s. X and indexed by the elements y of the c.s.m.s.
Y. This family forms a measurable family if, for each set A in B(N#

X ), the
function P(A | y) is B(Y)-measurable, where

P(A | y) = Pr{N(· | y) ∈ A}. (6.1.13)

As in Proposition A1.5.II, we average across a measurable family of point
processes to form a new point process as a mixture of the originals.

Proposition 6.1.II. Suppose there is given
(a) a measurable family of point processes P(A | y), defined on the c.s.m.s.
X and indexed by elements of Y, and

(b) a Y-valued random variable Y with distribution Π on B(Y).
Then the integrals

P(A) = E[P(A | Y )] =
∫

Y
P(A | y) Π(dy) (6.1.14)

define a probability measure P on B(X ) and hence a point process on X .

Corresponding concepts can readily be defined for random measures and
are set out in Exercise 6.1.5.
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The next lemma gives simple sufficient conditions for checking whether an
indexed family of point processes forms a measurable family.

Lemma 6.1.III. Each of the following conditions is necessary and sufficient
to define a measurable family of point processes on a Euclidean space:
(a) for all choices of positive integer k, finite unions of disjoint intervals

(B1, . . . , Bk), and nonnegative integers (n1, . . . , nk), the fidi probabilities
Pk(B1 . . . , Bk; n1, . . . , nk | y) are B(Y)-measurable functions of y;

(b) for all functions h in the space V(X ), the p.g.fl. G[h | y] is a B(Y)-
measurable function of y.

Proof. Denote by A the class of subsets A of NX for which P(A | y) is
measurable in y with respect to B(Y). If (a) holds, then A contains the
cylinder sets used in defining the fidi probabilities. It follows from the closure
properties of families of measurable functions (see Appendix A1.4) that the
class A is closed under monotone limits and therefore contains the σ-field of
all subsets of X generated by the cylinder sets; that is, A ⊇ B(X ). Hence the
given family of point processes forms a measurable family. If, alternatively,
(b) holds, then by taking h to be a linear combination of indicator functions
and differentiating, we can recover the fidi distributions. Differentiation and
the other operations involved preserve measurability so that the result follows
from (a). The necessity of (a) is obvious, and that of (b) follows on observing
that G[h | y] for a general h ∈ V(X ) can be obtained from the case where h
is a linear combination of indicator functions by operations that preserve the
measurability in y.

We can immediately apply this lemma to give sufficient conditions that are
simpler to check than those of Proposition 6.1.II.

Corollary 6.1.IV. Suppose there is given a Y-valued random variable Y
with distribution Π on B(Y) and either
(a) a family of fidi probabilities Pk(B1 . . . , Bk; n1, . . . , nk | y) satisfying con-

dition (a) of Lemma 6.1.III or
(b) a family of p.g.fl.s G[h | y] satisfying condition (b) of Lemma 6.1.III.
For each of these cases, there exists a well-defined point process on X for
which in case (a) the fidi probabilities are given by

Pk(B1, . . . , Bk; n1, . . . , nk) = E
[
Pk(B1, . . . , Bk; n1, . . . , nk | Y )

]
=
∫

Y
Pk(B1, . . . , Bk; n1, . . . , nk | y) Π(dy) (6.1.15a)

and in case (b) the p.g.fl. is given by

G[h] = E
(
G[h | Y ]

)
=
∫

Y
G[h | y] Π(dy). (6.1.15b)

The following is perhaps the simplest example to which these ideas ap-
ply; their applications will be explored more systematically in the next two
sections.
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Example 6.1(e) Mixed Poisson process. Take the distributions (6.1.5) as a
candidate for a measurable family, with the role of y played by λ and that of Y
played by the half-line R+ = [0,∞). For a fixed set of half-open intervals, the
function (6.1.5) is a continuous and hence a measurable function of λ so that
condition (a) of Lemma 6.1.III is satisfied. Thus, the simple Poisson processes
form a measurable family with respect to the real variable λ. Consequently,
we can mix (average) them with respect to a distribution Π for λ to obtain the
fidi distributions of a new point process. If, for example, Π is the exponential
distribution with density µe−µλ dλ, then the number of points falling into
any given set A has a geometric distribution pn = qpn with parameter p =
µ/(µ+ |A|) , q = 1− p. Moreover, the locations of the points in A, given the
number of events in A, are uniformly distributed over A.

Alternatively, we could work from the p.g.fl. for the Poisson process, namely
G[h] = exp

(
−λ
∫

[1−h(u)] du
)
, and take expectations over λ using condition

(b) of the lemma and Corollary 6.1.IV. The resultant process has p.g.fl.

G[h] =
∫ ∞

0
exp
(
− λ
∫

[1− h(u)] du
)

Π(dλ) = Π∗( ∫ [1− h(u)] du
)
, (6.1.16)

where Π∗(θ) = E(e−θY ) is the Laplace–Stieltjes transform of an r.v. Y with
distribution Π. In particular, when Π is exponential with mean 1/µ, the p.g.fl.
reduces to

G[h] =
µ

µ+
∫

[1− h(u)] du
.

This reduces to the p.g.f. µ
/[
µ + |A|(1 − z)

]
of the geometric distribution

described above when we set h(u) = 1− (1− z)IA(u).

Exercises and Complements to Section 6.1

6.1.1 A general gamma random measure on the c.s.m.s. X can be constructed as
a process with independent nonnegative increments for which the increment
ξ(A) on the bounded Borel set A has a gamma distribution with Laplace
transform

E(e−sξ(A)) = (1 + λs)−α(A),

where the scale parameter λ is finite and positive and the shape parameter
measure α(·) is a boundedly finite measure on BX .
(a) Verify that these marginal distributions, coupled with the independent

increment property, lead to a well-defined random measure.
(b) In the case X = R, show that ξ(·) may be regarded as the increments of

an underlying nondecreasing stochastic process X(t), which with positive
probability is discontinuous at t if and only if α({t}) > 0.

(c) Show that ξ has as its Laplace functional

L[f ] = exp

(
−
∫

X
log(1 + λf(x))α(dx)

)
(f ∈ BM+(X )).

[Hint: See Chapter 9 for more detail, especially parts (b) and (c).]
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6.1.2 Stable random measure. Consider a random measure ξ for which E(e−sξ(A)) =
(1+ [exp(−sα)])−Λ(A) for some fixed measure Λ(·) and that has independence
properties as in Example 6.1(a). Verify that for 0 < α < 1, there is a well-
defined random measure with marginal distributions as stated.

6.1.3 Let ξ be the quadratic random measure of Example 6.1(c) in which the Gauss-
ian process Z is stationary with zero mean, variance σ2 and cov(Z(s), Z(t)) =
c(s− t). Show that for bounded Borel sets A and B,

E[ξ(A)] = σ2�(A),

cov(ξ(A), ξ(B)) = 2
∫
A

∫
B

c2(u− t) du dt.

6.1.4 Random measure and shot noise. Denote by {xi} the points of a stationary
Poisson process on R with rate parameter ν, and let {Yj : j = 0,±1, . . .} de-
note a sequence of i.i.d. r.v.s independent of {xj}. Let the function g be as
in Example 6.1(d). Investigate conditions under which the formally defined
process

Y (t) =
∑
xj≤t

Yjg(t− xj)

is indeed well defined (e.g. by demanding that the series is absolutely conver-
gent a.s.). Show that sufficient conditions are that
(a) E|Y | < ∞, or else
(b) g(·) is nonincreasing on R+ and there is an increasing nonnegative function

g̃(·) with g̃(t) → ∞ as t → ∞ such that
∫∞
0
g̃(t)g(t) dt < ∞ and whose

inverse g̃−1(·) satisfies Eg̃−1(|Y |) < ∞ [see also Daley (1981)].

6.1.5 Write down conditions, analogous to (6.1.13), for a measurable family of ran-
dom measures, and establish the analogue of Proposition 6.1.II for random
measures. Frame sufficient conditions for the existence of a two-stage process
similar to those in Lemma 6.1.III and Corollary 6.1.IV but using the Laplace
functional in place of the p.g.fl.

6.1.6 Let ξ be a random measure on X = R
d. For a nonnegative bounded mea-

surable function g, define G(A) =
∫
A
g(x) �(dx) (A ∈ BX ), where � denotes

Lebesgue measure on R
d, and

η(A) =
∫

X
G(A− x) ξ(dx).

(a) Show that η(A) is an a.s. finite-valued r.v. for bounded A ∈ BX and that
it is a.s. countably additive on BX . Then, the existence theorems in Chap-
ter 9 can be invoked to show that η is a well-defined random measure.

(b) Show that if ξ has moment measures up to order k, so does η, and find
the relation between them. Verify that the kth moment measure of η is
absolutely continuous with respect to Lebesgue measure on (Rd)(k).

(c) Denoting the characteristic functionals of ξ and η by Φξ[·] and Φη[·], show
that, for f ∈ BM+(X ),

h(x) =
∫

X
f(y)g(y − x) dy

is also in BM+(X ), and Φη[f ] = Φξ[h].
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6.1.7 (Continuation). By its very definition, η is a.s. absolutely continuous with
respect to Lebesgue measure, and when ξ is completely random, its density

Y (t) ≡
∫

X
g(t− x) ξ(dx)

is called a linear process. [The shot-noise process noted in (6.1.12) is an
example; for other references, see e.g. Westcott (1970).] Find the characteristic
functional of Y when ξ is a stationary gamma random measure.

6.2. Cox (Doubly Stochastic Poisson) Processes

The doubly stochastic Poisson process—or, more briefly, the Cox process, so
named in recognition of its appearance in a seminal paper of Cox (1955)—is
obtained by randomizing the parameter measure in a Poisson process. It is
thus a direct generalization of the mixed Poisson process in Example 6.1(e).
We first give a definition, then discuss the consequences of the structural
features it incorporates, and finally in Proposition 6.2.II give a more mathe-
matical definition together with a list of properties.

Definition 6.2.I. Let ξ be a random measure on X . A point process N on
X is a Cox process directed by ξ when, conditional on ξ, realizations of N are
those of a Poisson process N(· | ξ) on X with parameter measure ξ.

We must check that such a process is indeed well defined. The probabilities
in the Poisson process N(· | ξ) are readily seen to be measurable functions
of ξ; for example, P (A;n) = [ξ(A)]ne−ξ(A)/n! is a measurable function of
ξ(A), which in turn is a measurable function of ξ as an element in the metric
spaceM#

X of boundedly finite measures on X ; hence, we can apply Corollary
6.1.IV(a) and take expectations with respect to the distribution of ξ to obtain
a well-defined ‘mixed’ point process on X .

The finite-dimensional (i.e. fidi) distributions are easily obtained in terms
of the distributions of the underlying directing measure ξ and are all of mixed
Poisson type. Thus, for example,

P (A; k) = Pr{N(A) = k} = E
(

[ξ(A)]k

k!
e−ξ(A)

)
=
∫ ∞

0

xk

k!
e−x FA(dx),

(6.2.1)
where FA is the distribution function for the random mass ξ(A).

The factorial moment measures of the Cox process turn out to be the ordi-
nary moment measures of the directing measure; this is because the factorial
moment measures for the Poisson process are powers of the directing measure.
Thus, denoting by µk and γk the ordinary moment and cumulant measures
for ξ, we have for k = 2,

M[2](A×A) = E
(
E[N(A)(N(A)− 1) | ξ]

)
= E
(
[ξ(A)]2

)
= µ2(A×A) ,
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and similarly for the covariance measures

C[2](A×A) = γ2(A×A) .

The algebraic details are most easily handled via the p.g.fl. approach out-
lined in Corollary 6.1.IV(b). As a function of the parameter measure ξ, the
p.g.fl. of the Poisson process can be written, for h ∈ V(X ), as

G[h | ξ] = exp
(
−
∫

X [1− h(x)] ξ(dx)
)
. (6.2.2)

For fixed h, this is a measurable function of ξ as an element of MX . Thus,
the family of p.g.fl.s (6.2.2) is a measurable family in the sense of Corollary
6.1.IV(b), which implies that we can indeed construct the p.g.fl of a point pro-
cess by taking expectations in (6.2.2) with respect to any probability measure
for ξ in MX . The expectation

E
[

exp
(
−
∫

X
[1− h(x)] ξ(dx)

)]
,

however, can be identified with the Laplace functional [see (6.1.8)] of the
random measure ξ, evaluated at the function [1− h(x)]. This establishes the
first part of the proposition below. The remaining parts are illustrated above
for particular cases and are left for the reader to check in general.

Proposition 6.2.II. Let ξ be a random measure on the c.s.m.s. X and Lξ
its Laplace functional. Then, the p.g.fl. of the Cox process directed by the
random measure ξ is given by

G[h] = E
[

exp
( ∫

X [h(x)− 1] ξ(dx)
)]

= Lξ[1− h]. (6.2.3)

The fidi distributions of a Cox process are of mixed Poisson type, as in (6.2.1);
its moment measures exist up to order n if and only if the same is true for ξ.
When finite, the kth factorial moment measureM[k] for the Cox process equals
the corresponding ordinary moment measure µk for ξ. Similarly, the kth
factorial cumulant measure C[k] of the Cox process equals the corresponding
ordinary cumulant measure γk for ξ.

Note that this last result implies that the second cumulant measure of a Cox
process is nonnegative-definite (see Chapter 8). Also, for bounded A ∈ BX ,

varN(A) = M[1](A) + C[2](A×A)

= M[1](A) + var
(
ξ(A)

)
≥ M[1](A) = EN(A),

so a Cox process, like a Poisson cluster process, is overdispersed relative to
the Poisson process.

Example 6.2(a) Shot-noise or trigger process [see Example 6.1(d) and Lowen
and Teich (1990)]. We continue the discussion of this example by supposing
the (random) function

λ(t) =
∑
i:xi<t

Yig(t− xi) (6.2.4)
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to be the density of the random measure directing the observed Poisson pro-
cess. In more picturesque language, the epochs {xi} are trigger events with
respective sizes (or weights) {Yi} that decay according to the function g. Note
that in the definition it is not necessary to assume that g decays monotoni-
cally: integrability is sufficient (see also Exercise 6.1.4).

Now we use the generating function formalism to obtain some elementary
properties of the shot-noise process. Conditional on the sequence {(xi, Yi)},
we can appeal to (6.2.2) and write

G[h | {(xi, Yi)} ] = exp

(∑
i

−Yi
∫ ∞

xi

[1− h(t)] g(t− xi) dt

)
. (6.2.5)

Write φ(θ) = E(e−θY1) for the common Laplace–Stieltjes transform of the
{Yi}. Taking expectations in (6.2.5) first with respect to {Yi} and then with
respect to {xi}, we have for the p.g.fl. of the process

G[h] = E

(∏
i

φ
( ∫∞

xi
[1− h(t)] g(t− xi) dt

))

= exp

(
ν

∫
R

[
φ
( ∫∞

x
[1− h(t)] g(t− x) dt

)
− 1
]

dx

)
. (6.2.6)

By taking logarithms in this expression and expanding, it follows that the
point process has factorial cumulant measures existing to as many orders as
the r.v.s Yi have finite moments, as is consistent with Proposition 6.2.II. It also
follows that these moment measures are absolutely continuous with densities

m1 = νµ1

∫ ∞

0
g(u) du,

c[2](t1, t2) = c̆[2](t1 − t2) ≡ c̆[2](t′1) = νµ2

∫ ∞

0
g(u)g(t′1 + u) du,

c[k](t1, . . . , tk) = c̆[k](t′1, . . . , t
′
k−1)

= νµk

∫ ∞

0
g(u)g(t′1 + u) · · · g(t′k−1 + u) du,

where t′j = tj − tk (j = 1, . . . , k − 1) and µk = E(Y k). These relations are
analogues of Campbell’s formulae in the theory of shot noise (see references
preceding Example 6.1(c)), while the first two illustrate the proposition insofar
as the right-hand sides represent the ordinary cumulants of the directing shot-
noise process. The fact that they are absolutely continuous reflects the same
property in the realizations of ξ.

The representation (6.2.6) shows that the process can equally be regarded
as a Neyman–Scott Poisson cluster process [see Example 6.3(a)]. The fact
that the shot-noise process and the associated Neyman–Scott process have
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the same p.g.fl. means that they are identical as point processes: no mea-
surements on the point process can distinguish the clustering and doubly
stochastic (or Cox) interpretations. This ambiguity of interpretation is an
extension of the corresponding ambiguity concerning the dual interpretation
of contagious distributions alluded to in Exercise 1.2.3. The possibility of
such dual interpretations is not restricted to cluster processes: for example,
Exercise 6.2.1 sketches a nontrivial characterization of the class of renewal
processes that can be represented as Cox processes.

Example 6.2(b) Boson processes (Macchi, 1971a, 1975) [see Example 5.4(c)].
In optical problems concerning light beams of low density, the particulate
aspects of light are important, and the emission or reception of individual
photons (or more generally bosons) can be treated as a point process in time,
or space, or both. A standard approach to modelling this situation is to treat
the photon process as a Cox process directed by the fluctuating intensity of the
light beam, with this latter phenomenon modelled as the squared modulus of
a complex Gaussian process. Thus, for the (density of the) random intensity,
we take the function

λ(t) = λ|X(t)|2 (λ > 0), (6.2.7)

where X(·) is a complex Gaussian process with zero mean and complex co-
variance function C(s, t). The process λ(·) is similar to the quadratic ran-
dom measure discussed in Example 6.1(c) with appropriate attention given
to the conventions regarding a complex Gaussian process. These require that
X(t) = U(t) + iV (t), where U(·) and V (·) are real Gaussian processes such
that

E
(
U(s)U(t)

)
= E
(
V (s)V (t)

)
= C1(s, t),

E
(
U(s)V (t)

)
= −E

(
U(t)V (s)

)
= C2(s, t),

C(s, t) = E
(
X(s)X(t)

)
= 2
(
C1(s, t) + iC2(s, t)

)
.

Here it is to be understood that C1 is real, symmetric, and nonnegative-
definite, while C2 is antisymmetric (so, in particular, C2(s, s) = 0, and
E[X(s)X(t)] = 0 for all s, t).

The moments of the process λ(·) are given by a classical result concerning
the even moments of a complex Gaussian process (see e.g. Goodman and
Dubman, 1969)

E
(
X(s1) · · ·X(sk)X(t1) · · ·X(tk)

)
=

+
∣∣∣∣∣∣∣
C(s1, t1) · · · C(s1, tk)

...
. . .

...
C(sk, t1) · · · C(sk, tk)

∣∣∣∣∣∣∣
+

= C+
 s1, . . . , sk
t1, . . . , tk

 , (6.2.8)

where the permanent perB ≡ +|B|+ of a matrix B contains the same terms as
the corresponding determinant detB but with constant positive signs for each
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product of matrix elements in place of the alternating positive and negative
signs of the determinant, so, for example,

+∣∣∣∣ a b
c d

∣∣∣∣+ = ad+ bc.

It can be shown (see Minc, 1978) that for any nonnegative-definite Hermitian
matrix B, perB ≥ detB.

Equations (6.2.7) and (6.2.8), taken together with Proposition 6.2.I, show
that the factorial moment densities for the boson process are given by

m[k](t1, . . . , tk) = E
(
λ(t1) · · ·λ(tk)

)
= λk C+

 t1, . . . , tk
t1, . . . , tk

 . (6.2.9)

This result paves the way for a discussion that exactly parallels the discussion
of the fermion process of Example 5.4(c). In place of the expansion of the
Fredholm determinant d(λ) used there, we have here an analogous expansion
of the function

d+(λ) = 1 +
∞∑
k=1

λk

k!

∫
A

· · ·
∫
A

C+
u1, . . . , uk
u1, . . . , uk

du1 · · ·duk ,

where as before the observation region A is a closed, bounded set in a gen-
eral Euclidean space R

d. Corresponding to the expression (5.4.18) for the
Fredholm minor is the expression

λkR+
−λ

(
x1, . . . , xk
y1, . . . , yk

)
=

1
d+(λ)

{
λkC+

x1, . . . , xk
y1, . . . , yk


+ λk

∞∑
j=1

(−λ)j
∫
A

· · ·
∫
A

C+
x1, . . . , xk, u1, . . . , uj
y1, . . . , yk, u1, . . . , uj

du1 · · ·duj
}
.

(6.2.10)

This shows that the Janossy measures for the photon process have densities

jk(x1, . . . , xk) = λkd+(λ)R+
−λ

(
x1, . . . , xk
x1, . . . , xk

)
(k = 1, 2, . . .). (6.2.11)

Macchi (1971a) established (6.2.11) directly by evaluating the expectation

jk(x1, . . . , xk) = E
(
λ(x1) · · ·λ(xk) exp

(
−
∫
A

λ(u) du
))

[see also Grandell (1976) and Exercises 6.2.5–6 for further discussion].
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Example 6.2(c) A pseudo-Cox process: the Gauss–Poisson process. The
Gauss–Poisson process will be introduced as a two-point cluster process in
Example 6.3(d) in the next section. Here we wish only to point out that the
p.g.fl. G[h] in (6.3.30) for such a process, if the measures Q1 and Q2 there are
absolutely continuous with respect to Lebesgue measure, equals

exp
(∫

X
[1− h(x)]m(x) dx− 1

2

∫
X

∫
X

[1− h(x)] [1− h(y)] c(x, y) dxdy
)
,

where, in the notation of (6.3.30), in which Q2(·) is symmetric,

m(x) dx = Q1(dx) + 2Q2(dx×X ) and c(x, y) dxdy = 2Q2(dx× dy).

This expression is identical in form with the expression L∗[1 − h] for the
Laplace functional of a Gaussian process, {X(t): t ∈ R} say, with mean m(t)
= EX(t) and covariance c(t, u) = cov(X(t), X(u)), provided only that the
function c(t, u) is positive-definite. On the other hand, the process is not
an example of the construction described in Definition 6.2.I because, a.s., a
realization of a Gaussian process takes both positive and negative values, so
the notion of a Poisson process with parameter measure with density equal
to the realization of such a Gaussian process is void. Newman (1970) coined
the name ‘Gauss–Poisson’ because of this formal property of the p.g.fl.

This example also serves to illustrate that while the conditions of 6.2.II
are sufficient for a functional L∗[1 − h] to represent the p.g.fl. of a point
process, they are not necessary because the functional displayed at the outset
of Example 6.2(c) is not the Laplace functional of a random measure.

Exercises and Complements to Section 6.2
6.2.1 Let {In} = {(an, bn]:n = 1, 2, . . .} be a sequence of random intervals on R+ of

lengths Xn = bn − an > 0 a.s. and having gaps Yn = an+1 − bn > 0 a.s., with
{Xn} i.i.d. exponential r.v.s, {Yn} i.i.d. r.v.s independent of {Xn} and with
finite mean, and a1 = 0. Let a Cox process N on R+ be directed by a random
measure ξ, which has density λ on the set

⋃∞
n=1 In and zero elsewhere. Show

that N(·) + δ0(·) is a renewal process.
[The points of the set {an, bn:n = 1, 2, . . .} are those of an alternating renewal
process with exponential lifetimes for one of the underlying lifetime distribu-
tions. Kingman (1964) showed, effectively, that any stationary Cox process
that is also a stationary renewal process must be directed by the stationary
version of the random measure described.]

6.2.2 Discrete boson process. Let C ≡ (cij) be a (real or complex) covariance ma-
trix. The discrete counterpart of Example 5.4(c) and its associated exercises
is the mixed Poisson process obtained by taking N(i) (i = 1, . . . ,K) to be
Poisson with random parameter λ|Zi|2, where Z = (Z1, . . . , ZK) has the mul-
tivariate normal distribution N(0, C). For K = 1, this reduces to a geometric
distribution with p.g.f. P (1+ η) = 1/(1−λc211η). For K > 1, the multivariate
p.g.f. has the form

P (1 + η1, . . . , 1 + ηK) =
1

det(I − λDηC)
, (6.2.12)

where Dη = diag(η1, . . . , ηK).
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The factorial moment relations corresponding to (6.2.9) may be written
down as follows. For any k > 0, let r1, . . . , rK be nonnegative integers such
that r1+· · ·+rK = k; here, rj is to be interpreted as the number of repetitions
of the index j in defining the factorial moment

m[k](i1, . . . , ik) = E(N(1)[r1] · · ·N(K)[rK ]),

where the set (i1, . . . , ik) consists of the index j repeated rj times (j =
1, . . . ,K). We then have

m[k](i1, . . . , ik) = λkC+
 i1, . . . , ik
i1, . . . , ik

 . (6.2.13)

6.2.3 (Continuation). The relations (6.2.12) and (6.2.13) of Exercise 6.2.2 are to-
gether equivalent to the identity for the reciprocal of the characteristic poly-
nomial

1
det(I − λDηC)

= 1 +
∞∑
k=1

λk

k!

∑
perm

C+
 i1, . . . , ik
i1, . . . , ik

 ηi1 · · · ηik ,

where the inner summation extends over all distinct permutations of k indices
from the set i1, . . . , ik allowing repetitions [this is related to the Master The-
orem of MacMahon (1915, Sections 63–66); see also Vere-Jones (1984, 1997)].

6.2.4 (Continuation). Using (6.2.12), we have also

P (z1, . . . , zK) = d+(λ) det(I − λDzR−λ),

where R−λ = C(I + λC)−1 and d+(λ) = det(I + λC). From this p.g.f.,
we obtain the multivariate probabilities in the form (using the notation of
preceding exercises)

πk(i1, . . . , ik) = Pr{N(j) = rj (j = 1, . . . ,K)}

= λkd+(λ) ·
R+

−λ

(
i1, . . . , ik
i1, . . . , ik

)
r1! · · · rk! .

6.2.5 (Continuation). Derive the results of Example 6.2(b) by a suitable passage to
the limit of the last three exercises.
[An alternative route to these results uses the expansion of Z(t) in an orthog-
onal series over A: see Macchi (1971a) and Grandell (1976).]

6.2.6 (Continuation). When C(s, t) = σ2e−α|s−t| in Example 6.2(b), show that with
β =

√
α(α− 2σ2) ,

Pr{N(0, T ] = 0} = eαT ( coshβT + (α+ 2σ2)β−1 sinhβT )−1
.

6.3. Cluster Processes

Cluster processes form one of the most important and widely used models
in point process studies, whether applied or theoretical. They are natural
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models for the locations of objects in the plane or in three-dimensional space,
in a remarkable range of contexts: for example, plants, molecules, protozoa,
human settlements, stars, galaxies, and earthquake epicentres. Along the
time axis, they have been used to model photoelectric emissions, volcano
eruptions, arrivals and departures at queueing systems, nerve signals, faults
in computer systems, and many other phenomena. The cluster mechanism is
also a natural way to describe the locations of individuals from consecutive
generations of a branching process, an application with unexpectedly rich
mathematical structure as well as its obvious practical applications.

The intuitive motivation of such processes involves two components: the
locations of clusters and the locations of elements within a cluster. The su-
perposition of the latter constitutes the ‘observed’ process. To model the
cluster elements, we specify a countable family of point processes N(· | yi)
indexed by the cluster centres {yi} (a ‘cluster field’ in [MKM]). To model the
cluster locations, we suppose there is given a process Nc of cluster centres,
often unobserved, whose generic realization consists of the points {yi} ⊂ Y.
More often than not, we have Y = X ; it is useful to preserve the notational
distinction as a reminder of the structure of the process. The centres yi act as
the germs (= ancestors in the branching process context) for the clusters they
generate; it is supposed in general that there are no special features attaching
to the points of a given cluster that would allow them to be distinguished
from the points in some other cluster. More formally, we have the following
definition.

Definition 6.3.I. N is a cluster process on the c.s.m.s. X , with centre process
Nc on the c.s.m.s. Y and component processes the measurable family of point
processes {N( · | y): y ∈ Y}, when for every bounded A ∈ BX ,

N(A) =
∫

Y
N(A | y)Nc(dy) =

∑
yi∈Nc(·)

N(A | yi) <∞ a.s. (6.3.1)

The definition requires the superposition of the clusters to be almost surely
boundedly finite. There is, however, no requirement in general that the indi-
vidual clusters must themselves be a.s. finite [i.e. the condition N(X | y) <∞
a.s. is not necessary], although it is a natural constraint in many examples.
A general cluster random measure can be introduced in the same way by al-
lowing the component processes to be random measures (see Exercise 6.3.1).

For the remainder of this section, we require the component processes to
be mutually independent. We shall then speak of the component processes
as coming from an independent measurable family and thereby defining an
independent cluster process. In this definition, it is to be understood that
multiple independent copies of N(· | y) are taken when Nc{y} > 1. If Y = X
(i.e. the cluster centre process and the component processes are all defined
on the same space X and X admits translations), then the further constraint
that the translated components N(A− y | y) are identically distributed may
be added, thus producing a natural candidate for a stationary version of the
process.
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Conditions for the existence of the resultant point process are not so easily
obtained as for the Cox process, even though the superposition of the cluster
member processes involves only operations that are clearly measurable. The
difficulty revolves around the finiteness requirement embodied in equation
(6.3.1). The number of clusters that are potentially able to contribute points
to a given bounded set soars as the dimension of the state space increases,
imposing delicate constraints that have to be met by any proposed existence
theorem. For independent cluster processes, the finiteness condition can be
rephrased somewhat more formally as follows.

Lemma 6.3.II. An independent cluster process exists if and only if, for any
bounded set A ∈ BX ,∫

Y
pA(y)Nc(dy) =

∑
yi∈Nc

pA(yi) <∞ Πc-a.s., (6.3.2)

where pA(y) = Pr{N(A | y) > 0} for y ∈ Y and A ∈ BX , and Πc is the
probability measure for the process of cluster centres.

Proof. The sum (6.3.2) is required to converge a.s. as part of the definition
of a cluster process. The converse, for given Nc, is an application of the second
Borel–Cantelli lemma to the sequence of events

Ei = {cluster i contributes at least one point to the set A}.

The condition of Lemma 6.3.II can alternatively be rephrased in terms
of generating functionals (see Exercise 6.3.2). When the components of the
process are stationary (i.e. their cluster centre process is stationary and the
distribution of the cluster members depends only on their positions relative
to the cluster centre), a simple sufficient condition for the resultant cluster
process to exist is that the mean cluster size be finite; even in the Poisson
case, however, this condition is not necessary (see Exercise 6.3.5 for details).

The moments are easier to handle. Thus, taking expectations conditional
on the cluster centres yields

E[N(A) | Nc] =
∑

yi∈Nc

M1(A | yi) =
∫

Y
M1(A | y)Nc(dy),

where M1(· | y) denotes the expectation measure of the cluster member pro-
cess with centre at y, assuming this latter exists. From the assumption that
the cluster member processes form a measurable family, it follows also that
whenever M1(A | y) exists, it defines a measurable kernel (a measure in A for
each y and a measurable function of y for each fixed Borel set A ∈ BX ). Then
we can take expectations with respect to the cluster centre process to obtain

E[N(A)] =
∫

Y
M1(A | y)M c(dy), (6.3.3)

finite or infinite, where M c(·) = E[Nc(·)] is the expectation measure for the
process of cluster centres. From this representation, it is clear that the first-



178 6. Models Constructed via Conditioning

moment measure of the resultant process exists if and only if the integral in
(6.3.3) is finite for all bounded Borel sets A.

Similar representations hold for the higher-order moment measures. In
the case of the second factorial moment measure, for example, we need to
consider all possible ways in which two distinct points from the superposition
of clusters could fall into the product set A×B (A,B ∈ BX ). Here there are
two possibilities: either both points come from the same cluster or they come
from distinct clusters. Incorporating both cases, supposing the cluster centre
process is given, we obtain

E[N [2](A×B | Nc)] =
∫

Y
M[2](A×B | y)Nc(dy)

+
∫

Y(2)
M1(A | y1)M1(B | y2)N [2]

c (dy1 × dy2),

where the superscript in N [2] denotes the process of distinct pairs from N and
in the second integral we have used the assumption of independent clusters.
Taking expectations with respect to the cluster centre process, we obtain for
the second factorial moment of the cluster process

M[2](A×B) =
∫

Y
M[2](A×B | y)M c(dy)

+
∫

Y(2)
M1(A | y1)M1(A | y2)M c

[2](dy1 × dy2). (6.3.4)

Again, the second factorial moment measure of the cluster process exists if
and only if the component measures exist and the integrals in (6.3.4) converge.
Restated in terms of the factorial cumulant measure, equation (6.3.4) reads

C[2](A×B) =
∫

Y(2)
M(A | y1)M(B | y2) Cc[2](dy1 × dy2)

+
∫

Y
M[2](A×B | y)M c(dy). (6.3.5)

Many of these relationships are derived most easily, if somewhat mechani-
cally, from the portmanteau relation for the probability generating function-
als, which takes the form, for h ∈ V(X ) and exploiting the independent cluster
assumptions,

G[h] = E
(
G[h | Nc]

)
= E

[
exp
(
−
∫

Y

(
− logGm[h | y]

)
Nc(dy)

)]
= Gc

[
Gm[h | · ]

]
, (6.3.6)

where Gm[h | y] for h ∈ V(X ) is the p.g.fl. of N(· | y), and

G[h | Nc] =
∏
yi∈Nc

Gm[h | yi] = exp
[
−
∫

Y

(
− logGm[h | y]

)
Nc(dy)

]
(6.3.7)
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is the conditional p.g.fl. of N given Nc. The a.s. convergence of the infinite
product in (6.3.7) is equivalent to the a.s. convergence of the sum in Lemma
6.3.II by Exercise 6.3.2. The measurable family requirements of the family
of p.g.fl.s for the cluster centres follow from the initial assumptions for the
process. Thus, the p.g.fl. representation is valid whenever the cluster process
exists.

One class of cluster processes occurs so frequently in applications, and is so
important in the theory, that it warrants special attention. In this class, (1◦)
the cluster centres are the points of a Poisson process, and (2◦) the clusters
are independent and finite with probability 1. Whenever condition (1◦) holds,
we speak of a Poisson cluster process. The basic existence and moment results
for Poisson cluster processes are summarized in the proposition below.

Proposition 6.3.III. Suppose that the cluster centre process is Poisson with
parameter measure µc(·) and that the cluster member processes form an in-
dependent measurable family. Then, using the notation above,
(i) a necessary and sufficient condition for the existence of the resultant

process is the convergence for each bounded A ∈ BX of the integrals∫
Y
pA(y)µc(dy); (6.3.8)

(ii) when the process exists, its p.g.fl. is given by the expression

G[h] = exp
(
−
∫

Y

(
1−Gm[h | y]

)
µc(dy)

)
; (6.3.9)

(iii) the resultant process has first and second factorial moment measures and
second factorial cumulant measure given, respectively, for A,B ∈ BX , by

M1(A) = M[1](A) =
∫

Y
M[1](A | y)µc(dy), (6.3.10)

M[2](A×B) =
∫

Y
M[2](A×B | y)µc(dy) +M1(A)M1(B), (6.3.11)

C[2](A×B) =
∫

Y
M[2](A×B | y)µc(dy); (6.3.12)

(iv) when X = R
d, the distribution function F of the distance from the origin

to the nearest point of the process is given by

1− F (r) = exp
(
−
∫

Y
pSr(0)(y)µc(dy)

)
, (6.3.13)

where Sr(0) is the sphere in X = R
d of radius r and centre at 0.

Proof. Since E[Nc(dy)] = M c(dy) = µc(dy) for a Poisson cluster process,
condition (6.3.8) implies the a.s. convergence of (6.3.2) and hence the exis-
tence of the process. If the process exists, then since for h̄ ∈ V(Y), Gc[h̄] =
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exp
(
−
∫

[1 − h̄(y)]µc(dy)
)
, equation (6.3.9) is just the appropriate special

form of (6.3.6) with h̄(y) = Gm[h | y] for h ∈ V(X ) and so it holds. Putting
h(x) = 1− IA(x), the integral in (6.3.9) reduces to

1−Gm[1− IA(·) | y] = pA(y) ,

from which the necessity of (6.3.8) is obvious.
The moment relations are just restatements of equations (6.3.3–5) for the

special case of the Poisson process, where M c(dy) = µc(dy) and C[2](dy1 ×
dy2) ≡ 0. The final equation (6.3.13) is a consequence of the fact that if R is
the distance from the origin to the nearest point of the process, then R > r
if and only if the sphere Sr(0) contains no point of the process, which yields
(6.3.13) as the special case of (6.3.9) with h(x) = 1− ISr(0)(x).

If X = Y = R
d and the process is stationary, and the factorial measures

entering into equations (6.3.10–12) have densities, then the latter equations
simplify further. In this case, the cluster centre process reduces to a Poisson
process with constant intensity µc, say, and the first-moment density for the
cluster member process can be written

m1(x | y) = m1(x− y | 0) ≡ ρ1(x− y), say.

Similarly, the second factorial moment and cumulant densities can be written

m[2](x1, x2 | y) = m[2](x1 − y, x2 − y) ≡ ρ[2](x1 − y, x2 − y),

c[2](x1, x2 | y) = c[2](x1 − y, x2 − y) ≡ γ[2](x1 − y, x2 − y).

Substituting, we obtain simplified forms for the corresponding densities of the
cluster process:

m = µc

∫
X
ρ1(u) du = µcM1(X | 0) = µcE[Nm(X | 0)],

m̆[2](u) = m[2](y, y + u) = µc

∫
X
ρ[2](w, u+ w) dw +m2, (6.3.14)

c̆[2](u) = µc

∫
X
ρ[2](w, u+ w) dw.

A more systematic treatment of such reduced densities m̆[2] and c̆[2] is given
in Section 8.1.

The particularly simple form of these expressions means that it is often
possible to obtain explicit expressions for the second moments of the counting
process in such examples. Note also that since the cumulant density c̆[2](u)
is everywhere nonnegative, the resultant process is generally overdispersed
relative to a Poisson process with the same first-moment measure (i.e. it shows
greater variance in the number of counts). The alternative terms in the first
line of (6.3.14) illustrate the sufficient condition for the existence of the process
mentioned earlier and in Exercise 6.3.5: if the mean cluster size M1(X | 0)
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is finite, then the first-moment measure of the resultant process exists, and a
fortiori the resultant process itself exists.

Other aspects of the process, such as interval properties, are generally less
easy to obtain. Nevertheless, some partial results may be obtained in this
direction via equation (6.3.13). Suppose that X = Y = R. Then, from
(6.3.13) but using the half-interval (0, t) in place of the ‘sphere’ (−t, t), the
survivor function S(t) [see below (2.1.3)] for the length of the interval from 0
to the first point of the process in R+ is given by

S(t) = exp
(
−
∫

R

p(t | y)µc(dy)
)
, (6.3.15)

where p(t | y) = p(0,t)(y), a special case of the function pA(y) in (6.3.2). Tak-
ing logarithms of (6.3.15) and differentiating, we see that the hazard function
r(t) for this first interval is given by

r(t) = −
∫

R

∂p(t | y)
∂t

µc(dy) .

When the process is stationary, a further differentiation gives the hazard func-
tion q(·) of the distribution of the interval between two consecutive points of
the process, as in Exercise 3.4.2.

In higher dimensions, a similar approach may be used for the nearest-
neighbour distributions, although explicit expressions here seem harder to
determine (see Chapter 15).

In all of Examples 6.3(a)–(e) below, the spaces X and Y of Definition 6.3.I
are the same.

Example 6.3(a) The Neyman–Scott process: centre-satellite process; process
of i.i.d. clusters (Neyman and Scott, 1958, 1972; Thompson, 1955; Warren,
1962, 1971). Suppose that the individual cluster members are independently
and identically distributed; that is, we are dealing with i.i.d. clusters as in
Section 5.1 [see also Examples 5.3(a) and 5.5(a)]. Write F (dx | y) for the
probability distribution of the cluster members with cluster centre at y and
Q(z | y) for the p.g.f. of the total cluster size (assumed finite). Then, the clus-
ter member p.g.fl. is given by (5.5.12), which in the notation above becomes

Gm[h | y] = Q

(∫
X
h(x)F (dx | y)

∣∣∣ y), (6.3.16)

while the corresponding factorial measures take the form

M[k](dx1 × · · · × dxk | y) = µ[k](y)
k∏
i=1

F (dxi | y), (6.3.17)

where µ[k](y) is the kth factorial moment for the cluster size distribution when
the cluster centre is at y. Note that if F is degenerate at y, we obtain the
compound Poisson process discussed in Example 2.1.10(b) and again in the
next section, while if every cluster has exactly one point [so Q(z | y) = z], we
have random translations, first mentioned above at Exercise 2.3.4(b).
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In many practical applications with X = R
d, the cluster centre process is

stationary Poisson at rate µc, Q(z | y) and µ[k](y) are independent of y, and
F (dx | y) is a function of the vector distance x − y alone and has density
function f(x | y) = f̆(x − y) = (d/dx)F̆ (x − y). With these simplifying
assumptions, the resultant p.g.fl. takes the compact form

G[h] = exp
{
µc

∫
Rd

[
Q

(∫
Rd

h(y + x) F̆ (dx)
)
− 1
]

dy
}
, (6.3.18)

while from the densities in (6.3.14), the mean rate and second factorial cumu-
lant measures for the resultant process are given by m = µcµ[1] and

c̆[2](u) = µcµ[2]

∫
Rd

f̆(y + u) f̆(y) dy, (6.3.19)

respectively. Also, for the survivor function S(t) of the interval to the first
point in the case d = 1, we obtain

− logS(t) = µc

∫
R

[
1−Q

(
1− F̆ (y + t) + F̆ (y)

)]
dy (6.3.20)

with a pleasing simplification when F̆ (·) is the exponential distribution (see
Exercise 6.3.7). Exercise 6.3.10 sketches a two-dimensional extension.

Example 6.3(b) Bartlett–Lewis model: random walk cluster process; Poisson
branching process (Bartlett, 1963; Lewis, 1964a, b). In this example, we take
X = Y = R

d and suppose that the points in a cluster are the successive end
points in a finite random walk, starting from and including the cluster centre.
The special case where the random walk has unidirectional steps in R

1 (i.e.
forms a finite renewal process), was used as a road traffic model in Bartlett
(1963) and studied in depth by Lewis (1964a) as a model for computer failures.

A closed-form expression for Gm[h | y] does not appear to exist, although
for the special case where both the step lengths and the number of steps are
independent of the positions of the cluster centre, it can be represented in the
form

h(y)
(
q0 + q1

∫
X
h(y + x1)F (dx1)

+ q2

∫
X (2)

h(y + x1)h(y + x1 + x2)F (dx1)F (dx2) + · · ·
)
,

(6.3.21)

where qj is the probability that the walk terminates after j steps and F is the
common step-length distribution.

Assuming also a constant intensity µc for the Poisson process of cluster
centres, the mean density takes the form

m = µc

∞∑
j=0

(j + 1)qj = µc(1 +m[1]), (6.3.22)

while the reduced form for the second factorial cumulant measure is given by
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C̆[2](du) = µc

∞∑
j=1

qj

j∑
k=1

(j − k + 1)
(
F k∗(du) + F k∗(−du)

)
. (6.3.23)

Expressions for the nearest point and nearest-neighbour distance can be
obtained at least for the case X = R and unidirectional F (·). Under these
conditions, the probability p(t | y) that a cluster with centre at y has a point
in the interval (0, t) is given by

p(t | y) =



0 for y > t,
1 for 0 ≤ y ≤ t,
∞∑
i=0

ri+1

|y|∫
0

[
F (|y|+ t− x)− F (|y| − x)

]
dF i∗(x) for y < 0,

where ri =
∑∞
j=1 qj . Substituting in (6.3.17) and simplifying, we obtain for

the log survivor and hazard functions

− logS(t) = µct+ µcm[1]

∫ t

0
[1− F (x)] dx = mt− µcm[1]

∫ t

0
F (x) dx,

(6.3.24a)
r(t) = µc + µcm[1]

(
1− F (t)

)
, (6.3.24b)

where 1 +m[1] = m/µc as in (6.3.22) (see also Exercise 6.3.9).

The next model, the Hawkes process, figures widely in applications of point
processes to seismology, neurophysiology, epidemiology, and reliability. It is
also an important model from the theoretical point of view and will figure
repeatedly in later sections of this book. One reason for its versatility and
popularity is that it combines in the one model both a cluster process repre-
sentation and a simple conditional intensity representation, which is moreover
linear. It comes closest to fulfilling, for point processes, the kind of role that
the autoregressive model plays for conventional time series. However, the class
of processes that can be approximated by Hawkes processes is more restricted
than the class of time series models that can be approximated by autore-
gressive models. In particular, its representation as a cluster process means
that the Hawkes process can only be used in situations that are overdispersed
relative to the Poisson model.

In introducing the model, Hawkes (1971a, b, 1972) stressed the linear rep-
resentation aspect from which the term ‘self-exciting’ derives. Here we derive
its cluster process representation, following Hawkes and Oakes (1974), mainly
because this approach leads directly to extensions in higher dimensional spaces
but also because it simplifies study of the model.

Example 6.3(c) Hawkes process: self-exciting process; infectivity model [see
also Examples 6.4(c) (marked Hawkes process), 7.2(b) (conditional intensity
representation), 8.2(e) (Bartlett spectrum), 8.5(d) (mutually exciting point
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processes) and 8.3(c) (linear prediction formulae)]. The points {xi} of a
Hawkes process are of two types: ‘immigrants’ without extant parents in
the process, and ‘offspring’ that are produced by existing points. An evolu-
tionary construction of the points is as follows. Immigrants {yj}, say, arrive
according to a Poisson process at constant rate µc, while the offspring arise as
elements of a finite Poisson process that is associated with some point already
constructed. Any point of the process, located at x′, say, has the potential
to produce further points whose locations are those of a (finite) Poisson pro-
cess with intensity measure µ(A − x′); we assume that µ(·) has total mass
ν ≡ µ(X ) < 1 and that all these finite Poisson processes are mutually in-
dependent and, given the point that generates them, identically distributed
(modulo the shift as noted) and independent of the immigrant process as
well. Consequently, each immigrant has the potential to produce descendants
whose numbers in successive generations constitute a Galton–Watson branch-
ing process with Poisson offspring distribution whose mean is ν. Since ν < 1,
this branching process is subcritical and therefore of finite total size with
mean 1/(1− ν) <∞ if we include the initial immigrant member. Regard the
totality of all progeny of a given immigrant point yj as a cluster; then the
totality of all such immigrant points and their clusters constitutes a Hawkes
process.

An important task is to find conditions that ensure the existence of a
stationary Hawkes process (i.e. of realizations of point sets {xi} on the whole
space X = R

d having the structure above and with distributions invariant
under translation). Since the immigrant process is stationary, a sufficient
condition, by Exercise 6.3.5, is that the mean cluster size be finite [or else,
since the immigrant process is Poisson, Proposition 6.3.III(i) can be invoked].

The cluster centres may be regarded as ‘infected immigrants’ from outside
the system and the clusters they generate as the process of new infections
they produce. Then, µ(dx) is a measure of the infectivity at the point x due
to an infected individual at the origin.

The key characteristics of any cluster are the first- and second-moment
measures for the total progeny. From Exercise 5.5.6, the first of these is given
by

M1(A | 0) = δ0(A) + µ(A) + µ2∗(A) + · · · (bounded A ∈ BX ),

while the second satisfies the integral equation∫
X
M[2](dy, y +A | 0)

=
∫

X
M1(y +A | 0)M1(dy | 0)− δ0(A) +

∫
X
M[2](du, u+A | 0)

∫
X
µ(dv),

so that

(1−ν)
∫

X
M[2](dy, y+A | 0) =

∫
X
M1(y+A | 0)M1(dy | 0)−δ0(A). (6.3.25)
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From the general results (6.3.10–12), it now follows that the mean density of
the resultant cluster process is given by

m = λM1(X | 0) = µc/(1− ν), (6.3.26)

while for its factorial covariance measure we have

C̆[2](A) = µc

∫
X
M[2](dy, y +A | 0)

=
µc

1− ν

[ ∫
X
M1(y +A | 0)M1(dy | 0)− δ0(A)

]
.

(6.3.27)

This corresponds to the reduced density

c̆[2](x) =
µc

1− ν

[ ∫
X
m1(y)m1(x+ y) dy − δ0(x)

]
when M1(A | 0) is absolutely continuous with density m1(x), say, apart from
the δ-function at the origin. An important feature of these formulae is that
they lead to simple Fourier transforms, and we exploit this fact later in illus-
trating the spectral theory in Example 8.2(e).

For a parametric example, with X = R and µ(·) with support in R+,
suppose that for some α > 0 and 0 < ν < 1

µ(dx) =
{
ναe−αxdx for x ≥ 0,
0 otherwise.

Then M1(·) is absolutely continuous apart from an atom at the origin; for its
density m1(·), we find on x ≥ 0 that

m1(x) = δ(x) + ναe−α(1−ν)x.

It follows that C̆[2](·) is absolutely continuous also, and by substituting in
(6.3.26) and (6.3.27), we find that the covariance density of the stationary
process is given by

c̆[2](y) =
µcαν(1− 1

2ν)
(1− ν)2

e−α(1−ν)|y|. (6.3.28)

Example 6.3(d) The Gauss–Poisson process: process of correlated pairs
(Bol’shakov, 1969; Newman, 1970; Milne and Westcott, 1972). This process
has the curious distinction of being simultaneously a Neyman–Scott process,
a Bartlett–Lewis process, and a pseudo-Cox process [Example 6.2(c)]. Its
essential characteristic is that the clusters contain either one or two points
(so it exists if and only if the cluster centre process exists). Let one point be
taken as the cluster centre, let F (dx | y) denote the distribution of the second
point relative to the first, and let q1(y), q2(y) be the probabilities of 1 and 2
points, respectively, when the centre is at y. Then, we may regard the process
as a special case of the Example 6.3(b) with

Gm[h | y] = q1(y)h(y) + q2(y)h(y)
∫

Y
h(x)F (dx | y)
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so that for the resultant process (and recall that X = Y = R
d here),

logG[h] =
∫

X

(
h(y)− 1

)
q1(y)µ(dy)

+
∫

X

∫
X

(
h(x)h(y)− 1

)
q2(y)µ(dy)F (dx | y). (6.3.29)

This is not quite in standard form because the measure q2(y)µ(dy)F (dx | y)
is not symmetric in general. However, the value of the p.g.fl. is unaltered
when we replace this measure by its symmetrized form Q2(dx × dy), say, so
without loss of generality we may write the p.g.fl. in the form

logG[h] =
∫

X

(
h(x)−1

)
Q1(dx)+

∫
X (2)

(
h(x)h(y)−1

)
Q2(dx×dy), (6.3.30)

where Q1 and Q2 are boundedly finite and Q2 is symmetric with boundedly
finite marginals. If now we define Q̃2 = 2Q2 and substitute in (6.3.30), we
obtain the standard form in (6.3.32) below using Khinchin measures.

Conversely, given any two such measures Q1 and Q2, any expression of the
form (6.3.30) represents the p.g.fl. of a process of correlated points because
we can first define a measure µ by

µ(A) = Q1(A) +Q2(A×X ),

then appeal to the Radon–Nikodym theorem to assert the existence µ-a.e. of
nonnegative functions q1(·), q2(·) with q1(x) + q2(x) = 1 satisfying, for all
bounded A ∈ BX ,

Q1(A) =
∫
A

q1(x)µ(dx) and Q2(A×X ) =
∫
A

q2(x)µ(dx),

and finally use Proposition A1.5.III concerning regular conditional probabili-
ties to define a family of probability measures {F (· | x):x ∈ X} by

Q2(A×B) =
∫
A

F (B | x)Q2(dx×X ) =
∫
A

F (B | x)q2(x)µ(dx)

for all bounded A and all B ∈ BX .

This discussion characterizes the p.g.fl. of such two-point cluster processes,
but Milne and Westcott (1972) give the following stronger result.

Proposition 6.3.IV. For (6.3.30) to represent the p.g.fl. of a point process,
it is necessary and sufficient that

(i) Q1 and Q2 be nonnegative and boundedly finite, and
(ii) Q2 have boundedly finite marginals.

Proof. The additional point to be proved is that (6.3.30) fails to be a p.g.fl.
if either Q1 or Q2 is a signed measure with nontrivial negative part. Exercise
6.3.11 sketches details [see also Example 6.2(c) and Exercises 6.3.12–13].
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Observe that for the process with p.g.fl. given by (6.3.30), the expectation
and second cumulant measures exist and are given, respectively, by

M(dx) = Q1(dx) +Q2(dx×X ) +Q2(X × dx), (6.3.31a)
C[2](dx1 × dx2) = Q2(dx1 × dx2) +Q2(dx2 × dx1), (6.3.31b)

the representation holding whether or not Q2 is given in its symmetric version.
It appears to be an open problem to determine conditions similar to those

in Proposition 6.3.IV for an expansion such as (6.3.30) with just k terms
(k ≥ 3) to represent the log p.g.fl. of a point process [see Milne and Westcott
(1993) for discussion].

Example 6.3(e) A bivariate Poisson process [see also Examples 7.3(a) (in-
tensity functions and associated martingales), 7.4(e) (random-time transfor-
mation to unit-rate Poisson process) and 8.3(a) (spectral properties), and
Exercise 8.3.7 (joint forward recurrence time d.f.)]. A bivariate process can
be represented as a process on the product space X × {1, 2}, where indices
(or marks) 1, 2 represent the two component processes. The p.g.fl. expansions
are most conveniently written out with the integrals over each component
space taken separately. Consider, in particular, a Poisson cluster process on
X × {1, 2} in which the clusters may be of three possible types only: a single
point in process 1, a single point in process 2, and a pair of points, one from
each process. Arguments analogous to those in the preceding example show
that the joint p.g.fl. can be written in the form

logG[h1, h2] =
∫

X

(
h1(x)− 1

)
Q1(dx) +

∫
X

(
h2(x)− 1

)
Q2(dx)

+
∫

X (2)

(
h1(x1)h2(x2)− 1

)
Q3(dx1 × dx2),

where Q1, Q2 and Q3 are boundedly finite and Q3 has boundedly finite
marginals. The marginal p.g.fl. for process 1 can be found by setting h2 = 1
and is therefore a Poisson process with parameter measure

µ1(dx) = Q1(dx) +Q3(dx×X );

similarly, the process with mark 2 is also Poisson with parameter measure

µ2(dx) = Q2(dx) +Q3(X × dx).

Finally, the superposition of the two processes is of Gauss–Poisson type, with

Q̃1(dx) = Q1(dx) +Q2(dx)

and (taking the symmetric form)

Q̃2(dx1 × dx2) = 1
2 [Q3(dx1 × dx2) +Q3(dx2 × dx1)].
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Evidently, this is the most general example of a bivariate Poisson cluster pro-
cess with Poisson marginals since clusters of any higher order would introduce
higher-order clusters in the marginals and hence destroy the Poisson property.

The resulting fidi distributions are infinitely divisible bivariate Poisson dis-
tributions of the kind studied by Holgate (1964) and Milne (1974); see also
Griffiths, Milne and Wood (1979). The particular bivariate distribution stud-
ied by Dwass and Teicher (1957) corresponds to the situation where the pairs
must occur for both processes at the same location x; the resultant process is
then not only infinitely divisible but also has complete independence.

Example 6.3(e) appears in many guises—for example as the joint process
of the input and output streams of the M/M/∞ queue. It is closely related to
the Gauss–Poisson process, which is nothing other than the ‘ground process’
(see Section 6.4) of the bivariate example above. We shall use it repeatedly
to illustrate the structure of multivariate processes—their moments, spectra,
conditional intensities, and compensators. See in particular Example 7.3(a).

There are, of course, many examples of bivariate Poisson processes that are
not infinitely divisible; one class may be obtained by mixing over the relative
proportions of pairs and single points in the example above (see Exercise
6.3.12). A queueing example is given in Daley (1972a).

The previous examples illustrate the point that the same process can be
represented in several equivalent ways as a Poisson cluster process: the Gauss–
Poisson process, for example, can be represented either as a Neyman–Scott
process or as a Bartlett–Lewis type process for appropriately chosen special
cases of those models. This same example also points the way to an intrinsic
characterization of Poisson cluster processes. In the next result, the mea-
sures Kk(·) are extended versions of the Khinchin measures defined for finite
processes by (5.5.5).

Proposition 6.3.V. The p.g.fl. of every Poisson cluster process with a.s.
finite clusters can be uniquely represented in the form

logG[h] =
∞∑
k=1

1
k!

∫
X (k)

(
h(x1) . . . h(xk)− 1

)
Kk(dx1 × · · · × dxk), (6.3.32)

where the {Kk} form a family of symmetric, boundedly finite measures on
B(X (k)) such that each Kk(·) has boundedly finite marginals Kk( ·×X (k−1)),
and the sum

∞∑
k=1

1
k!

k∑
i=1

(
k

i

)
Kk

(
A(i) × (Ac)(k−i)) (6.3.33)

is finite for bounded A ∈ BX .
Conversely, given any such family of measures {Kk: k ≥ 1}, the p.g.fl.

(6.3.32) represents the p.g.fl. of a Poisson cluster process.

Proof. Suppose there is given a Poisson cluster process with cluster centres
defined on the space Y and having parameter measure µc(·). Suppose also
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that the clusters are a.s. finite, so that they can be represented in terms of
a family of Janossy measures Jk(· | y) (see Section 5.3), conditioned by the
location y of the cluster centre. Note that by definition these measures are
symmetric. Consequently, we consider the quantities Kk(·) defined by setting

Kk(B) =
∫

Y
Jk(B | y)µc(dy)

(
B ∈ B(X (k))

)
and check that they are in fact boundedly finite measures. From Proposition
6.3.III, we know that the integral

∫
Y pA(y)µ(dy) converges for each bounded

set A ∈ BX . Here, pA(y) is just the sum over k ≥ 1 of the probabilities that
the cluster has k members of which at least one falls into the set A, so that,
referring to (5.3.10), pA(y) equals

∞∑
k=1

Jk(X (k) | y)− Jk((Ac)(k) | y)
k!

=
∞∑
k=1

k∑
i=1

(
k

i

)
Jk
(
A(i) × (Ac)(k−i) | y

)
k!

.

The finiteness of Kk(B) follows when B is of the form A(k) for bounded
A. Similarly, by taking the term in the sum with i = 1, we deduce the
bounded finiteness of the marginals. Finally, (6.3.33) is just a restatement of
the necessary and sufficient condition that (6.3.8) be finite.

We can then obtain the representation (6.3.32) from the standard repre-
sentation of a Poisson cluster p.g.fl.

logG[h] =
∫

Y
(G[h | y]− 1)µc(dy)

(
h ∈ V(X )

)
by expressing G[h | y] in terms of the associated Janossy measures as in equa-
tion (5.5.3) and rearranging the integrations. Note that the term with k = 0
drops out of the summation. Uniqueness follows from standard results con-
cerning uniqueness of the expression of the p.g.fl. and its logarithm about the
origin.

Now suppose conversely that a family of measures Kk satisfying the stated
conditions is given. We wish to construct at least one Poisson cluster process
that has the p.g.fl. representation (6.3.32). Take X = Y, and let the measure
µ0(·) be defined over bounded A ∈ BX by

µ0(A) =
∞∑
k=1

Kk(A×X (k−1))/k! (6.3.34)

as the parameter measure for the cluster centre process. Note that the finite-
ness condition (6.3.33) entails the finiteness of (6.3.34) because

k∑
i=1

(
k

i

)
Kk

(
A(i) × (Ac)(k−i)) =

k∑
i=1

k

i

(
k − 1
i− 1

)
Kk

(
A×A(i−1) × (Ac)k−i)

≥ Kk(A×X (k−1)).
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As in the Gauss–Poisson case, we can define µ0-a.e. a probability distribu-
tion {qk(y)} on k = 1, 2, . . . as the Radon–Nikodym derivatives in∫

A

qk(y)µ0(dy) =
Kk(A×X (k−1))

k!
,

these probabilities {qk(y)} determining the number of points k in a cluster
with centre y. The cluster member structure can be defined by taking one
point as the cluster centre and locating the positions of the others relative to
it through the distribution Pk−1(B | y) defined µ0-a.e. over B ∈ B(X (k−1))
by ∫

A

Pk−1(B | y)Kk(dy ×X (k−1)) = Kk(A×B),

appealing again to the existence of regular conditional probabilities. We can
now check that the process with these components has the p.g.fl. representa-
tion (6.3.32) and that the existence condition (6.3.33) is satisfied.

Note that there are many other processes that could be constructed from
the same ingredients. In particular (see below Theorem 2.2.II), we can in-
troduce an arbitrary probability q̃0(y) of empty clusters with 0 ≤ q̃0(y) < 1
(all y) by redefining

q̃k(y) =
(
1− q̃0(y)

)
qk(y) (k = 1, 2, . . .)

and setting
µ̃c(dy) =

(
1− q̃0(y)

)−1
µc(dy).

The p.g.fl. is unaltered by this transformation, and the resultant processes are
equivalent; we record this formally.

Corollary 6.3.VI. The probability of a zero cluster is not an estimable
parameter in any Poisson cluster model.

A similar range of possibilities exists for the way the cluster centre x is
defined relative to the joint distributions Pk(·) of the points in the cluster. In
the construction above, we have chosen to fix the centre at an arbitrary point
of the cluster. The measures Jk( · | y) are then related to the Pk( · | y) by
J1(A) = P1(A) and, for k ≥ 2, the symmetrization relations

Jk(A1 ×A2 × · · · ×Ak | y) = k−1
∑
sym

δy(A1)Pk−1(A2 × · · · ×Ak | y).

Alternatively, we might prefer to locate the cluster centre at the multivariate
centre of mass of the distribution (assuming this to be defined) or else in some
other manner. This can be done without altering the final form of the p.g.fl. If
it is necessary to select one particular form of representation for the process,
we shall choose that used in the proof above and refer to it as the regular
representation of the given process. The proposition implies that there is a
one-to-one correspondence between measures on B(M#

X ) induced by Poisson
cluster processes and the elements in their regular representations.
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Exercises and Complements to Section 6.3
6.3.1 LeCam’s precipitation process. Formulate a definition for a general cluster

random measure ζ analogous to Definition 6.3.I by replacing {N(· | y)} by
a measurable family of random measures {ξ( · | y)}. When these components
are independent and Lξ[f | y] denotes the Laplace functional of ξ( · | y) defined
over f ∈ BM+(X ) [see around (6.1.8)], the Laplace functional Lζ of ζ is related
to {Lξ[f | y]} and the p.g.fl. Gc of the cluster centre process by

Lζ = Gc[Lξ[f | · ] ]

provided ζ is well defined. [This model is discussed in LeCam (1961), who
was motivated by the problem of modelling precipitation.]

6.3.2 Show that an independent cluster process exists if and only if, for each h ∈
V(X ), the infinite product G[h | Nc] =

∏
i
Gm[h | yi] converges Πc-a.s.

6.3.3 Frequently, it may be desired specifically to include the cluster centres with
the points generated by the cluster member processes with p.g.fl. Gm[h | y].
Show that the modified process has p.g.fl. Gc[h(·)Gm[h | · ] ].

6.3.4 Moment measures for a cluster process. For a cluster process, the r.v. Xf ≡∫
X f(y)N(dy) can be expressed as the sum

∑
i
Yf (yi), where the yi are the

cluster centres and Yf (y) =
∫

X f(x)Nm(dx | y) is the potential contribution
to Xf from a cluster member with centre at y. Assume that for f ∈ BM+(X )

M1,f (y) ≡ E[Yf (y)] =
∫

X
f(x)M1(dx | y) < ∞,

M2,f (y) ≡ E[Y 2
f (y)] =

∫
X (2)

f(x1)f(x2)M2(dx1 × dx2 | y) < ∞.

Use a conditioning argument to obtain the basic relations

EXf =
∫

Y
E[Yf (y)]Mc(dy) =

∫
Y
M1,f (y)Mc(dy)

=
∫

Y

∫
X
f(x)M1(dx | y)Mc(dy),

EX2
f =
∫

Y
V2(y)Mc(dy) +

∫
Y(2)

M1,f (y)M1,f (z)Mc
2 (dy × dz),

varXf =
∫

Y
V2(y)Mc(dy) +

∫
Y(2)

M1,f (y)M1,f (z)Cc2(dy × dz),

where V2(y) = M2,f (y) − (M1,f (y))2 = varYf (y). Derive equations (6.3.3–5)
by considering also cov(Xf , Xg) and setting f(·) = IA(·), g(·) = IB(·).
[Hint: Take care in passing from ordinary to factorial moments.]

6.3.5 (a) Show that a sufficient condition for the existence of a stationary cluster
process is that the mean cluster size be finite.

(b) Show by counterexample that the condition is not necessary, even for a
Poisson cluster process.
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[Hint: For part (a), show first that in the stationary case,

M1(A) = µc

∫
X
M1(A | x) dx = µc

∫
X
M1(A− x | 0) dx = m�(A),

and then observe that p(A | x) ≤ M1(A | x). For part (b), consider a com-
pound Poisson process with infinite mean batch size.]

6.3.6 (a) Show that a stationary Poisson cluster process is simple if and only if
each cluster member process is simple.

(b) When this condition is satisfied, show that the d.f. F corresponding to
an interval between successive points of the process has coefficient of
variation ≥ 1. [Hint: Show that R(t) ≡ − logS(t) in (6.3.8) is subadditive
in t > 0 and hence that S(t) ≥ exp(−R′(0+)t). Use Korolyuk’s theorem
to identify 1/R′(0+) as the first moment of F , and use a hazard function
argument (see Exercise 3.4.2) to identify the second moment of F with
(2/R′(0+))

∫∞
0
S(t) dt. Exercise 6.3.9(b) below gives a special case.]

6.3.7 For a Neyman–Scott Poisson cluster process as around (6.3.20) with Y = X =
R, suppose F (x) has an exponential distribution. Use (6.3.20) to show (see
Vere-Jones, 1970) that the hazard function below (6.3.15) for the distance
from the origin to the nearest point of the process is given by

r(t) =
µc(1 −Q(e−λt))

1 − e−λt .

6.3.8 Consider a Neyman–Scott cluster process with cluster centres yi the points
of a Poisson process at rate µc and for each such point a Poisson-distributed
random number ni of points, with mean Yi for an i.i.d. sequence of r.v.s {Yi},
are located at {yi+xij : j = 1, . . . , ni}, where the xij are i.i.d. with probability
density g(·). Show that such a process {yi + xij : i = 1, . . . , ni, all i} is
identical with the shot-noise process of Example 6.2(a).

6.3.9 (a) Evaluate the first-moment measure of the interval (0, t] for a cluster with
centre y in a Bartlett–Lewis process as

Mc((0, t] | y) =


0 y > t,

1 +
∑∞

i=1 riF
i∗(t− y) 0 < y ≤ t,∑∞

i=1 ri[F
i∗(t+ |y|) − F i∗(|y|)] y ≤ 0.

(b) Show that the hazard function for the interval distribution in the process
corresponding to (6.3.24) is

r(t) = µc + µcm[1](1 − F (t)) − m[1]f(t)
1 +m[1](1 − F (t))

,

where f(t) is the density corresponding to F (t). Now verify Exercise
6.3.6(b): the interval distribution has coefficient of variation ≥ 1 (Lewis,
1964a).

6.3.10 Suppose the common d.f. in a Neyman–Scott type process in R
2 is circular

normal with density f(x, y) = (2π)−1 exp[− 1
2 (x2 + y2)]. Show that the prob-

ability that a particular point of a given cluster falls in the circle of radius r
and centre at the origin, when the cluster centre is at a distance ρ from the
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origin, equals

P (r | ρ) ≡ e−ρ2/2
∫ t

0

ue−u2/2I0(uρ) du,

where I0 is the modified Bessel function of zero order. Then the log sur-
vivor function of the distance from the origin to the nearest point of such a
Neyman–Scott Poisson cluster process, with cluster p.g.f. Q(z), is given by

− logS(r) = 2πµc

∫ ∞

0

[1 −Q(1 − P (r | ρ))] ρ dρ.

In particular, if the number in each cluster has a Poisson distribution with
mean λ,

− logS(r) = 2πµc

∫ ∞

0

(1 − e−λP (r|ρ)) ρ dρ.

6.3.11 Show that P (z) = exp{q1(z−1)+q2(z2 −1)} is a univariate p.g.f. if and only
if q1 ≥ 0, q2 ≥ 0, and hence complete the proof of Proposition 6.3.IV.
[Hint: To be a p.g.f., P (z) must have nonnegative coefficients as a power
series in z, while by virtue of its representation, P (z) is an entire function.
Hence, show that logP (z) must be well defined and nondecreasing on the
whole positive half-line z > 0, and deduce that both q1 and q2 ≥ 0.]

6.3.12 Show that a point process N is Gauss–Poisson if and only if the first two
Khinchin measures are nonnegative with boundedly finite marginals and all
remaining Khinchin measures vanish. [This is a rephrasing of Proposition
6.3.IV and Examples 6.2(c) and 6.3(d).]

6.3.13 Show that the functional of (possibly signed) measures Q1(·) and Q2(· × ·)∫
X

[h(x) − 1]Q1(dx) + 1
2

∫
X (2)

[h(x) − 1] [h(y) − 1]Q2(dx× dy)

equals the logarithm of the p.g.fl. of some point process if and only if Q1 is
nonnegative and the symmetrized version

Q
s

2(A×B) = 1
2 (Q2(A×B) +Q2(B ×A))

is nonnegative and bounded as in Q
s

2(A × B) ≤ min (Q1(A), Q1(B)) for
bounded A, B ∈ BX . [Hint: Reduce the functional above to the form of
(6.3.30) and appeal to Proposition 6.3.IV. See also Example 6.2(d).]

6.3.14 Proposition 6.3.V represents a Poisson cluster process with a.s. finite clusters.
Realize a cluster of size k and choose one of its points, Y say, at random.
Show that

Pr{Y ∈ A} =
Kk(A× Y(k−1))

Kk(Y(k))
,

but

Pr

{
a cluster realization of
size k has a point in A

}
=

k∑
i=1

(
k

i

)
Kk(A(i) × (Ac)(k−i))

Kk(Y(k))
.

6.3.15 The factorial cumulant measures C[k] of a Gauss–Poisson process vanish for
k = 3, 4, . . . . Show in general that for a Poisson cluster process with clusters
of size not exceeding k0, C[k] vanishes for k > k0. [Hint: Use (6.3.32) and
write 1 + h for h.]
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6.4. Marked Point Processes
In many stochastic process models, a point process arises not as the primary
object of study but as a component of a more complex model; often, the point
process is the component that carries the information about the locations in
time or space of objects that may themselves have a stochastic structure and
stochastic dependency relations. From the point of view of point process
theory, many such models can be subsumed under the heading of marked
point processes. In this section, we provide an initial study of such processes,
particularly those with links to the Cox and cluster processes described in the
two preceding sections.

For any marked point process, the locations {xi} where the events occur
constitute an important process in their own right (the xi may denote times
but could also be two- or three-dimensional, for example). We shall refer to
this process as the ground process and accordingly denote it by Ng.

Definitions 6.4.I.
(a) A marked point process (MPP), with locations in the c.s.m.s. X and

marks in the c.s.m.s. K, is a point process {(xi, κi)} on X × K with the
additional property that the ground process Ng(·) is itself a point process;
i.e. for bounded A ∈ BX , Ng(A) = N(A×K) <∞.

(b) A multivariate (or multitype) point process is a marked point process
with mark space the finite set {1, . . . ,m} for some finite integer m.

If a marked point process N is regarded as a process on the product space
X × K, then the ground process Ng is the marginal process of locations.
However, it is a consequence of Definition 6.4.I(a) that not all point processes
on product spaces are marked point processes. For example, the bivariate
Poisson process on R

2 with parameter measure µdxdy cannot be represented
as an MPP on R × R because such a Poisson process has N(A × R) = ∞
a.s. for Borel sets A of positive Lebesgue measure. However, in the special
case of a multivariate point process, the extra condition is redundant since
the finiteness of the mark space immediately implies that each component
process Ni(·) = N(· × {i}) is boundedly finite and we can write

Ng(·) = N(· × {1, . . . ,m}) =
m∑
i=1

Ni(·). (6.4.1)

In general, an MPP can be regarded either as a point process in the product
space X ×K subject to the finiteness constraint on the ground process Ng as
set out above, or as an ordinary (not necessarily simple) point process in X ,
{xi} say, with an associated sequence of random variables {κi} taking their
values in K. Either approach leads to the representation of the MPP as a set of
pairs {(xi, κi)} in the product space. They are equivalent whenever it can be
shown that the marks κi in an MPP are well-defined random variables, which
is certainly the case when the ground process has finite intensity, but there
are subtleties in general: see Section 8.3 and Chapter 9 for further discussion.
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The class of MPPs is a great deal richer than might at first appear. This
is due to the great variety of forms that can be taken by the marks and the
variety of dependence relations that can exist between the marks themselves
and their locations. When X = R, for example, many remarkable results can
be obtained by taking the mark at an event xi to represent some feature from
the history of the process up to xi. A careful study of such MPPs lies at the
heart of the fundamental researches of Matthes, Mecke, and co-workers.

Extending the concepts of earlier chapters, we define for MPPs the following
two classes of point processes.

Definition 6.4.II.
(a) The MPP N is simple if the ground process Ng is simple.
(b) The MPP N on X = R

d is stationary (homogeneous) if the probability
structure of the process is invariant under shifts in X .

The structure of an MPP may be spelled out in a variety of ways. If the
ground process Ng is not necessarily simple, it can be thought of as a cluster
process in which the cluster centres xi are the distinct locations in X and the
cluster members are all pairs in X × K of the form (xi, κij), where the κij
are the marks of the points with common location xi. Equally, however, the
family κij could be thought of as a single, compound mark in the space K∪

defined as in (5.3.8). This last comment implies that by suitably redefining
the marks, any MPP on X can be represented as an MPP on X for which the
ground process Ng is simple. For many applications, though not for all, we
may therefore assume that the MPPs we encounter are simple.

The next pair of definitions characterize two important types of indepen-
dence relating to the mark structure of MPPs. Observe in part (b) that a
crucial feature is the role of order in the location space: it reflects the evolu-
tionary property that we associate with a time-like dimension.

Definition 6.4.III (Independent marks and unpredictable marks). Let the
MPP N = {(xi, κi)} on X ×K be given.
(a) N has independent marks if, given the ground processNg = {xi}, the {κi}

are mutually independent random variables such that the distribution of
κi depends only on the corresponding location xi.

(b) For X = R, N has unpredictable marks if the distribution of the mark at
xi is independent of locations and marks {(xj , κj)} for which xj < xi.

The most common case of an MPP with independent marks occurs when
the κi are in fact i.i.d. Similarly, the most common case of a process with
unpredictable marks occurs when the marks are conditionally i.i.d. given the
past of the process (but the marks may influence the future of Ng).

The next proposition outlines the basic structure of processes with inde-
pendent marks, introducing in particular the mark kernel F (· | ·) at a specified
location. P.g.fl.s for MPPs are defined over the space V(X × K) of measur-
able functions h(x, κ) that lie between 0 and 1 and for some bounded set A,
h(x, κ) = 1 for all κ ∈ K and x /∈ A.
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Proposition 6.4.IV (Structure of MPP with independent marks). Let N
be an MPP with independent marks.
(a) The probability structure of N is completely defined by the distribution of

the ground processNg and the mark kernel {F (K | x):K ∈ B(K), x ∈ X},
representing the conditional distribution of the mark, given the location
x.

(b) The p.g.fl. for N takes the form

G[h] = Gg[hF ] (h ∈ V(X ×K)), (6.4.2)

where Gg is the p.g.fl. of Ng and hF (x) =
∫

K h(x, κ)F (dκ | x).
(c) The moment measure Mk of order k for N exists if and only if the corre-

sponding moment measure Mg
k exists for the ground process Ng, in which

case
Mk(dx1 × · · · × dxk × dκ1 × · · · × dκk)

= Mg
k (dx1 × · · · × dxk)

k∏
i=1

F (dκi | xi).
(6.4.3)

Similar representations hold for factorial and cumulant measures.

Proof. All the statements above are corollaries of the general results for
conditional point processes outlined in Section 6.1. In the present case, we
deduce statements for the process of pairs {(xi, κi)} from their distribution
conditional on the process of locations {xi} using the conditional indepen-
dence of the κi.

Because of the independence properties, it is easiest to approach the state-
ments via the p.g.fl. Given the locations xi, the p.g.fl. of the pairs (xi, κi)
takes the form

G[h(x, κ) | Ng] =
∏
i

[ ∫
K
h(xi, κ)F (dκ | xi)

]
=
∏
i

hF (xi). (6.4.4)

Note that hF ∈ V(X ) when h ∈ V(X × K) because for some bounded set
A, h(x, κ) = 1 for x /∈ A and all κ ∈ K, and hence for such x, hF (x) =∫

K h(x, κ)F (dκ | x) = 1. Provided then that Ng exists, the final product is
well defined for h ∈ V(X × K) and defines a measurable function of Ng. We
thus have a measurable family satisfying Lemma 6.1.III(b); taking expecta-
tions over the locations, we obtain (6.4.2). Since the p.g.fl. is well defined, so
are the fidi distributions and hence the probability structure of the process.

To justify the expressions for the moment measures, consider an integral
of the form

∫
h(x1, . . . , xk, κ1, . . . , κk)N(dx1 × dκ1) · · · N(dxk × dκk). Con-

ditional on the locations {xi}, its expectation can be written∫
K
· · ·
∫

K
h(x1, . . . , xk, κ1, . . . , κk)F (dκ1 | x1) · · · F (dκk | xk). (6.4.5)
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Now taking expectations over the locations, assuming the moment measure
to exist for the ground process, we obtain (6.4.3), finite or infinite according
to whether the integrals converge. But convergence of the integrals for all
appropriate h is the necessary and sufficient condition for the existence of the
moment measures, so statement (c) follows.

In many applications, K = R+ and interest centres on the random measure
defined by

ξ(A) =
∫
A×K

κN(dx× dκ) =
∑
xi∈A

κi . (6.4.6)

Its properties when ξ has independent marks are summarized below. Observe
that if κi = κ a.s. for all i, then ξ(A) = κNg(A).

Proposition 6.4.V. If K = R+ and the MPP N has independent marks,
ξ in (6.4.6) defines a purely atomic random measure on X with only finitely
many atoms on any bounded set A ∈ BX . It has Laplace functional

Lξ[h] = Gg[φh] (h ∈ BM+(X )), (6.4.7)

where φh(x) =
∫

K e−κh(x) F (dκ | x) and Gg is as in (6.4.2).
The moment measure Mξ

k of order k for ξ exists if
(i) the moment measure Mg

k of order k exists for the ground process Ng,
(ii) the kth moment of the mark distribution, µk(x) =

∫
R+
κk F (dκ | x) exists

Mg
1 -a.e., and

(iii) the integrals defining M ξ
k in terms of µr and Mg

s for r, s = 1, . . . , k,
converge.

When they exist, the first- and second-moment measures are given, for
bounded A,B ∈ BX , by

Mξ
1 (B) =

∫
B

µ1(x)Mg
1 (dx) , (6.4.8)

Mξ
2 (A×B) =

∫
A×B

µ1(x1)µ1(x2)Mg
[2](dx1 × dx2) +

∫
A∩B

µ2(x)Mg
1 (dx) .

(6.4.9)

Proof. The statements follow from reasoning similar to that used in Propo-
sition 6.4.IV. The integral in (6.4.6) is a.s. finite when A is bounded (since
the sum is then over an a.s. finite number of terms) and is easily seen to have
the additivity properties required of a random measure. Its Laplace func-
tional and moment measures can again be found by first conditioning on the
locations. Thus, Lξ(h | Ng) equals

E
[

exp
(
−
∫

R+

h(x) ξ(dx)
) ∣∣∣∣ Ng

]
=
∏
i

[ ∫
R+

e−κh(xi) F (dκ | xi)
]
.
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Equation (6.4.7) follows on taking expectations over the locations. Note that
when h ∈ BM+(X ), the Laplace–Stieltjes transform φh ∈ V(X ), as is required
for a p.g.fl. Equation (6.4.8) is derived similarly.

To obtain (6.4.9), we have to condition on the location of pairs (xi, xj)
defined by the product counting measure Ng×Ng. Note the special attention
given to the diagonal pairs (xi, xi): M

ξ
2 (A×B) equals

E
[ ∫

A

∫
B

(∫
K

∫
K
κ1κ2 F (dκ1 |x1)F (dκ2 |x2)

)
Ng(dx1)Ng(dx2)

+
∫
A∩B

(∫
K
κ2 F (dκ | x)

)
Ng(dx)

]
=
∫
A×B

µ1(x1)µ1(x2)Mg
[2](dx1 × dx2) +

∫
A∩B

µ2(x)Mg
1 (dx) .

These expressions can be checked by expanding the functionals and transforms
concerned (see Exercise 6.4.1 for the case k = 3).

As for cluster processes, the results simplify if the process is stationary,
and the relevant factorial moment densities exist. Stationarity implies that
the mark kernel is independent of x, F (· | x) = F (·) say, so that φh in (6.4.7)
becomes φh(x) =

∫
K e−κh(x) F (dκ), the usual Laplace–Stieltjes transform of

the distribution F evaluated at h(x) ∈ BM+(X ). Given the existence of the
reduced densities m̆g

[2](·) and c̆ g
[2](·), and writing µk =

∫
K κ

k F (dκ), (6.4.8)
and (6.4.9) lead to

m = µ1mg , (6.4.10)
m̆2(u) = (µ1)2m̆g

[2](u) + δ(u)µ2mg , (6.4.11a)

c̆2(u) = (µ1)2c̆ g
[2](u) + δ(u)µ2mg . (6.4.11b)

The appearance of the δ-function in (6.4.11) is a reminder that the ξ process,
as well as the process Ng, is purely atomic and therefore has a diagonal
concentration (see Section 8.1 below). Equation (6.4.11b) leads to the well-
known expression for the variance of a random sum of i.i.d. r.v.s,

var ξ(A) = [E(κ)]2 varNg(A) + E[Ng(A)] varκ. (6.4.12)

Extension of the discussion above to the mark space K = R is possible but
leads to signed measures and requires the use of characteristic functionals in
place of Laplace functionals; see Exercise 6.4.2.

An important special case arises when the ground process Ng is Poisson.
We call such a process a compound Poisson process. As such, it extends the
compound Poisson process introduced in Section 2.2, where K = Z+. For this
(generalized) compound Poisson process, the marks often represent a weight
associated with the point, such as a monetary value in financial applications,
an energy or seismic moment in seismology, a weight or volume in forestry or
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geological prospecting, and so on. In such cases, ξ measures the total value,
energy, weight, volume, etc., accumulating within a certain time interval or
region. We give some examples shortly but first present a simple, important
structural property that foreshadows results for more general classes of MPPs.

Lemma 6.4.VI. A compound Poisson process that has mark kernel F (· | ·),
and for which the Poisson ground process Ng has intensity measure µ(·), is
equivalent to a Poisson process on the product space X × K with intensity
measure Λ(dx× dκ) = µ(dx)F (dκ | x).

Proof. We examine the p.g.fl.s. Substituting in (6.4.2) for the p.g.fl. of the
Poisson process for Ng and rearranging, we have, using notation from (6.4.2),

G[h] = exp
(∫

[hF (x)− 1]µ(dx)
)

= exp
(∫ ∫

[h(x, κ)− 1]F (dκ | x)µ(dx)
)
,

where the last expression can be identified with the p.g.fl. of the Poisson
process on the product space.

Many classical stochastic models are rooted in the compound Poisson pro-
cess. One famous example is as follows.

Example 6.4(a) Lundberg’s collective risk model (Lundberg, 1903; Cramér,
1930). Suppose that claims Wi against an insurer are made at times ti. Let
ξ(t) represent the accumulated claims

∑
i:0<ti<tWi over the period (0, t). If

the distribution of a generic claim W is supposed constant (independent of t)
and the claim times ti follow a Poisson process with constant intensity µ,
then the pairs {(ti,Wi)} form a compound Poisson process. Typically, in this
context, the claim distribution is chosen from the gamma, Weibull, or Pareto
families or various modifications of these chosen to fit the specific application.
From equations (6.4.10) and (6.4.11), we obtain the elegant special forms

E[ξ(t)] = µE(W ) t,

var ξ(t) = µE(W 2) t.

The crucial simplification underlying this elegance arises from the location
process being Poisson, for then the covariance density c[2](·) vanishes.

If the insurance company has initial capital U0 and it is assumed that gross
premium income comes in at a constant rate α, then the financial reserve of the
company after time t, excluding running costs, depreciation, inflation, income
from investment, and other external factors, is equal to U(t) = U0 +αt− ξ(t).
The classical ruin problem consists in determining whether, and if so when,
U(t) first becomes zero. If α ≤ µE(W ), ruin is certain, but the time to
ruin may still be of importance. If α > µE(W ), ruin may be avoided and
interest centres around estimating the probability of ruin, say η. In both
cases, important information may be derived from the observation that, if
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τi = ti − ti−1, then the random variables Zi = Wi − ατi are independent, so
that the process

Un − U0 =
n∑
i=1

Zi = αtn − ξtn

constitutes a random walk. In particular, this observation, coupled to a stan-
dard martingale argument, leads to the classical Cramér bound on the prob-
ability of ultimate ruin. The argument is outlined in Exercise 6.4.3 (or else,
see e.g. Embrechts et al., 1997, Section 1.1).

Example 6.4(b) Negative binomial processes. The negative binomial distri-
bution is a common choice for the count random variables N(A) in appli-
cations to processes N(·) where a clustering alternative is preferred to the
Poisson process. It is somewhat surprising that the only known examples of
processes yielding the negative binomial form for the distributions of N(A)
are both extreme cases: a compound Poisson process that has the complete
independence property and in which all the clusters are concentrated at single
points, and a mixed Poisson process in which the individual realizations are
indistinguishable from those of a Poisson process. The usefulness of the neg-
ative binomial distribution in practice stems more from its relative simplicity
and tractability than its link to organic physical models, although it will of
course be true that for long time intervals, when the time scale of clustering is
short relative to the time scale of observation, the compound Poisson model
may be an adequate approximation. We describe these two models; see also
Grégoire (1984) and the review article of Diggle and Milne (1983).

(i) Compound Poisson process leading to negative binomial distributions.
Suppose there is given a compound Poisson process with constant intensity µ
and discrete mark distribution that is independent of the location x. If N(A)
is to have a negative binomial distribution, then we know from Example 5.2(a)
that the cluster size distribution should have the logarithmic form

πn(x) = (ρn/n) log[1/(1− ρ)].

Taking this as the mark distribution, we find that the p.g.fl. for the resulting
random measure ξ, which in this case is again a point process but nonorderly,
now has the form

G[h] = exp
(∫

X

log
(
[1− ρh(x)]/(1− ρ)

)
log(1− ρ)

µ(dx)
)

(h ∈ V(X )).

This corresponds to the multivariate p.g.f. for the fidi distributions on disjoint
sets A1, . . . , Ak,

Pk(A1, . . . , Ak; z1, . . . , zk) =
k∏
i=1

[
1− ρ

1− ρzi

]−µ(Ai)/ log(1−ρ)
,
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representing one simple type of multivariate negative binomial distribution.
The factorial cumulant measures can be obtained from the expansion

logG[1 + η] =
∫

X

log[1− ρη(x)/(1− ρ)]
log(1− ρ)

µ(dx)

= − 1
log(1− ρ)

∞∑
k=1

1
k

(
ρ

1− ρ

)k ∫
X

[η(x)]k µ(dx)

so that C[k](·) for k ≥ 2 is a singular measure with a concentration c[k]µ(·)
on the diagonal x1 = · · · = xk, where c[k] is the kth factorial moment of
the logarithmic distribution, or, equivalently, c[k]/ log[1/(1 − ρ)] is the kth
factorial cumulant of the negative binomial distribution.

Recall the p.g.f. of the negative binomial distribution in Example 5.2(a) and
the p.g.fl. for a local process on a bounded Borel set A as in Example 5.5(b).
The p.g.fl. for the type (i) negative binomial process applied to Example 5.5(b)
gives us (since the integral over Ac vanishes)

GA[1− IA + h∗] = exp
(

1
log(1− ρ)

∫
A

log
(

1− ρh
1− ρ

)
µ(dx)

)
,

where h∗(x) = h(x)IA(x). Thus, the localized process is still a negative bino-
mial process. The local Janossy measures can be found from the expansion

log
(

1− ρh
1− ρ

)
= − log(1− ρ) +

∞∑
n=1

ρn

n
h(n),

from which we deduce that p0(A) = exp[−µ(A)] and

J1(dx | A) = ρp0(A)µ(dx),

J2(dx1 × dx2 | A) = ρ2p0(A)[µ(dx1)µ(dx2) + δ(x1, x2)µ(dx1)],

where the two terms in J2 represent contributions from two single-point clus-
ters at x1 and x2 (x1 �= x2) and a two-point cluster at x1 = x2.

(ii) Mixed Poisson process leading to negative binomial distributions. Take
the mixing distribution Π with Laplace–Stieltjes transform Π∗ as in (6.1.16),
now generalized to the nonstationary case, to have the gamma distribution
Γ(α, λ) with Laplace–Stieltjes transform (1 + s/λ)−α. Then

G[h] = Π∗
(∫

X
[1− h(x)]µ(dx)

)
=
(

1 +
1
λ

∫
X

[1− h(x)]µ(dx)
)−α

,

so that the multivariate p.g.f. has the form

Pk(A1, . . . , Ak; z1, . . . , zk) =

(
1 +

1
λ

k∑
i=1

(1− zi)µ(Ai)

)−α

.
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The factorial cumulants can be obtained from the expansion

logG[1 + η] = −α log
(

1− 1
λ

∫
X
η(x)µ(dx)

)
= α

∞∑
k=1

1
k

(∫
X

η(x)
λ

µ(dx)
)k
,

so
C[k](dx1 × · · · × dxk) = αλ−k(k − 1)!µ(dx1) · · ·µ(dxk),

where we can recognize the coefficient of the product measure on the right-
hand side as the kth cumulant measure of the negative binomial distribution.
Note that Example 5.2(a) corresponds to the case where the measure µ(·) is
totally finite, in which case µ(X )/λ here equals the parameter µ there.

Most of the examples of point processes that we have considered in earlier
sections can be adorned with marks in a way similar to the Poisson process in
Examples 6.4(a) and (b) above. The choice of underlying model will depend
on the context and anticipated dependence structure. The most interesting
extensions appear when we drop the assumption of completely independent
marks and consider ways in which either the marks can influence the future
development of the process or the current state of the process can influence
the distribution of marks, or both. Using the Hawkes process of Example
6.3(c) as below illustrates some of the many possible issues that can arise.

Example 6.4(c) Marked Hawkes process. Marked versions of the Hawkes
process of Example 6.3(c) are best known from Hawkes (1971b, 1972), who
considered the multivariate case in detail, with an application in Hawkes and
Adamopoulos (1973), though Kerstan (1964) considered them at length. We
consider here the case of unpredictable marks; for a more general multivariate
extension, see Example 8.3(c). Both extensions have important applications
in seismology [see also Example 6.4(d) below], epidemiology, neurophysiology,
and teletraffic (see e.g. Brémaud and Massoulié, 1996).

In extending the Hawkes process of Example 6.3(c) to an MPP {(xi, κi)},
we interpret the marks κi as the ‘type’ of an individual in a multitype branch-
ing process. Recall that, in the branching process interpretation, points in a
Hawkes process are either ‘immigrants’ without parents or ‘offspring’ of an-
other point in the process. This (multitype) model now incorporates the
following assumptions:
(i) immigrants arrive according to a compound Poisson process N(dy× dκ)

with constant rate µc and fixed mark distribution F (dκ);
(ii) each individual in the process, whether an immigrant or not, has the

potential to act as an ancestor and thereby yield first-generation off-
spring according to an ordinary Poisson process with intensity measure
µ(du | κ) = ψ(κ)µ(du) that depends only on the mark κ of the ancestor
event and the distance u of the offspring from the ancestor; and

(iii) the marks of the offspring form an i.i.d. sequence with the same d.f. F
as the immigrants.
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The factor ψ(κ) determines the relative average sizes of families with dif-
ferent marks, while the measure µ(·) determines how the family members are
spread out along the time axis. For a stable process, µ(X ) must be finite, and
for the sake of definiteness, we assume that µ(X ) = 1 so that ψ(κ) becomes
the expected number of direct offspring with mark κ.

In principle, the analysis of such a process requires the general theory of
multiple type branching processes with a continuous range of types. How-
ever, the assumption of i.i.d. marks (i.e. offspring types) greatly simplifies the
analysis. Indeed, the assumptions above imply that the ground process Ng
for this marked point process can be described as an ordinary Hawkes process
with immigration rate µc and infectivity measure

µg(du) = ρµ(du), where ρ = E[ψ(κ)] =
∫

K
ψ(κ)F (dκ) <∞.

If then ρ < 1, the total number of progeny is a.s. finite with finite mean
1/(1 − ρ) so that the ground process is well defined and has a stationary
version (see Exercise 6.3.5). Since the overall process may itself be regarded
as a Poisson cluster process taking its values in X × K, a second application
of Exercise 6.3.5 implies that the overall process has a well-defined stationary
version. We state this formally for reference.

Proposition 6.4.VII. Using the notation above, sufficient conditions for the
existence of a stationary version of the marked Hawkes process with unpre-
dictable marks are
(i) the intensity measure µ(·) is totally finite (and then taken to be a prob-

ability measure); and
(ii) ρ = E[ψ(κ)] < 1.

First- and second-order properties of the process can be obtained by com-
bining results for branching processes with results for cluster processes and are
given in Chapter 8. The p.g.fl. is difficult to obtain explicitly; one approach
is suggested in Exercise 6.4.4.

Many variations and extensions of this model are possible. Example 7.3(b)
will show that the conditional intensity for this process has a very simple and
powerful linear form, which lends itself to various types of generalization. The
mark can be expanded to include a spatial as well as a size component, as for
the spatial ETAS model described below. The assumption of unpredictable
marks can also be weakened in several ways, for example by allowing the
distributions of the marks of the offspring to depend on either the mark of the
ancestor or the offspring’s distance from the ancestor, or both. See Example
8.3(e) for a somewhat simpler model illustrating such dependence.

If the branching structure is critical rather than subcritical (i.e. ρ = 1),
further types of behaviour can occur. For example, if the infectivity function
is sufficiently long-tailed, Brémaud and Massoulié (2001) provides examples
of stationary Hawkes processes without immigration (i.e. of a Hawkes process
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whose clusters overlap at such large distances that the process maintains a
stationary regime). Further details are given in Chapter 10.

Example 6.4(d) Ordinary and spatial ETAS models. Ogata (1988) intro-
duced the ETAS (Epidemic Type After-Shock) model to describe earthquake
occurrence, following earlier applications of the Hawkes model to this context
by Hawkes and Adamopoulos (1973) and Vere-Jones and Ozaki (1982). It cor-
responds to the special case of the marked Hawkes process where X = K = R,
the xi are interpreted as the occurrence times of the earthquakes and the κi
as their magnitudes, and the following specific choices are made:

ψ(κ) = Aeα(κ−κ0)I{κ>κ0}(κ),

µ(du) =
K

(c+ u)1+p
I{u>0}(u) du,

F (dκ) = βe−β(κ−κ0)I{κ>κ0}(κ) dκ.

These choices are dictated largely by seismological considerations: thus,
the mark distribution cited above corresponds to the Gutenberg–Richter fre-
quency–magnitude law, while the power-law form for µ follows the empirical
Omori Law for aftershock sequences. The free parameters are β, α, c, A and p.
K = p cp is a normalizing constant chosen to ensure

∫∞
0 µ(du) = 1.

In this case, sufficient conditions for a stationary process are that

p > 0, β > α, and ρ = Aβ/(β − α) < 1.

The last condition in particular is physically somewhat unrealistic since it is
well known that the frequency–magnitude distribution cannot retain the pure
exponential form indefinitely, but must drop to zero much more quickly for
very large magnitudes.

An important extension involves adding locations to the description of the
offspring so that the branching structure evolves in both space and time.
Then, one obvious way of extending the model is to have the ground process
include both space and time coordinates, retaining the same mark space K.

From the computational point of view, however, and especially for the
conditional intensity and likelihood analyses to be described in Chapter 7,
there are advantages in keeping the ground process to the set of time points
and regarding the spatial coordinates as additional dimensions of the mark.
The weight (magnitude) component of the mark retains its unpredictable
character (so the weights are i.i.d. given the past), but we allow the spatial
component of the mark to be affected by the spatial location of its ancestor.

No matter which of these descriptions we adopt, the cluster structure
evolves over both space and time, offspring events occurring at various dis-
tances away from the initial ancestor, just as they follow it in time. When
the branching structure is spatially homogeneous, the infectivity measure
µ(dt × dx) depends both on the time delay u = t − t0 and the displacement
y = x− x0 from the time and location of the ancestor (t0, x0).
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Various branching mechanisms of this type have been proposed in the lit-
erature [see e.g. Ogata (1998) for a review]. Thus, Vere-Jones and Musmeci
(1992) suggests a space–time diffusion with infectivity density

µ(du× dy × dz) =
βe−βu

2πuσyσz
exp
[
− 1

2u

(
y2

σ2
y

+
z2

σ2
z

)]
du dy dz,

whereas Ogata’s space–time ETAS model uses a simpler product form for
the space and time terms. Many choices are possible for the components
of the model without affecting the underlying cluster character. In some
applications, the assumption of spatial homogeneity may not be appropriate,
so the infectivity or mark distribution may depend on the absolute location
of the offspring as well as its separation from the ancestor.

In all of this wide diversity of models, the basic sufficient condition for the
existence of a stationary version of the model, essentially the subcriticality of
the offspring branching process, is affected only insofar as the integral of the
infectivity measure needs to be extended over space as well as time.

We conclude this section with a preliminary foray into the fascinating and
also practically important realm of stochastic geometry. Marked point pro-
cesses play an important role here as models for finite or denumerable families
of random geometrical objects. The objects may be of many kinds: triplets
or quadruplets of points (then, the process would be a special case of a cluster
process), circles, line segments, triangles, spheres, and so on.

Definition 6.4.VIII (Particle process). A particle process is a point process
with state space ΣX equal to the class of nonempty compact sets in X .

Thus, a typical realization of a particle process is a sequence, ordered in
some way, of compact sets {K1,K2, . . .} from the c.s.m.s. X . An underlying
difficulty with such a definition is that of finding a convenient metric for the
space ΣX . One possibility is the Hausdorff metric defined by

ρ(K1,K2) = inf{ε:K1 ⊆ Kε
2 and K2 ⊆ Kε

1},

where Kε is the halo set
⋃
x∈K Sε(x) (see Appendix A2.2); for further ref-

erences and discussion, see Stoyan et al. (1995), Stoyan and Stoyan (1994),
and Molchanov (1997), amongst others. In special cases, when the elements
are more specific geometrical objects such as spheres or line segments, this
difficulty does not arise, as there are many suitable metrics at hand. Very
often, interest centres on the union set or coverage process

Ξ =
⋃
Si

(see Hall, 1988), which is then an example of a random closed set in X .
Now let us suppose that X = R

d and that for each compact set S ⊂ X we
can identify a unique centre y(S), for example its centre of gravity. Then, we
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may introduce an equivalence relation among the sets in ΣX by defining two
compact sets to belong to the same equivalence class if they differ only by a
translation. The sets in Σo ≡ ΣoX , the compact subsets of X with their centres
at the origin, index the equivalence classes so that every set S ∈ ΣX can be
represented as the pair (y, So), where y ∈ X and So ∈ Σo, and S = y + So

(set addition). This opens the way to defining the particle process as an MPP
{yi, Si}, where the {yi} form a point process in X and the marks {Si} take
their values in Σo. Once again, there is the problem of identifying a convenient
metric on Σo, but this point aside, we have represented the original particle
process as an example of a so-called germ–grain model in which the {yi} are
the germs and the {Si} are the grains. The next example illustrates one of
the most straightforward and widely used models of this type.

Example 6.4(e) Boolean model. This is the compound Poisson analogue
for germ–grain models. We suppose that the locations {yi} form a Poisson
process in X and that the compact sets Soi are i.i.d. and independent of the
location process; write Si = yi+Soi . Two derived processes suggest themselves
for special attention. One is the random measure Υ(·) formed by superposing
the compact sets Si. With the addition of random weights Wi, this gives the
bounded set A the (random) mass

Υ(A) =
∑
i

Wi �(A ∩ Si) (A ∈ BX ), (6.4.13)

where �(·) is the reference measure on X (e.g. Lebesgue measure, or counting
measure on a lattice). The other is the localized measure of the union set Ξ
described above, which gives the bounded set A the (random) mass

Ψ(A) = �(A ∩ Ξ) ≡ �
{⋃

i(A ∩ Si)
}
. (6.4.14)

For example, (6.4.13) might represent the total mass of ejected material falling
within the set A from a series of volcanic eruptions at different locations; then
(6.4.14) would represent the area of A covered by the ejected material.

In both cases, the processes can be represented in terms of densities forming
random processes (random fields) on X . Thus, (6.4.13) and (6.4.14) have
respective densities

υ(x) =
∑
i

WiISi(x) (6.4.15)

and
ψ(x) = I{∪i Si}(x). (6.4.16)

Many aspects of these and related processes are studied in the stochas-
tic geometry literature such as Mathéron (1975), Stoyan et al. (1995) and
Molchanov (1997). Here we restrict ourselves to a consideration of the mean
and covariance functions of (6.4.15) and (6.4.16) under the more explicit as-
sumptions that X = R

2, that the location processNg of centres {y(Si)} = {yi}
is a simple Poisson process with constant intensity λ, and that each Si is a
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disk of random radius Ri and has weight Wi that may depend on Ri but
that the pairs (Ri,Wi) are mutually independent and independent also of the
centres {yi}. Consistent with our earlier description, we thus have an MPP
on R

2, with mark space R+ ×R+, and hence a point process N on R
2 ×R

2
+.

The mean and covariance function for υ(x) can be found by first condi-
tioning on the ground process Ng as in earlier examples. Thus, writing υ(x)
as

υ(x) =
∫

R2×R2
+

wI{r≥‖y−x‖}(r, y)N(dy × dr × dw) (6.4.17)

and taking expectations, the independence assumptions coupled with the sta-
tionarity of the Poisson process yield

E[υ(x)] = λE
[
W

∫
R2
I{R≥‖y‖}(R, y) dy

]
= λE

[
W

∫ R

0

∫ 2π

0
r dr dθ

]
= λπE(WR2) .

The second moment E[υ(x1)υ(x2)] can be found similarly by first condi-
tioning on the {yi}. Terms involving both pairs of distinct locations and
coincident locations (arising from the diagonal term in the second-moment
measure of the location process) are involved. However, as for Poisson cluster
processes, we find that the covariance cov[υ(x1), υ(x2)] depends only on the
term involving coincident locations: it equals

E
[ ∫

R2×R+×R+

w2I{r≥‖y−x1‖,r≥‖y−x2‖}(r, y)N(dy × dr × dw)
]

= λE
[
W 2
∫

R2
I{R≥max(‖y−x1‖,‖y−x2‖)}(R, y) dy

]
= 2λE

[
W 2(R2 arcos(u/R)− u

√
R2 − u2

)
I{R≥u}(R)

]
,

where u = 1
2‖x1 − x2‖. Note that the first moment is independent of x and

the covariance is a function only of ‖x1 − x2‖, as we should expect from the
stationary, isotropic character of the generating process. Note also that if the
radius R is fixed, the covariance vanishes for ‖x1 − x2‖ > 2R.

The resemblance of these formulae to those for Poisson cluster processes
is hardly coincidental. From a more general point of view, the process is
a special case of LeCam’s precipitation model in Exercise 6.3.1, where the
Poisson cluster structure is generalized to cluster random measures. Some
details and extensions are indicated in Exercise 6.4.6.

The corresponding formulae for the union process present quite different
and, in general, much harder problems since we lose the additive structure
for the independent contributions to the sum process. The first moment
E[ψ(x)] represents the volume fraction of space (in this case area) occupied
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by the union set Ξ. It can be approached by the following argument, which
is characteristic for properties of the Boolean model. First, note that

1− E[ψ(x)] = 1− Pr{Ξ � x} = Pr{Ξ �� x} = E
[∏

i

[1− ISi
(x)]
]
.

Conditioning on the locations {yi} (i.e. on the ground process Ng), we can
write

Pr{Ξ �� x | Ng} =
∏
i

Pr{Ri < ‖x− yi‖} =
∏
i

h(yi;x) ,

say, where h(y;x) = E[I[0,‖y−x‖)(R)] and R has the common distribution of
the i.i.d. radii Ri. Removing the conditioning, we have

1− E[ψ(x)] = E
[∏

i

h(yi;x)
]

= Gg[h(· ;x)] = exp
(
− λ
∫

R2
[1− h(y;x)] dy

)
.

Substituting for h(y;x) and simplifying, we obtain for the mean density the
constant

p∗ ≡ E[ψ(x)] = 1− e−λE(πR2). (6.4.18)

For the second product moment, using similar reasoning, we have

m2(x1, x2) = E[ψ(x1)ψ(x2)] = Pr{Ξ � x1, Ξ � x2}
= Pr{Ξ � x1}+ Pr{Ξ � x2} − [1− Pr{Ξ �� x1 or x2}]
= E[ψ(x1)] + E[ψ(x2)]− [1− Pr{Ξ �� x1, Ξ �� x2}]
= 2p∗ − 1 +Gg[h(· ; x1, x2)],

say, where h(y;x1, x2) = E[I[0,min(‖y−x1‖,‖y−x2‖)](R)]. Substituting for the
p.g.fl. of the Poisson ground process, putting u = 1

2‖x1−x2‖ and simplifying,
we find that m(x1, x2) equals

2p∗−1+exp
(
−λE

[
πR2(1+I{R<u})+2

(
R2 arsin

u

R
+u
√
R2 − u2

)
I{R≥u}

])
.

Exercise 6.4.10 sketches an extension to higher-order product moments.

Exercises and Complements to Section 6.4
6.4.1 For the atomic random measure ξ with independent marks as in Proposition

6.4.V, show that the third-order moment measure Mξ
3 (A1 ×A2 ×A3) equals∫

A1×A2×A3

µ1(x1)µ1(x2)µ1(x3)Mg
[3](dx1 × dx2 × dx3)

+

[∫
A1×A23

+
∫
A2×A31

+
∫
A3×A12

]
µ1(x1)µ2(x2)Mg

[2](dx1 × dx2)

+
∫
A1∩A2∩A3

µ3(x1)Mg
1 (dx1),

where Aij = Ai ∩Aj for i �= j.
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[Hint: Each side is the coefficient of 1
6s

3 in the respective expansions of (6.4.7)
with argument sh(·), using (6.1.9) for the Laplace functional, (5.5.4) [with
η(x) = φsh(x) − 1 = −sh(x)µ1(x) + 1

2s
2[h(x)]2µ2(x) − 1

6s
3[h(x)]3µ3(x) + · · ·

and µr(x) =
∫

K κ
r F (dκ | x), r = 1, 2, 3] for the p.g.fl., and φsh as in (6.4.7).

The general case now follows by appealing to the symmetry (invariance under
permutations of the axes) of the moment measures.]

6.4.2 Develop formulae, analogous to those of Proposition 6.4.V, for characteristic
functionals of MPPs with marks in R. Use these to extend the results of
Proposition 6.4.V to the case where ξ may be a signed measure.

6.4.3 Cramér bound on probability of ruin. For the compound risk process, verify
the following results [with notation as for Example 6.4(a)].
(i) The sequence Un − U0 forms a random walk with mean α/µ− E(W ).
(ii) If ruin occurs, then it does so at the first time point tn for which Un < 0.
(iii) If α ≤ µE(W ), then ruin is certain, but if α > µE(W ), then there is

positive probability that ruin will never occur.
(iv) In the latter case, if the Laplace–Stieltjes transform E(e−sW ) is an entire

function of s, then there exists positive real s∗ such that E(e−s∗W ) = 1.
(v) The sequence {ζn} = {exp(−s∗Un)} constitutes a martingale for which

the time of ruin is a stopping time.
(vi) Let pM denote the probability that ruin occurs before the accumulated

reserves reach a large number M . Deduce from the martingale property
that

pME[exp(s∗∆0) | 0] + (1 − pM )E[exp(−s∗∆M ) | M ] = exp(−s∗U0),

where −∆0 and ∆M are the respective overshoots at 0 and M .
(vii) Hence, obtain the Cramér bound for the probability of ultimate ruin

p = lim
M→∞

pM ≤ exp(−s∗U0) .

6.4.4 Find first and second factorial moment measures for the ground processes of
the marked and space–time Hawkes processes described in Example 6.4(c).
[Hint: Use the cluster process representation much as in Example 6.3(c).]

6.4.5 Study the Laplace functional and moment measures for the random measure
ξ for a Hawkes process with unpredictable marks. [Hint: Use the cluster
representation to get a general form for the p.g.fl. of the process as a process
on X × K. From it, develop equations for the first and second moments.] Are
explicit results available?

6.4.6 Formulate the process Υ(A) in (6.4.13) as an example of a LeCam process (see
Exercise 6.3.1). Show that in the special case considered in (6.4.17), when the
random sets are spheres [= disks in R

2] with random radii we can write

Lξ[f | x] = E

[
exp

(
−W

∫
R2

f(y) I{R≥‖x−y‖}(y) dy

)]
.

Derive expressions for the mean and covariance functions of υ(x) as corollaries.
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6.4.7 Higher-order moments of the union set. In the context of the union set Ξ of
the Boolean model of Example 6.4(e), show that the kth product moment

E[ψ(x1) · · ·ψ(xk)] = Pr{Ξ � xj (j = 1, . . . , xk)},

for k distinct points x1, . . . , xk in X = R
2, equals

1 +
k∑
r=1

(−1)r
∑′

r
q(xj1 , . . . , xjr ),

where
∑′ denotes the sum over all distinct r-tuplets of the set {x1, . . . , xk},

q(x1, . . . , xr) = Gg[h(· ;x1, . . . , xr)], and the function h(y ; x1, . . . , xr) =
Pr{R < min1≤j≤r{‖xj − y‖}}. [Hint: The relation arises from taking ex-
pectations in the expansion of products of indicator random variables

I{Ξ � all xj} =
∏

j
I{Ξ � xj} =

∏
j
(1 − I{Ξ �� xj})

= 1 +
∑k

r=1
(−1)r

∑′

r

∏r

�=1
I{Ξ �� xj�}

and ∏r

�=1
I{Ξ �� xj�} =

∏r

�=1

∏
i
I{Si �� xj�} =

∏
i

∏r

�=1
I{Si �� xj�},

and the conditional expectation of the last product, given the locations {yi},
equals h(yi;xj1 , . . . , xjr ), as indicated.]



CHAPTER 7

Conditional Intensities and Likelihoods

A notable absence from the previous chapter was any discussion of likelihood
functions. There is a good reason for this absence: the likelihood functions for
most of the processes discussed in that chapter are relatively intractable. This
difficulty was a block to the application of general point process models until
the late 1960s, when a quite different approach was introduced in papers on
filtering theory pioneered by the electrical engineers: see for example Yashin
(1970), Snyder (1972), Boel, Varaiya and Wong (1975), Snyder(1975, 2nd ed.
Snyder and Miller, 1991), and Kailath and Segall (1975). This approach led
to the concept of the conditional intensity function. Once recognised, its role
in elucidating the structure of point process likelihoods was soon exploited.
General definitions of the conditional intensity function were given in Rubin
(1972) and especially by Brémaud (1972), in whose work conditional intensity
functions were rigorously defined and applied to likelihood and other problems
(see also Brémaud, 1981). Even earlier, Gaver (1963) had introduced what is
essentially the same concept through his notion of a random hazard function.

Many of these ideas came together in the 1971 Point Process Conference
(Lewis, 1972), as a result of which the links between likelihoods, conditional
intensities, the theoretical work of Watanabe (1964) and Kunita and Watan-
abe (1967), and the more practical approaches of Gaver, Hawkes (1971a, b)
and Cox (1972a) became more evident. Later, Liptser and Shiryayev (1974,
1977, 1978; 2nd ed. 2000) gave a comprehensive theoretical treatment, while
Brémaud (1981) gave a more accessible account that emphasises applications
to queueing theory; this same emphasis is in Baccelli and Brémaud (1994).
The last two decades have seen the systematic development and application
of these ideas to applied problems in many fields, perhaps especially in con-
junction with techniques for simulating and predicting point processes.

Throughout this chapter runs the theme of delineating classes of models for
which the conditional intensity function, and hence the likelihood, has a rel-
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atively simple form. A key requirement is that the point process should have
an evolutionary character: at any time, the current risk—which is just infor-
mal terminology for the conditional intensity function—should be explicitly
expressible in terms of the past of the process. Many simple point processes
in time, including stationary and nonstationary Poisson processes, renewal
and Wold processes, and Hawkes processes, fall into this category. So too do
many marked point processes in time and also space–time processes, provided
that the current distributions of the marks and spatial locations, as well as
the current risk, are explicitly expressible in terms of the past.

Purely spatial processes—so-called spatial point patterns—cannot be han-
dled so readily this way because they lack a time-like, evolutionary dimension.
Nor can processes such as the Neyman–Scott cluster process, in which esti-
mation of the current risk requires averaging over complex combinations of
circumstances. However, in some cases of this type, filtering and related it-
erative techniques can sometimes provide a route forward; they are discussed
further in Chapters 14 and 15 alongside the more careful theoretical analysis
required to handle conditional intensity functions in a general context.

This chapter provides an informal treatment of these issues. We start with
a brief introduction to point process likelihoods for a.s. finite point processes,
based on the Janossy densities introduced in Chapter 5. In principle the
methods can be applied to observations on a general point process observed
within a bounded observation region, but in practice the usefulness of this
approach is severely curtailed by the difficulty of writing down the Janossy
densities for the process within the observation region in terms of a global
specification of the process. In Section 7.2, we move to the representation of
the likelihood of a simple point process evolving in time. Here the technique
of successive conditionings on the past, as the process evolves in time, reduces
the difficulty above to that of specifying initial conditions for the process. It
leads to a simple and powerful representation of the likelihood in terms of the
conditional intensity function. Then, in Section 7.3 we examine the extension
of these ideas to marked and space–time point processes, where the process
retains an evolutionary character along the time axis.

Section 7.4 is devoted to the discussion of intensity-based random time
changes, which have the effect of reducing a general initial process to a sim-
ple or compound Poisson process. The time changes are motivated by their
applications to goodness-of-fit procedures based on the technique of ‘residual
point process analysis’. The concluding Sections 7.5 and 7.6 are concerned
with uses of the conditional intensity for testing, simulating, and forecasting
such processes, and with the links between point process entropy and the
evaluation of probability forecasts.

7.1. Likelihoods and Janossy Densities
In the abstract at least, there are no special difficulties involved in the notion
of a point process likelihood. Granted a realization (x1, . . . , xn) in some subset
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A of the state space X , we require the joint probability density of the xi with
respect to a convenient reference measure, which when X = R

d is commonly
the n-fold product of Lebesgue measure on R

d. As usual, the likelihood should
be considered as a function of the parameters defining the joint density and
not as a function of the xi and n, which are taken as given. The density
here is for an unordered set of points; it represents loosely the probability
of finding particles at each of the locations xi and nowhere else within A,
and so it is nothing other than the local Janossy density (Definition 5.4.IV)
jn(x1, . . . , xn | A) for the point process restricted to A. These considerations
are formalized in the following two definitions.

Definition 7.1.I. (a) Given a bounded Borel set A ⊆ R
d, a point process N

on X = R
d is regular on A if for all integers k ≥ 1 the local Janossy measures

Jk(dx1 × · · · × dxk | A)

of Section 5.4 are absolutely continuous on A(k) with respect to Lebesgue
measure in X (k).
(b) It is regular if it is regular on A for all bounded A ∈ B(Rd).

Proposition 5.4.V implies that a regular point process is necessarily simple.

Definition 7.1.II. The likelihood of a realization x1, . . . , xn of a regular
point process N on a bounded Borel set A ⊆ R

d, where n = N(A), is the
local Janossy density

LA(x1, . . . , xn) = jn(x1, . . . , xn | A). (7.1.1)

For convenience, we often abbreviate LA to L.
When the whole point process is a.s. finite, and the set A coincides with

the space X , the situation is particularly simple. In many cases, the likelihood
can be written down immediately from the definition; some examples follow.

Example 7.1(a) Finite inhomogeneous Poisson process in A ⊂ R
d. Sup-

pose the process has intensity measure Λ(·) with density λ(x) with respect to
Lebesgue measure on R

d. It follows from the results in Section 2.4 that the
total number of points in A has a Poisson distribution with mean Λ(A) and
that conditional on the number N of such points, the points themselves are
i.i.d. on A with common density λ(x)/Λ(A). Suppose we observe the points
{x1, . . . , xn} within A, with n = N(A). In this case, we may assume X = A
without any effective loss of generality, as the complete independence prop-
erty ensures that the behaviour within A is unaffected by realization of the
process outside A. Then, taking logs of the Janossy density gives for the log
likelihood the formula

logL(x1, . . . , xn) =
n∑
i=1

log λ(xi)−
∫
A

λ(x) dx, (7.1.2)

of which (2.1.9) is the special case X = R. This example continues shortly.
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Equation (7.1.2) is basic to the likelihood theory of evolutionary processes.
As we shall see in the next section, it extends to a wide range of such processes,
provided the rate λ(t) is interpreted in a sufficiently broad manner.

Another important use for the likelihood in (7.1.2) is as a reference measure
for the more general concept of the likelihood ratio. Let N , N ′ be two point
processes defined on a common state space X and with probability measures
P, P ′, respectively, on some common probability space (Ω, E). By a mild
abuse of language, we shall say that N is absolutely continuous with respect
to N ′, denoting it N � N ′, if P is absolutely continuous with respect to P ′.
In talking about a finite point process on a bounded Borel subset A of R

d, the
appropriate probability space is A∪ [see (5.3.8)], and an appropriate reference
measure is that of a Poisson process on A with constant intensity. In this
context, we have the following result.

Proposition 7.1.III. Let N , N ′ be point processes defined on the c.s.m.s.
X = R

d, and let A be a bounded Borel set ⊂ R
d. Then N � N ′ on A if

and only if for each k > 0 the local Janossy measures Jk(· | A) and J ′
k(· | A)

associated with N and N ′, respectively, satisfy Jk(· | A) � J ′
k(· | A). In

particular, if N ′ is the Poisson process with constant intensity λ > 0, then
N � N ′ if and only if N is regular on A.

Proof. IfN ′ vanishes identically on A, the conclusion is trivial, so we suppose
this is not the case. Recall from the discussion around Proposition 5.3.II
that an event E from A∪ has the structure E =

⋃∞
0 Sk, where each Sk is a

symmetric set; i.e. an element of B(k)
sym(A) (see Exercise 5.3.5).

To establish the absolute continuity N � N ′ on A, we have to show that if
P, P ′ are the probability measures induced on A∪ by N, N ′, then P(E) = 0
whenever P ′(E) = 0. Since N ′ is not identically zero, P ′(E) = 0 only if
S0 = ∅ and P ′(Sk) = 0 for all k > 0. It is enough here to suppose that Sk is
the symmetrized form of a product set A1 × . . . × Ak, where the Ai form a
partition of A, since product sets of this form generate the symmetric sets in
A(k). Then, from the definition of the local Janossy measures,

k!P(Sk) = Jk(A1 × . . .×Ak | A) = Jk(Sk | A).

Similarly,
k!P ′(Sk) = J ′

k(A1 × . . .×Ak | A).

Thus, if P ′(E) = 0, then for each k, J ′
k(Sk | A) = 0, and if Jk(· | A) �

J ′
k(· | A), then Jk(Sk | A) = P(Sk) = 0 as well, so P(E) = 0.

The same equivalences establish the converse relation.
If, in particular, N ′ is the Poisson process on A with constant intensity λ,

then

J ′
k(Sk | A) = k!P ′(Sk) =

( k∏
i=1

λ�(Ai)
)

e−λ�(A),
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where � is Lebesgue measure in R
d. Thus, each local Janossy measure J ′

k(· | A)
is proportional to Lebesgue measure in (Rd)k, so Jk(· | A)� J ′

k(· | A) for all
k > 0 if and only if N is regular.

When densities are known explicitly for both processes, the likelihood ratio
for a realization {x1, . . . , xn} within A is the ratio of the two Janossy densities
of order n for the process on A. When the reference measure is that of a
Poisson process with unit intensity, P# say, this can be written

LA/L
#
A = e�(A)jn(x1, . . . , xn | A). (7.1.3a)

In other words, it is directly proportional to the Janossy measure itself. Al-
ternatively, (7.1.3a), or more properly the collection of such expressions for all
integers n, can be regarded simply as the density of the given point process on
A∪ relative to the Poisson process measure as a reference measure. Written
out in full, the Radon–Nikodym derivative for the two measures on A∪ takes
the form (see Exercise 5.3.8)

dP
dP ′ (ω) = eλ�(A)

(
J0IN(A)=0 +

∞∑
1

λn

n!
jn(x1, . . . , xn)IN(A)=n

)
. (7.1.3b)

We look again at the inhomogeneous Poisson process example in this light.

Example 7.1(a) (continued). As in (7.1.2), PA denotes the distribution as-
sociated with an inhomogeneous Poisson process with intensity λ(x). Then,
the log likelihood ratio relative to the unit-rate Poisson takes the form

log(LA/L
#
A) =

N∑
i=1

log λ(xi)−
∫
A

[λ(x)− 1] dx.

One further manipulation of this equation is worth pointing out. Suppose
that λ(x) has the form

λ(x) = Cφ(x),

where C is a positive scale parameter and φ(x) is normalized so that
∫
A
φ(x) dx

= 1. Then (7.1.3) becomes

log(LA/L
#
A) = N logC +

N∑
i=1

log φ(xi)− C + �(A).

Differentiation with respect to C yields the maximum likelihood estimate

Ĉ = N,

and it is clear that here N is a sufficient statistic for C. Moreover, substituting
this value back into the likelihood yields L̂A, say, and the ratio becomes

log(L̂A/L
#
A) = N logN −N + �(A) +

∑
log φ(xi).
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Apart from a constant term, this is the same expression as would be obtained
by first conditioning on N , when the likelihood reduces to that for N inde-
pendent observations on the distribution with density φ(xi). Clearly, in this
situation, estimates based on Poisson observations with variable N yield the
same results as estimates obtained by first conditioning on N , a statement
that is not true with other distributions even asymptotically.

Finally, consider the model with constant but arbitrary (unknown) rate C,
so that

λ(x) = C/�(A)

with likelihood L0
A, say. We find as a special case of the above

log(L̂0
A/L

#
A) = N logN −N + �(A)−N log �(A),

from which
log(L̂A/L̂0

A) =
∑

log φ(xi) +N log �(A).

Thus, the term on the right-hand side is the increment to the log likelihood
ratio achieved by fitting a model with density proportional to φ(x) over a
model with constant density. This elementary observation often provides a
useful reduction in the complexity of numerical computations involving Pois-
son models.

The next three examples form some of the key models in representing spa-
tial point patterns within finite regions. Although the likelihoods can be given
in more or less explicit form, explicit analytic forms for other characteristics of
the process—moment and covariance densities, for example—are not easy to
find, mainly because of the intricate links between the numbers and locations
of particles within a given region.

Another major problem is that, in many important examples, the char-
acteristics of the process are not given directly in terms of the local Janossy
measures for the process on A but in terms of global characteristics from which
the local characteristics have to be derived. If the process is defined directly
in terms of the local Janossy measures, then it is assumed, either tacitly or
otherwise, that any effects from points outside the observation region A have
been incorporated into the definitions or ignored. If this is not the case—if,
for example, one wishes to fit a stationary version of a process with spec-
ified interaction potentials—the situation becomes considerably more com-
plex. Allowing for the influence exerted in an average sense by points outside
A amounts to nothing less than a generalized version of the Ising problem,
where the issue was first posed in the context of magnetized particles in a
one-dimensional continuum. The issue is discussed further around Example
7.1(e) and in Chapter 15. In the next three examples, this difficulty is avoided
by assuming that the process is totally finite on X and that X = A.

Example 7.1(b) Finite Gibbs processes on X ; pairwise interaction systems
[see Example 5.3(c)]. An important class of examples from theoretical physics
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was introduced in Example 5.3(c), with Janossy densities and hence likeli-
hoods of the form

L(x1, . . . , xn) = C(θ) exp[−θU(x1, . . . , xn)] , (7.1.4)

where U can be expressed as a sum of interaction potentials, and the partition
function C(θ) is chosen to satisfy the normalization condition of equation
(5.3.7). In the practically important case of pairwise interactions, only first-
and-second order interaction terms are present, and U takes the form

U(x1, . . . , xn) =
n∑
i

ψ1(xi) +
n∑
j<i

ψ2(xi, xj).

Although such models have a valuable flexibility in modelling different types
of spatial interactions, their initial attractiveness is somewhat countered by
the difficulty of expressing the partition function C(θ) in terms of the other
parameters of the model. In fact, exact expressions for the likelihood do not
seem to be available in any cases where the second-order term is nontrivial.
Ogata and Tanemura (1981) advocate using the approximations (virial expan-
sions) developed by physicists for this purpose, but even so the computations
are laborious and their accuracy uncertain. Diggle et al. (1994) compares dif-
ferent numerical approximations. More recent work has focussed on Markov
chain Monte Carlo (MCMC) approximations, where the equilibrium solution
is obtained numerically as a long-term average of simulations of a Markov
chain having the required distribution as its stationary distribution (see e.g.
Häggstrøm et al., 1999; Andersson and Britton, 2000, Chapter 11). By ju-
dicious choice of the Markov chain transition probabilities, the normalizing
constant can be made to disappear from the estimates (e.g. Exercise 7.1.7).

Another technique that obviates the need to explicitly evaluate the nor-
malizing constant is to replace the true likelihood L by the pseudolikelihood
L† defined by

L†(x1, . . . , xn) =
n∏
k=1

jn(x1, . . . , xn)
jn−1({x1, . . . , xn} \ xk)

.

Since this involves a ratio of Janossy densities, the normalizing constant dis-
appears. It is very much easier, therefore, to derive the pseudolikelihood
estimates for a model of this kind than it is to derive the true maximum like-
lihood estimates. On the other hand, the properties of estimates obtained by
maximizing the pseudolikelihood, for example their consistency or asymptotic
normality, are currently only partially resolved. In practice, they behave in
much the same way as standard maximum likelihood estimates, and it seems
likely that in time the theory of both will be subsumed under a more general
umbrella. See Baddeley (2001) for examples and further discussion.

Example 7.1(c) Strauss processes; hard-core models (Strauss, 1975; Kelly
and Ripley, 1976). Strauss processes are the special cases of the model above
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when ψ1 is a constant α and ψ2(xi, xj) has a fixed value β within the range
‖xi− xj‖ < R, for some fixed R <∞, and is zero outside it. In this case, the
Janossy density takes the form

jn(x1, . . . , xn) = C(α, β,R) αnβm,

where m = m(x1, . . . , xn) is the number of distinct pairs xi, xj for which
‖xi−xj‖ < R. The Janossy density is constant on hypercylinders around the
diagonals xi = xj and their intersections in X (n).

For the process to be well defined, the sum of the Janossy measures must
converge [see equation (5.3.9)], which occurs if and only if either β < 1 or
β = 1 and α ≤ 1 (cf. Exercise 7.1.8). The condition β < 1 implies some
degree of repulsion between points, implying underdispersion relative to the
Poisson process. In particular, the choice β = 0 corresponds to a so-called
hard-core model, in which points cannot come closer than within a distance
R of each other. Other examples of hard-core models appear in Section 8.3.

For other values of α and β, the series of Janossy measures diverges so
that they no longer correspond to a well-defined finite point process. Thus,
the process cannot be used directly to model clustering, but modified Strauss
processes with β > 1 can be produced by weighting the Janossy densities
with a sequence of constants, wn say, chosen to ensure convergence of the
Janossy measures. The most extreme case, corresponding to setting wn = 1
for some selected value of n and to 0 otherwise, corresponds to conditioning
on an outcome of fixed size n. See Kelly and Ripley (1976) and Exercise 7.1.8
for details.

Example 7.1(d) Markov point processes (Ripley and Kelly, 1977). In order to
introduce some concept of Markovianity into the unordered context of spatial
point processes, Ripley and Kelly first assume the existence of a relationship
∼ among the points {xi} of a realization. When xi ∼ xj , the points (xi, xj)
are said to belong to the same clique or neighbourhood class. Given any
realization of the process, the points may be uniquely divided up into cliques,
where a point xi forms a clique by itself if there are no other points xj in
the realization for which xi ∼ xj . Let ϕ:X∪ �→ R

+ be a function defined on
cliques V and taking real positive values. Then, a finite point process is said
to be a Markov point process if the Janossy density for a realization with a
total of N points coming from V cliques Vk with Nk points in Vk takes the
form

jN (x1, . . . , xN | A) = C

V∏
k=1

ϕ(Vk), (7.1.5)

where N =
∑
kNk and C is a normalization constant chosen to ensure the

Janossy measures satisfy condition (5.3.7). This is equivalent to requiring
that the density relative to a unit-rate Poisson process is always proportional
to the product

∏V
k=1 ϕ(Vk) no matter how many points the realization may

contain.
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A common choice is to take xi ∼ xj if ||xi − xj || < R. We leave the reader
to verify that this leads to a well-defined equivalence relation and that if

ϕ(V) =
{

0 if N(V) ≥ 2,
α otherwise,

then we recover the hard-core version of the Strauss model.
Many other important examples of spatial point processes may be put into

this form, although the appropriate definitions of clique and the function φ
may take some teasing out. A more extended discussion of Markov point
processes is given in Chapter 10.

In some examples, it is possible to take advantage of a simple expression
for the log p.g.fl.; this generally leads to simple expressions for the Khinchin
measures, which can then be used to construct the Janossy measures via the
combinatorial formulae (5.5.31). The simplest example is the Poisson process,
for which only the first Khinchin measure is nonzero, so in the notation of
Exercise 5.5.8 we have, say,

K0 = − log p0(A) =
∫
A

λ(x) dx = Λ(A),

k1(x | A) = λ(x).

Then, from (5.5.31) we have jn(x1, . . . , xn) = p0(A)
∏n
i=1 λ(xi) as used in

(7.1.3a).
The next most complicated example of this type is the Gauss–Poisson pro-

cess described in detail in Example 6.3(d) for which just the first two of the
Khinchin measures are nonzero.

At this point, we meet an example of the difficulty referred to in the discus-
sion preceding Example 7.1(b). The defining quantities for the Gauss–Poisson
process are the measures Q1(dx) and Q2(dx1×dx2) described in Proposition
6.3.IV. If the process is observed on a bounded set A, then we have to deter-
mine whether these quantities are given explicitly for the process on A or quite
generally for the process on the whole of R. In the former case the analysis
can proceed directly and is outlined in Example 7.1(e)(i) below. In the latter
case, however, and specifically in the case where we want to fit a model with
densities q1(x) ≡ q1, q2(x1, x2) = q(x1 − x2) corresponding to a stationary
version of the process, it is not clear how to allow for the interactions with
points of the process lying outside of A and hence unobserved. It turns out
that, for this particular model, explicit corrections for the average influence of
such outside points can be made and amount to modifying the parameters for
the process observed on A. This discussion is outlined in Example 7.1(e)(ii).

Example 7.1(e) (i) Gauss–Poisson process on a bounded Borel set A. From
(6.3.30) or Exercise 6.3.12, we know that the log p.g.fl. of a Gauss–Poisson
process defined on a bounded Borel set A as state space has the expansion

− logG[h] =
∫
A

[1− h(x)]K1(dx) +
∫
A(2)

[1− h(x)h(y)]K2(dx× dy).
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Assume that K1(dx) = µ(x) dx and K2(dx× dy) = 1
2q(x− y) dxdy for some

function µ(·) and some symmetric function q(·). Then, the Khinchin densities
kr are given by

k1(x) = µ(x), k2(x, y) = q(x− y), kr(·) = 0 (all r = 3, 4, . . .),

and
K0 = − log p0(A) =

∫
A

µ(x) dx+ 1
2

∫
A

∫
A

q(x− y) dxdy

=
∫
A

k1(x) dx+ 1
2

∫
A

∫
A

k2(x, y) dxdy.

We turn to the expansion of the Janossy densities in terms of Khinchin
densities given by equation (5.5.31), namely

jn(x1, . . . , xn | A) = exp(−K0)
n∑
r=1

∑
T ∈Prn

r∏
i=1

k|Si(T )|(xi1, . . . , xi,|Si(T )|),

where the inner summation is taken over all partitions T of x1, . . . , xn into
i subsets as described above Lemma 5.2.VI. The only nonzero terms arising
in this summation are those relating to partitions into sets of sizes 1 and 2
exclusively. This leads to the form for the Janossy densities

jn(x1, . . . , xn | A)

= p0(A)
[n/2]∑
k=0

∑∗
µ(xi′1) · · ·µ(xi′

n−2k
) q(xi1 − xi2) · · · q(xi2k−1 − xi2k

), (7.1.6)

where the summation
∑∗ extends over the n!/[(n − 2k)! 2k] distinct sets of

k pairs of different indices (i1, i2), . . . , (i2k−1, i2k) from {1, . . . , n} satisfying
i2j−1 < i2j (j = 1, . . . , k) and i1 < i3 < · · · < i2k−1, and {i′1, . . . , i′n−2k} is the
complementary set of indices.

Given a realization x1, . . . , xn of a Gauss–Poisson process on a set A, its
likelihood is then jn(x1, . . . , xn | A), which is in principle computable but in
practice is somewhat complex as soon as n is of moderate size.

Newman (1970) established (7.1.6) by an induction argument.
(ii) Stationary Gauss–Poisson process. In the specific case of a stationary
(translation-invariant) Gauss–Poisson process, we can proceed as follows. The
global process is defined by two global parameters, a mean density, say m,
and a factorial covariance measure C̆[2], which we shall assume to have density
q(x − y). From these we can obtain obtain versions of the local Khinchin
densities from equations, analogous to (5.4.11),

k1(x | A) = c[1](x) +
∞∑
i=1

(−1)j

j!

∫
A(j)

c[1+j](x, y1, . . . , yj) dy1 · · · dyj ,
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which here reduces to

k1(x | A) = m−
∫
A

q(x− y) dy ≡ µ(x) (x ∈ A),

and
k2(x1, x2 | A) = q(x1 − x2) (x1, x2 ∈ A),

while all higher-order Khinchin measures vanish. Since these two densities
define the two measures Q1, Q2 characterizing a Gauss–Poisson process [see
Example 6.3(d)], we see firstly that the process on A is still a Gauss–Poisson
process and secondly that its defining measures, unlike the moment measures,
depend explicitly on the locations within the observation set A. In other
words, although the local process on A is still a process of correlated pairs,
its properties are no longer constant across A but depend in general on the
proximity to the boundary of A.

From this discussion, we see that there is no loss of generality in assuming
that X = A, although to obviate the need for edge corrections we shall have to
assume that the defining measures are not stationary, even though the global
process may be so (see also Brix and Kendall, 2002).

In principle, it is possible to write down expressions even more complicated
than (7.1.6) for cluster processes with up to 3, 4, . . . points in each cluster.
Baudin (1981) developed an equivalent systematic procedure for writing down
the likelihood of a Neyman–Scott cluster process, but again it is of substantial
combinatorial complexity: see Exercises 7.1.5–6 for details (see also Baddeley,
1998).

The difficulty of finding the local Janossy measures in terms of global pa-
rameters of the model varies greatly with the model. In a few simple cases,
such as the Poisson and Gauss–Poisson examples just considered, explicit ex-
pressions may be obtained. In other examples, finding exact solutions raises
difficulties of principle as much as technical difficulty. Only the evolutionary
processes, considered in the later sections of this chapter, provide a substan-
tial class of models for which a ready solution exists and then only by taking
special advantage of the order properties of the time-like dimension. Further
discussion of the general problem is deferred until Chapter 15.

At the practical level, the difficulty can be alleviated to some extent by
the use of so-called plus sampling or minus sampling. This consists of either
adding to (‘plus’) or subtracting from (‘minus’) the original sampling region
A a buffer region in which the points contribute indirectly to the likelihood
by virtue of their effects on the probability density of the points in the inner
region but are not included as part of the realization as such. Of course, the
points in the buffer region do not play their full weight in the analysis, and the
corrections so obtained are only approximate. There is clearly some delicacy
in choosing the buffer region large enough to improve accuracy by reducing
bias (arising from edge effects) but not so large that the improvement is offset
by the loss of information due to not making full use of the data points in the
buffer region. Edge effects are discussed again at the end of Section 8.1.
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Another possible strategy is to introduce ‘periodic boundary effects’, es-
sentially by wrapping the time interval around a circle, in the case of a one-
dimensional problem, or, for a rectangular region in the plane, by repeating
the original region (with the original data) at all contiguous positions in a
rectangular tiling of the plane with the original region as base set. The ratio-
nale behind the procedure is that the missing data in a neighbourhood of the
original observation will be replaced by data that may be expected to have
similar statistical properties in general terms. Further discussion of these and
similar techniques can be found in the texts by Ripley (1981), Cressie (1991),
and Stoyan and Stoyan (1994).

Example 7.1(f) Fermion and boson processes [see Examples 5.4(c) and
6.2(b)]. Each of these processes is completely specified by a global covariance
function c(x, y), and the local Janossy densities appear as either determinants
[for the fermion process: see (5.4.19)] or permanents [for the boson process:
see (6.2.11)]. In each case, the densities are derived from a resolvent kernel
of the integral equation on A with kernel c(· , ·). As for the Gauss–Poisson
process, the resulting explicit expressions for the Janossy densities (and thus
the likelihoods) incorporate requisite adjustments for boundary effects.

We conclude this section with an excursion into the realm of hypothesis
testing; it has the incidental advantage of illustrating further the role of the
Khinchin density functions. A commonly occurring need in practice is to test
for the null hypothesis of a Poisson process against some appropriate class of
alternatives, and it is then pertinent to enquire as to the form of the optimal
or at least locally optimal test statistic for this purpose. This question has
been examined by Davies (1977), whose general approach we follow.

The locally optimal test statistic is just the derivative of the log likelihood
function, calculated at the parameter values corresponding to the null hy-
pothesis. Davies’ principal result is that this quantity has a representation as
a sum of orthogonal terms, containing contributions from the factorial cumu-
lants of successively higher orders. The formal statement is as follows (note
that we return here to the general case of an observation region A ⊂ X = R

d).

Proposition 7.1.IV. For a bounded Borel subset A of R
d, let the distribu-

tions {Pθ} correspond to a family of orderly point processes on R
d indexed

by a single real parameter θ such that
(i) for θ = 0 the process is a Poisson process with constant intensity µ, and

(ii) for all θ in some neighbourhood V of the origin, all factorial moment and
cumulant densities m[k] and c[k] exist and are differentiable functions of
θ and are such that for each s = 1, 2, . . . the series

∞∑
k=1

1
k!

∫
A

· · ·
∫
A

c′[k+s](x1, . . . , xs, y1, . . . , yk; θ) dy1 · · · dyk (7.1.7)
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is uniformly convergent for θ ∈ V , and the series
∞∑
k=1

(1 + δ)k

k!

∫
A

· · ·
∫
A

c′[k](y1, . . . , yk; θ) dy1 · · · dyk (7.1.8)

converges for some δ > 0.
Then, the efficient score statistic ∂ logL/∂θ

∣∣
θ=0 can be represented as the

sum

D ≡ ∂ logL
∂θ

∣∣∣∣
θ=0

=
∞∑
k=1

Dk, (7.1.9)

where, with I(y1, . . . , yk) = 1 if no arguments coincide and = 0 otherwise and
Z(dy) = N(dy)− µdy,

Dk =
1

µkk!

∫
A

· · ·
∫
A

I(y1, . . . , yk)c′[k](y1, . . . , yk; 0)Z(dy1) · · ·Z(dyk).

(7.1.10)
Under the null hypothesis θ = 0 and j > k ≥ 1,

E(Dk) = E(DkDj) = 0, (7.1.11a)

varDk =
1

µkk!

∫
A

· · ·
∫
A

[c′[k](y1, . . . , yk; 0)]2 dy1 · · · dyk. (7.1.11b)

Proof. We again use the machinery for finite point processes starting with
the expression for the likelihood L ≡ Lθ = jn(x1(1)n; θ) of the realization
{x1, . . . , xn} ≡ {x1(1)n} on the set A in the form [see (5.5.31)]

L = exp(−K0(θ))
n∑
j=1

∑
T ∈Pjn

j∏
i=1

k|Si(T )|(xi,1, . . . , xi,|Si(T )|; θ), (7.1.12)

where the kr(·) denote Khinchin densities and the inner summation extends
over the set Pjn of all j-partitions T of the realization {x1(1)n}. Because
θ = 0 corresponds to a Poisson process, K0(0) = µ�(A) and kr(y1(1)n; 0) = 0
unless r = 1 when k1(y; 0) = µ. Consequently, (7.1.12) for θ = 0 reduces to
L0 = µn exp(−µ�(A)), as it should. This fact simplifies the differentiation of
(7.1.12) because, assuming (as we justify later) the existence of the derivatives

k′
r(y1(1)r; 0) ≡ ∂

∂θ
kr(y1(1)r; θ)

∣∣
θ=0,

in differentiating the product term in (7.1.12), nonzero terms remain on set-
ting θ = 0 only if at most one set Si(T ) has |Si(T )| > 1 and all other j − 1
sets have |Si(T )| = 1. Thus,

(logL)′ ≡ ∂ logL
∂θ

∣∣∣∣
θ=0

= −K ′
0(0) +

n∑
j=1

µj−1
∑∗ k′

n−j+1(xr1 , . . . , xrn−j+1 ; 0)
µn

= −K ′
0(0) +

n∑
i=1

µ−i
∑∗

k′
i(xr1 , . . . , xri ; 0),
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where the summation
∑∗ extends over all distinct selections of size i from

the set {x1(1)n}. Since this set is a realization of the process N(·) over A, the
sum

∑∗ is expressible as the integral

1
i!

∫
A

· · ·
∫
A

I(y1(1)i; 0)N(dy1) · · · N(dyi),

where the factor I(y1(1)i) avoids repeated indices and division by i! compen-
sates for the i! recurrences of the same set of indices in different orders. This
leads to the representation

(logL)′ = −K ′
0(0) +

∞∑
i=1

1
µii!

∫
A

· · ·
∫
A

I(y1(1)i)k′(y1(1)i; 0)N(dy1) · · · N(dyi)

(7.1.13)
now valid on an infinite range for i as the sum terminates after N(A) terms.

When the Khinchin measures are known explicitly, (7.1.13) can be used
directly. Otherwise, use the expansion akin to (5.5.29) of k(·) in terms of
factorial cumulant densities

ki(y1(1)i; 0) =
∞∑
j=0

(−1)j

j!

∫
A

· · ·
∫
A

c[i+j](y1(1)i, u1(1)j ; θ) du1 · · · duj ,

which, in view of the assumption in (7.1.7), both shows that the ki(·) are
differentiable as assumed earlier and justifies term-by-term differentiation.
Because of (7.1.12), the same is also true of Lθ. Also, since by (5.5.26) K0(θ)
is a weighted sum of all other Khinchin measures, substitution for k′

i(·) yields

K ′
0(θ) =

∞∑
i=1

1
i!

∫
A

· · ·
∫
A

( ∞∑
j=0

(−1)j

j!

×
∫
A

· · ·
∫
A

c′[i+j](y1(1)i, u1(1)j ; θ) du1 · · · duj

)
dy1 · · · dyi,

which on replacing j by j − i, inverting the order of summation, and using∑j
i=1(−1)j−i/[i! (j − i)!] = −(−1)j/j! gives for θ = 0

K ′
0(0) = −

∞∑
j=1

(−1)j

j!

∫
A

· · ·
∫
A

c′[j](u1(1)j ; 0) du1 · · · duj .

Similar substitution after differentiation into (7.1.13), rearrangement of the
order of summation, and substitution for −K ′

0(0) yields

(logL)′ =
∞∑
j=1

1
µjj!

j∑
i=0

(−µ)j−ij!
i! (j − i)!

×
∫
A

· · ·
∫
A

c′[j](y1(1)i, u1(1)j−i; 0)N(dy1) · · · N(dyi) du1 · · · duj−i.
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Here we recognize that the inner sum can arise from an expansion of∏j
i=1[N(dvi)−µ(dvi)], the symmetry of the densities c[j](·) implying equality

of their integrals with respect to any reordering of the indices in a differen-
tial expansion such as N(dv1) · · ·N(dvi) dvi+1 · · · dvj . Inserting this product
form leads to (7.1.9) and (7.1.10).

Verification of equations (7.1.11a) and (7.1.11b) under the null hypothesis
is straightforward.

Example 7.1(g) Poisson cluster processes with bounded cluster size. Suppose
the size of the clusters is limited to M so that only the first M terms are
present in the expansions in terms of Khinchin or cumulant densities; the
Gauss–Poisson case of Example 7.1(e) corresponds to M = 2. Then, for
θ > 0, we may define the process as the superposition of a stationary Poisson
process with parameter µ and a Poisson cluster process with clusters of size
2, . . . ,M with Khinchin measures with densities θkj(y1, . . . , yj) taken from
the p.g.fl. representation (6.3.32) (i.e. kj is the density of the measure Kj

there). Then, the Khinchin densities in the resultant process have the form
(identifying the state space X with the set A)

K0(θ) = θ�(A) + θ

M∑
j=1

1
j!

∫
A

· · ·
∫
A

kj(x1, . . . , xj) dx1 · · ·dxj ,

k1(x; θ) = µ+ θk1(x), kj(x1, . . . , xj) = θkj(x1, . . . , xj) (j = 2, . . . ,M).

From (7.1.21), we have the expansion

∂ logL
∂θ

∣∣∣∣
θ=0

=
M∑
j=1

1
µj

∫
A

· · ·
∫
A

I(y1, . . . , yj) kj(y1, . . . , yj)
j!

N(dy1) · · ·N(dyj)

=
M∑
j=1

1
µj

∑∗
kj(xr1 , . . . xrj ).

This expression exhibits the efficient score ∂ logL/∂θ
∣∣
θ=0 as the sum of first-,

second-, . . . , Mth-order statistics in the observed points x1, . . . , xN . In the
Gauss–Poisson case, only the first- and second-order terms are needed.

The derivation here implies that the form of the cluster process, up to and
including the detailed specification of the Kj , is known a priori. The situation
if the structure is not known is much more complex but would in effect involve
taking a supremum over an appropriate family of functions Kj .

An alternative representation is available through (7.1.9) and (7.1.10). This
has the advantage that the cumulant densities can be specified globally so that
no implicit assumptions about boundary effects are needed. It follows from
(6.3.32) (see Exercise 6.3.17) that only the first M factorial cumulant densities
c[j] need be considered and (since the c[j] are derived from linear combinations
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of the kj) that the same kind of structure holds for the c[j], namely

c[1](x; θ) = µ+ θc[1](x),

c[j](x1, . . . , xj ; θ) = θc[j](x1, . . . , xj) (j = 2, . . . ,M).

Then (7.1.9) leads to a similar expansion in terms of linear, quadratic, . . .
statistics, namely

Dk =
1

k!µk

∫
A

· · ·
∫
A

I(y1, . . . , yk) c[k](y1, . . . , yk)Z(dy1) · · ·Z(dyk).

For further examples, asymptotic behaviour in the stationary case, and the
possibility of representing the Dk in terms of spectral measures, see Davies
(1977) and Exercises 7.1.8–10.

Exercises and Complements to Section 7.1

7.1.1 Let N1, N2 be two finite Poisson processes with intensity measures Λ1, Λ2, re-
spectively. Show that N1 � N2 if and only if Λ1 � Λ2 (see above Proposition
7.1.III for N1 � N2).

7.1.2 Exercise 2.1.9 discusses the likelihood of a cyclic Poisson process with rate
parameter

µ(t) = exp[α+ β sin(ω0t+ θ)],

though the parametric form is different: eα here equals λ/I0(κ) there. The
derivation of maximum likelihood estimators given there assumes ω0 is known;
here we extend the discussion to the case where ω0 is unknown.
(a) Show that the supremum of the likelihood function in general is approached

by a sequence of arbitrarily large values of ω0 for which sinω0ti ≈ constant
and cosω0ti ≈ constant for every ti of a given realization. A global maxi-
mum of the likelihood is attainable if the parameters are constrained to a
compact set.

(b) Suppose the observation interval T → ∞, and constrain ω0 to an interval
[0, ωT ], where ωT /T

1−ε → 0 (T → ∞) for some ε > 0. Then, the sequence
of estimators ω̂0(T ) is consistent. [See Vere-Jones (1982) for details.]

7.1.3 Another cyclic Poisson process model assumes µ(t) = α+ β[1 + sin(ω0t+ θ)].
Investigate maximum likelihood estimators for the parameters [see earlier ref-
erences and Chapter 4 of Kutoyants (1980, 1984)].

7.1.4 Suppose that the density µ(·) of an inhomogeneous Poisson process on the
bounded Borel set A such as the unit interval (or rectangle or cuboid, etc.)
can be expanded as a finite series of polynomials orthogonal with respect to
some weight function w(·) so that

µ(x) = αw(x)

(
1 +

r∑
j=1

βjvj(x)

)
≡ αw(x)ψ(x),
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where
∫
A
w(x) dx = 1,

∫
A
w(x)vj(x) dx = 0,

∫
A
w(x)vj(x)vk(x) dx = δjk

(j, k = 1, . . . , r). Show that the problem of maximizing the log likelihood
ratio log(L/L0), where L0 refers to a Poisson process with density w(x), is
equivalent to the problem of maximizing

∑N

i=1 logψ(xi) subject to the con-
straint that ψ(x) ≥ 0 on A. This maximization has to be done numerically;
the main difficulty arises from the nonnegativity constraint.

7.1.5 Use the relations in equation (5.5.31) between the Janossy and Khinchin den-
sities to provide a representation of the likelihood of a Poisson cluster process
in terms of the Janossy densities of the cluster member process.
[Hint: Suppose first that the process is a.s. totally finite. Expand logG[h] =∫

X (G[h | y] − 1)µc(dy) (h ∈ V(X )) and obtain

kn(x1, . . . , xn) =
∫

X
jn(x1, . . . , xn | y)µc(dy).

In the general case, proceed from the p.g.fl. expansion of the local process on
A as in (5.5.14) and (5.5.15).]

7.1.6 (Continuation). When the cluster structure is that of a stationary Neyman–
Scott process with µc(dy) = µc dy as in Example 6.3(a) so that

G[h | y] =
∞∑
j=0

pj

(∫
X
h(y + u)F (du)

)j
≡ Q

(∫
h(y + u)f(u) du

)
, say,

deduce that the Janossy densities for the local process on A are given by

jn(x1, . . . , xn | A) = exp

(
µc

∫
X

[Q(1 − F (A− y)) − 1] dy
)

×
∑
b∈B01

2n−1∏
i=1

[
µc

∫
X
Q(|ai|)(1 − F (A− y))

n∏
j=1

[f(xj − y)]aij dy

]b(ai)

,

where ai = (ai1, . . . , ain) is the binary expansion of i = 1, . . . , 2n − 1, |ai| =
#{j: aij = 1}, and B01 is the class of all {0, 1}-valued functions b(·) defined
on {ai: i = 1, . . . , 2n − 1} such that

∑
i
b(ai)ai = (1, . . . , 1). [Thus, any b(·)

has b(a) = 0 except for at most n subsets of a partition of {1, . . . , n}, and∑
b

∏
i

is here equivalent to
∑

j

∑
T
∏
x

in (5.5.31). Baudin (1981) used a
combinatorial lemma in Ammann and Thall (1979) to deduce the expression
above and commented on the impracticality of its use for even a moderate
number of points!]

7.1.7 Suppose that for each n the function U ≡ Un of (7.1.4) satisfies Un(x1, . . . , xn)
≥ −cn for some finite positive constant c. Show that a distribution is well
defined (i.e. that a finite normalizing constant exists).

7.1.8 Clustered version of the Strauss process. In the basic Strauss model of Ex-
ample 7.1(c), if β > 1, the Janossy densities, and hence also their integrals
over the observation region, will tend to increase as the number of points in
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the region increases. Suppose that the densities are taken proportional to
wnα

nβm(n), where m(n) is as defined in the example. Then, the integrals are
dominated by the quantities Cwnαnβn(n−1), and a sufficient condition for the
process to be well defined is that∑

wnα
nβn(n−1) < ∞.

Show that this condition is not satisfied if wn ≡ 1, and investigate conditions
on the wn to make it hold. Note that such modifications will not affect the
sampling patterns for fixed n but only the probabilities pn controlling the
relative frequency of patterns with different numbers of events. See Kelly and
Ripley (1976) for further discussion.

7.1.9 (a) For a stationary Gauss–Poisson process [see Example 7.1(e)] for which
c[1](u) = µ + θ and c[2](u, v) = θγ(u − v) for some symmetric p.d.f. γ(·)
representing the distribution of the signed distance between the points of a
two-point cluster, show that its efficient score statistic D (see Proposition
7.1.IV) is expressible as D = D1 +D2, where

D1 = N(A) − µ�(A) ≡ Z(A),

D2 =
∫
A

∫
A

γ(x− y)Z(dx)Z(dy).

(b) In practice, µ̂ is estimated byN(A)/�(A), soD1 vanishes, and in the second
term, Z is replaced by Ẑ(·) = N(·) − µ̂�(·). Davies (1977) shows that the
asymptotic results remain valid with this modification, so the efficiency of
other second-order statistics can be compared with the locally optimum
form D2. Write the variance estimator in the form

(r − 1)
r∑
j=1

[N(∆j) − µ̂�(∆j)]2,

where ∆1∪· · ·∪∆r is a partition of the observation region A into subregions
of equal Lebesgue measure, in a form similar to D2, and investigate the
variance-to-mean ratio as a test for the Gauss–Poisson alternative to a
Poisson process. [Davies suggested that the asymptotic local efficiency is
bounded by 2

3 .]

7.1.10 (Continuation). In the case of a Neyman–Scott process with Poisson cluster
size distribution, all terms Dk in the expansion in (7.1.9) are present, and
D2 dominates D only if the cluster dimensions are small compared with the
mean distance between cluster centres.

7.1.11 When the Poisson cluster process of Example 7.1(g) for X = R is stationary
and A = (0, t],

Dj ≈ 1
tj+1j!µj

∑
· · ·
∑

l1+···+lj=0

φj(l1/t, . . . , lj/t) gj(λ1, . . . , λj ; t),
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where

φj(λ1, . . . , λj) =
∫

R

· · ·
∫

R

k′
j(t1, . . . , tj) exp

(
2πi

j∑
r=1

λrtr

)
dt2 · · · dtj

with λ1 + · · · + λj = 0 and gj(λ1, . . . , λj ; t) equals∫ t

0

· · ·
∫ t

0

I(t1, . . . , tj) exp

(
2πi

j∑
r=1

λrtr

)
Z(dt1) · · ·Z(dtj).

[Hint: Use Parseval-type relations to show that t−1E(|Dj − Dj |2) → 0 as
t → ∞. See also Theorem 3.1 of Davies (1977).]

7.2. Conditional Intensities, Likelihoods, and
Compensators

If the discussion in the previous section suggests that there are no easy meth-
ods for evaluating point process likelihoods on general spaces, it is all the more
remarkable, and fortunate, that in the special and important case X = R

there is available an alternative approach of considerable power and gener-
ality. The essence of this approach is the use of a causal description of the
process through successive conditionings. A full development of this approach
is deferred to Chapter 14; here we seek to provide an introduction to the topic
and to establish its links to representations in terms of Janossy densities. For
simplicity, suppose observation of the process occurs over the time interval
A = [0, T ] so that results may be described in terms of a point process on R+.

Denote by {t1, . . . , tN(T )} the ordered set of points occurring in the fixed
interval (0, T ). As in the discussion around equation (3.1.8), the ti, as well as
the intervals τi = ti− ti−1, i ≥ 1, t0 = 0, are taken to be well-defined random
variables. Suppose also that the point process is regular on (0, T ), so that
the Janossy densities jk(·) all exist (recall Definition 7.1.I). We suppose that
if there is any dependence on events before t = 0, it is already incorporated
into the Janossy densities. For ease of writing, we use jn(t1, . . . , tn | u) for
the local Janossy density on the interval (0, u), and J0(u) for J0((0, u)).

Now introduce the conditional survivor functions Sk(u | t1, . . . , tk−1) =
Pr{τk > u | t1, . . . , tk−1} and observe that these can be represented recursively
in terms of the (local) Janossy functions through the equations

S1(u) = J0(u)
S2(u | t1)p1(t1) = j1(t1 | t1 + u)

S3(u | t1, t2)p2(t2 | t1) = j2(t1, t2 | t2 + u)

(0 < u < T ),
(0 < tt < t1 + u < T ),
(0 < t1 < t2 < t2 + u < T ),

and so on, where p1(t), p2(t | t1), . . . are the probability densities correspond-
ing to the survivor functions S1(u), S2(u | t1), . . . . The fact that these densi-
ties exist is a corollary of the assumed regularity of the process. This can be
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seen more explicitly by noting identities such as (for S1(·))

J0(t) = J0(T ) +
∞∑
k=1

1
k!

∫ T

t

· · ·
∫ T

t

jk(u1, . . . , uk | T ) du1 · · ·duk,

from which

p1(t) = j1(t | T ) +
∞∑
k=2

1
(k − 1)!

∫ T

t

· · ·
∫ T

t

jk(t, u2, . . . , uk | T ) du2 · · ·duk,

an expression that is actually independent of T for T > t. Similarly, for S2
we find (for t1 < t < T )

p1(t1)S2(t | t1)

= j1(t1 | T ) +
∞∑
k=2

1
(k − 1)!

∫ T

t

· · ·
∫ T

t

jk(t1, u2, . . . , uk | T ) du2 · · ·duk

= j1(t1 | t),

from which it follows that p1(t1)p2(t | t1) equals

j2(t1, t | T ) +
∞∑
k=3

1
(k − 2)!

∫ T

t

· · ·
∫ T

t

jk(t1, t, u3, . . . , uk | T ) du3 · · ·duk,

again establishing the absolute continuity of S2(t | t1). Further results fol-
low by an inductive argument, the details of which we leave to the reader.
Together they suffice to establish the first part of the following proposition.

Proposition 7.2.I. For a regular point process on X = R+, there exists
a uniquely determined family of conditional probability density functions
pn(t | t1, . . . , tn−1) and associated survivor functions

Sn(t | t1, . . . , tn−1) = 1−
∫ t

tn−1

pn(u | t1, . . . , tn−1) du (t > tn−1)

defined on 0 < t1 < · · · < tn−1 < t such that each pn(· | t1, . . . , tn−1) has
support carried by the half-line (tn−1,∞), and for all n ≥ 1 and all finite
intervals [0, T ] with T > 0,

J0(T ) = S1(T ), (7.2.1a)
jn(t1, . . . , tn | T ) ≡ jn(t1, . . . , tn | (0, T ))

= p1(t1)p2(t2 | t1) · · · pn(tn | t1, . . . , tn−1)
× Sn+1(T | t1, . . . , tn), (7.2.1b)

where 0 < t1 < · · · < tn < T can be regarded as the order statistics of
the points of a realization of the point process on [0, T ]. Conversely, given
any such family of conditional densities for all t > 0, equations (7.2.1a) and
(7.2.1b) specify uniquely the distribution of a regular point process on R+.



7.2. Conditional Intensities, Likelihoods, and Compensators 231

Proof. Only the converse requires a brief comment. Given a family of
conditional densities pn, both J0(T ) and symmetric densities jk(· | T ) can be
defined by (7.2.1), and we can verify that they satisfy

J0(T ) +
∞∑
n=1

1
n!

∫ T

0
· · ·
∫ T

0
jn(t1, . . . , tn | T ) dt1 · · · dtn

= J0(T ) +
∞∑
n=1

∫
· · ·
∫

0<t1<···<tn<T

jn(t1, . . . , tn | T ) dt1 · · · dtn = 1.

It follows from Proposition 5.3.II that there exists a well-defined point process
with these densities.

Since the point process is uniquely determined by the Janossy measures
and these are equivalent to the conditional densities pn(t | t1, . . . , tn−1) for a
regular point process, there is a one-to-one correspondence between regular
point processes and families pn(· | ·), as described.

We now make a seemingly innocuous but critical shift of view. Instead of
specifying the conditional densities pn(· | ·) directly, we express them in terms
of their hazard functions

hn(t | t1, . . . , tn−1) =
pn(t | t1, . . . , tn−1)
Sn(t | t1, . . . , tn−1)

so that

pn(t | t1, . . . , tn−1) = hn(t | t1, . . . , tn−1) exp
(
−
∫ t

tn−1

hn(u | t1, . . . , tn−1) du
)
.

(7.2.2)
Given a sequence {ti} with 0 < t1 < · · · < tn < · · · , we define an amalgam of
the hazard functions by

λ∗(t) =
{
h1(t) (0 < t ≤ t1),
hn(t | t1, . . . , tn−1) (tn−1 < t ≤ tn, n ≥ 2).

(7.2.3)

Definition 7.2.II. The conditional intensity function for a regular point
process on R+ = [0,∞) is the representative function λ∗(·) defined piecewise
by (7.2.3).

Note on terminology. In the general definition of conditional intensities,
care must be taken to specify the information on which the conditioning is
based. This is conveniently summarized by a σ-algebra of events. In the
conditional intensity defined above, the conditioning is taken with respect to
the minimal σ-algebra consistent with observations on the process, namely
the σ-algebra generated by the observed past of the process. More general
versions may include information about exogenous variables or processes, as
illustrated around Examples 7.2(d)–(e). The conditional intensity introduced
here follows the terminology of Brémaud (1981) and related references in the
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electrical engineering literature; it should be carefully distinguished from the
conditional intensity used in more recent discussions of spatial point patterns
(see e.g. Baddeley and Turner, 2000), where it is a special case of the Pa-
pangelou intensity introduced in Chapter 15. This Papangelou conditional
intensity relates to the effect of adding an additional point within the obser-
vation region; Definition 7.2.II refers to adding an additional point within an
extension of the observation region.

The intuitive content of the notion of a conditional intensity function is
well expressed through the suggestive relation

λ∗(t) dt ≈ E[N(dt) | Ht−], (7.2.3′)

whereHt− is the σ-algebra of events occurring at times up to but not including
t. Thus, the conditional intensity can be interpreted as the conditional risk
of the occurrence of an event at t, given the realization of the process over
the interval [0, t). Strictly, the notation should reflect the fact that λ∗(·) is a
function λ∗(· | t1, . . . , tN(t)) of the point history, or, even more generally, that
it is itself a stochastic process λ∗(t, ω) depending on ω through the realization
{t1(ω), . . . , tN (ω)} of the history up to time t. The terms conditional risk (or
rate or hazard) function, or even these terms omitting the word ‘conditional’,
have also been used to describe λ∗(·) as defined in (7.2.3). It is the key both
to the likelihood analysis and to solving problems of prediction, filtering, and
simulating point processes on a half-line.

Just as the density function of a probability distribution can in principle be
specified only up to its values on a set of Lebesgue measure zero, so also a lack
of uniqueness arises in defining λ∗(·). In all practical situations, the densities
pn(· | ·) will be at least piecewise continuous, and uniqueness can then be
ensured by (for example) taking the left-continuous modification λ∗(t−) for
λ∗(t). The reason for using left continuity is connected with predictability: if
the conditional intensity has a discontinuity at a point of the process, then its
value at that point should be defined by the history before that point, not by
what happens at the point itself. This is implicit in the way the hazard func-
tions are defined and crucial to the correct definition of the likelihood, since it
is the density for the interval preceding a point that figures in the likelihood,
not the new density that comes into play once the point has occurred. A rig-
orous discussion of these issues leads to the concept of a predictable σ-algebra
and to the existence of predictable versions of the conditional intensity; see
comments later in this chapter and Chapter 14.

In the remainder of this section, unless stated otherwise, it is tacitly as-
sumed that a left-continuous version of λ∗(·) exists and is being used.

Proposition 7.2.III. Let N be a regular point process on [0, T ] for some
finite positive T , and let t1, . . . , tN(T ) denote a realization of N over [0, T ].
Then, the likelihood L of such N is expressible in the form

L =

[
N(T )∏
i=1

λ∗(ti)

]
exp
(
−
∫ T

0
λ∗(u) du

)
, (7.2.4)
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and its log likelihood ratio relative to the Poisson process on [0, T ] with con-
stant rate 1 is expressible as

log
L

L0
=
N(T )∑
i=1

log λ∗(ti)−
∫ T

0
[λ∗(u)− 1] du. (7.2.5)

Proof. To establish (7.2.4), it is enough to express the Janossy densities in
terms of the conditional densities pn(t | t1, . . . , tn−1) and then express each of
these in terms of their hazard functions and hence of λ∗(·). Details are left to
the reader: see Exercise 7.2.1.

An important consequence of the construction used in the proof above is
that the conditional intensity function determines the family of conditional
hazard functions at (7.2.3) and that these in turn determine the Janossy
densities. This can be summarized as below.

Proposition 7.2.IV. Let N be a regular point process on R+ . Then, the
conditional intensity function determines the probability structure of the point
process uniquely.

Our first example illustrates these ideas in the context of a Wold process.

Example 7.2(a) Wold process of correlated intervals (see Section 4.5). Sup-
pose the Markov process of successive interval lengths {In} ≡ {tn − tn−1}
(n = 1, 2, . . .), with t0 ≡ 0, is governed by the transition kernel with density
p(y | x) for the length y of the interval In given the length x of the interval
In−1. For n ≥ 3, the conditional distribution has the density

pn(t | t1, . . . , tn−1) = p(t− tn−1 | tn−1 − tn−2),

so that in terms of the hazard function h(y | x) = p(y | x)/S(y | x), where
S(y | x) = 1−

∫ y
0 p(u | x) du, we have

λ∗(t) = h(t− tN(t) | tN(t) − tN(t)−1).

Here, tN(t) and tN(t)−1 are the first and second points to the left of t, and it is
assumed that N(t) ≥ 2. To specify λ∗(·) at the beginning of the observation
period (i.e. in {t > 0:N(t) ≤ 1}), some further description of the initial
conditions is needed. If observations are started from an event of the process as
origin, it is enough to be given the distribution of the initial interval (0, t1) [e.g.
it may be the stationary density π(·) satisfying π(y) =

∫∞
0 p(y | x)π(x) dx, if

such π(·) exists]. Otherwise, the length of the interval terminating at t1 may
be an additional parameter in the likelihood and we may seek to estimate it,
or we may impose further description of both the interval terminating at t1
and the interval (t1, t2). See Exercise 7.2.3 for a particular case.

Example 7.2(b) Hawkes process [continued from Example 6.3(c)]. Suppose
that the infectivity measure µ(dx) has a density µ(dx) = µ(x) dx, say. Then,
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each event at ti < t contributes an amount µ(t− ti) to the risk at t. There is
also a risk, λ say, of a new arrival at t. Assuming no contributions to the risk
from the negative half-line, λ∗(·) is expressible in the simple form

λ∗(t) = λ+
∑

0<ti<t

µ(t− ti) = λ+
∫ t

0
µ(t− u)N(du). (7.2.6)

In applications, it is desirable to give µ(·) some convenient parametric form.
Ogata and Akaike (1982) and Vere-Jones and Ozaki (1982) discuss likelihood
estimation for this process using a parametrization of the form

µ(t) =

{∑K
k=0 bkLk(t)e−αt (t > 0),

0 (t ≤ 0),
(7.2.7)

where the functions Lk(t) are Laguerre polynomials defined on t > 0; detailed
computations are given in the quoted papers. Combinations of exponential
terms with different decay parameters could also be considered, but pragmatic
problems of estimability arise: even estimating α in (7.2.7) can be difficult.

Initial conditions also pose a problem. It is simplest to suppose that
λ∗(0) = 0 so that any influence from the past is excluded. If this is not
the case, then it may be possible to condition on information prior to time
t = 0; in the technical language of Chapter 14, this means passing from the
internal history to a more general intrinsic history. If neither of these options
is available, then we are faced with a minor version of the Ising problem, as
discussed around Examples 7.1(b) and 7.1(e). In principle, we should take
the joint distribution of the observations (on (0, T ), say) and the entire past
and then average over all possible past histories. In simple cases, this may
be explicitly possible. For example, if K = 0 in (7.2.7), any contribution
from events before t = 0 decays exponentially at the uniform rate exp(−αt),
and in fact the whole process λ∗(t) is Markovian. In the equilibrium case,
we can then integrate over the equilibrium distribution of λ∗(0) to obtain the
appropriate averaged likelihood. Further details on this special case are given
in Exercise 7.2.5.

If we assume that ν =
∫∞
0 µ(x) dx < 1 so that a unique stationary process

exists [see Example 6.3(c)], it can be shown that the process converges toward
equilibrium as t→∞ (see Chapter 13). In this case, the conditional intensity
approaches the complete intensity function λ†(t), which is the analogue of
λ∗(t) for the process defined on R and not merely on R+; that is, events of
the process are no longer confined to t > 0. Equation (7.2.6) is then replaced
by

λ†(t) = λ+
∫ t

−∞
µ(t− u)N(du).

This linear form also arises from second-order theory and suggests that for this
example the optimal (least squares) linear predictor coincides with the optimal
nonlinear predictor, at least as far as the immediate future is concerned. For
further discussion of this issue, see Example 8.5(d).
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Note that in this and similar examples, finding the initial conditions re-
quired to make the ensuing process stationary resolves for such a process
the problem described in the previous section of expressing the local Janossy
densities in terms of the global process. In a one-dimensional point process
observed over a finite interval, boundary effects can arise only at the two ends
of the interval, while the causal character of the time dimension implies that
there are no backward effects from points occurring later than the end of the
observation interval. For a stationary point process in time, therefore, the
only issue to be resolved is finding the right initial conditions to ensure that
the resulting process is stationary.

The form (7.2.7) taken with (7.2.6) gives an example of a linearly pa-
rameterized intensity. The general usefulness of this model suggests that, in
practical applications, it may be more convenient to choose a flexible family
of models that are readily amenable to processing in much the same way that
ARMA models can be used in conventional time series analysis rather than
seeking the conditional intensity of a model that is given a priori. To this
end, we look for examples in which the conditional intensity has a convenient
parametric form. Two broad classes of such models are described below.

Example 7.2(c) Processes with linear or log-linear conditional intensity
functions. The assumption in these models is that the conditional intensity
function can be written in one of the forms

λ∗(t) =
∑
k

bkQ
∗
k(t), (7.2.8)

log λ∗(t) =
∑
k

bkR
∗
k(t), (7.2.9)

referred to as linear and log-linear forms, respectively, and where the Q∗
k

and R∗
k are known functions. In these two cases, either the likelihood or the

log likelihood is a convex function of the parameters so that, if it exists, the
maximum likelihood estimate of λ∗ is unique [see Exercise 7.2.6 and Ogata
(1978)]. This property is of great importance when the model is highly pa-
rameterized; without some safeguard that guarantees convexity, the likelihood
function may be extremely irregular, in which case convergence of numerical
maximization routines is likely to be the exception rather than the rule.

The known functions Q∗
k(·) or R∗

k(·) may represent many types of depen-
dency: trends or cyclic effects, linear or nonlinear dependence on the lengths
of past intervals as in the Wold process, or linear dependence on the occur-
rence times of past events as in the Hawkes process. It must be admitted,
however, that because of the inherent nonlinearity of the algebraic structure
of a point process, there has not yet emerged for point processes a single class
of parametric models of the same general utility as the ARMA models in con-
ventional time series analysis. Further examples are given in Exercise 7.2.6
together with some indication of the numerical problems of estimation. For
a more extended review, see Ogata and Katsura (1986); a deeper theoretical
treatment is in Kutoyants (1984).
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So far, we have mainly assumed that the history controlling the conditional
intensity is the history of the process itself (i.e. its ‘internal history’), or in
economics jargon that there are no exogenous variables that may influence the
behaviour of the process. In many situations, this is not the case: to define the
future progress of the process properly, the observations must include variables
over and above the previous points of the process. In the previous example,
one can well imagine that some of the terms in the linear combination might
depend on external variables in addition to variables defined by the past points
of the process itself. Likelihoods and predictions will then depend on just what
information is in fact available. In the case of a Cox process, for example,
prediction of the process takes on a very different character if the observations
available to the predictor include knowledge of the random intensity function.

Ideas of this kind are developed in the general theory of processes (see
Appendix A3.3 for a brief introduction and further references), in which a
history (or filtration) for the process is defined as a nested, increasing family
H of σ-algebras Ht such that N(t) is Ht-measurable for all t. N(t) is then
said to be H-adapted. Conditional intensities can be found for any history
of the process and will usually have different forms according to the history
chosen.

In such a situation, the full likelihood of the process will cover the joint
distributions of the point process and also of the additional variables that may
influence the process through the dependence on past histories. Often, this is
not available or is too complex to be used for practical inference or prediction.
In such cases, some kind of partial likelihood, treating the observed values of
explanatory variables as constants, may still be used for estimation purposes
(see e.g. Cox, 1975). Such partial likelihoods have the same structural form as
(7.2.4) provided the proper version of the conditional intensity (incorporating
the new explanatory variables as they occur) is used.

In this context, where new explanatory variables may arise, it is helpful to
view the basic form (7.2.4) as an extension of the likelihood for the Poisson
process. Because of the complete independence property of the Poisson pro-
cess, its likelihood corresponds to a continuous version of the multiplicative
property for independent events: for example,

Pr(A ∩B ∩ C) = Pr(A)Pr(B)Pr(C).

When the events are not independent, this can be replaced by the chain rule
formula

Pr(A ∩B ∩ C) = Pr(A) Pr(B | A) Pr(C | A ∩B),

which still represents the joint probability of the three events as a product.
Equation (7.2.4), even in the form allowing general histories, can be regarded
as an analogous extension of the original Poisson likelihood.

The situation is more transparent for processes in discrete time, as in the
simple example below.
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Example 7.2(d) Binary processes: discrete-time logistic regression model.
We consider a discrete-time process with realizations of the form {0, 0, 1, 0, 0,
0, 1, 1, 0, . . . }. In this context, the equivalent of an inhomogeneous Pois-
son process is a process with independent, nonidentical Bernoulli trials Yi
with success probabilities pi = Pr{Yi = 1}. The likelihood of a realization
(Y1, . . . , Yn) with n trials can be written as

logL(Y1, . . . , Yn ; p1, . . . , pn) =
∑
i:Yi=1

log
pi

1− pi
−

n∑
1

log(1− pi). (7.2.10)

Now suppose that the Yi are no longer independent but have probabilities
p∗
i = Pr{Yi = 1 | Y1, . . . , Yi−1}, which can depend on the past history of the

process. Then, by the same chain rule argument referred to earlier, (7.2.10)
remains valid if the pi are replaced by the p∗

i .
But there is no essential requirement here to restrict the conditioning to

events defined on the previous values of the Yi. We can add in dependence
on additional past variables without affecting the validity of the chain rule
formula. This is equivalent to extending the sequence of σ-algebras Hi (histo-
ries) to include all events generated by the relevant random variables before
time i, including but not restricted to values of the sequence Yi itself.

To take a more concrete example, the probabilities p∗
i might depend on the

last few values of some explanatory variable Ui. This dependence might be
modelled through a logistic regression, such as the explicit representation of
p∗
i = E(Yi | Hi) = E(Yi | U1, U2, . . .) by an equation of the form

log
p∗
i

1− p∗
i

= α0 +
r∑
j=1

αjUi−j .

This is nothing other than the discrete-time version of a model with log-
linear intensity, as described in Example 7.2(c), but with the explanatory
variables now a selection of lagged versions of the external variables Ui. The
art of the modeller here lies in constructing a form of dependence on the past
that captures as much as possible of the true dynamics of the process being
modelled.

Example 7.2(e) Simple and modulated renewal process. From Example
7.2(a) (see also Exercise 7.2.3), it follows that for a renewal process N(t)
denoting the number of renewals in (0, t) and whose lifetime distribution has
a hazard function h(·), the conditional intensity has the form h(t− tN(t)).

Suppose that in addition to the renewal instants {ti} corresponding to
the basic point process N(t), we also observe a (vector) family of stochastic
processes

{X(t): 0 < t <∞} ≡ {X1(t), . . . , Xk(t): 0 < t <∞},
and suppose that as the defining history for the process we take the σ-algebras
Ft of the form

Ft = HNt ∨HXt ,
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thus combining the internal history of {N(t): 0 < t <∞} with that of {X(t):
0 < t < ∞}. Now suppose that the hazard function in successive inter-
vals is modified in a multiplicative fashion by some nonnegative function
ψ(X1(t), . . . , Xk(t)) of the current values of the {Xi(t)}; that is, we take

λ∗(t) = h(t− tN(t))ψ(X1(t), . . . , Xk(t)).

Cox (1972a) posed the problem of estimating parameters β1, . . . , βk when ψ(·)
has the log-linear form

logψ(X1, . . . , Xk) =
k∑
j=1

βjXj .

There is a close analogy with the problem of estimating the parameters in
a model for lifetime distributions when the lifetimes of different individuals
may be affected by different values of concomitant variables X1, . . . , Xk; this
is the Cox regression model described in Cox (1972b) and now the subject
of a considerable literature (see e.g. Aalen, 1975, 1978; Jacobsen, 1982; and
Andersen et al., 1993). Exercise 7.2.7 sketches a specific example.

Example 7.2(f) Processes with unpredictable marks (see Definition 6.4.III).
Conditional intensities for marked point processes will be considered more sys-
tematically in Section 7.3. In the special case of processes with unpredictable
marks, however, the marks occur independently of the past of the process
and can be treated as a sequence of independent random variables. Without
necessarily assuming stationarity and supposing that the mark distribution at
time t has density f∗(κ | t), the conditional intensity factorizes into the form
[see Lemma 7.3.V(iii)]

λ∗(t, κ) = λ∗
g(t)f∗(κ | t).

Consequently, the log likelihood can be written as the sum of two terms
logL = logL1 + logL2, where

logL1 =
Ng(T )∑
i=1

log λ∗
g(ti)−

∫ T

0
λ∗

g(u) du (7.2.11a)

and

logL2 =
Ng(T )∑
i=1

f∗(κi | ti). (7.2.11b)

The first term is in the standard form for a univariate point process on
(0, T ) except for the fact that the ground intensity λ∗

g(t) may depend on the
marks κi for events occurring before t as well as on the ti themselves. In this
sense, the ground process has the structure of a point process whose evolution
depends on the evolution of a parallel, extrinsic process, namely the process of
marks. The second term is the usual sum for a set of independent observations.



7.2. Conditional Intensities, Likelihoods, and Compensators 239

If the mark distribution has no parameters in common with the distribution
of the ground process, then the two terms can be maximized separately and
give the full likelihood estimates. If the marks are treated as a set of given
values, about whose structure or distribution we have no information, then
the first term could still be maximized as a partial likelihood.

Several of the simpler models for earthquake occurrence and neural im-
pulses are of this form, where the size or strength of the event is treated as
an independent mark, but can nevertheless influence the future evolution of
the process. A typical example is the ETAS model [see Example 6.4(d) for
notation and details], for which the conditional intensity of the ground process
has the form

λ∗
g(t) = µc +D

∑
i:ti<t

eα(κi−κ0) 1
(c+ t− ti)1+p

.

Here D = AK is a constant that controls the criticality of the underlying
branching process. This form can be substituted into L1 above and used to
evaluate the parameters µc, α, c, p and D without reference to the mark dis-
tribution. Conflicts will arise only if there is some departure from the assump-
tion of unpredictable marks or if the mark distribution has some parameter
in common with those specified above. See Example 7.3(c) for illustrations
and further discussion.

The stress-release model, considered below, is another example of this gen-
eral type. It is an example also of a further class of models with the charac-
teristic feature that the conditional intensity is governed by a Markov process
that in general is only partially observable. The simplest examples of this
type are doubly stochastic processes in which the underlying Markov process
governs the stochastic intensity function. Here explicit expressions for the
likelihood are not usually available, but an approach to likelihood estimation
can nevertheless be made through adaptations of the Baum–Welch or E-M
algorithms (see Exercise 7.2.8) or via the general filtering techniques discussed
in Chapter 14. In the stress-release model, the occurrence times and marks
of the events influence the Markov process itself so that the doubly stochastic
character is lost, but in compensation the realization of the Markov process
can be reconstructed from the data, given the model parameters and an initial
value X(0), so that an explicit form for the likelihood can be obtained.

Example 7.2(g) Self-correcting or stress-release model. The model was first
investigated by Isham and Westcott (1979) as an example of a process that
automatically corrects a deviation from its mean. Motivated by quite different
applications in seismology, Knopoff (1971) and Vere-Jones (1978b) introduced
essentially the same model as an elementary stochastic version of the so-called
elastic rebound theory of earthquake formation in which context it has under-
gone substantial further study and elaboration (e.g. Ogata and Vere-Jones,
1984; Zheng, 1991; Zheng and Vere-Jones, 1994; Lu et al., 1999; Bebbington
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and Harte, 2001). Processes analogous to the stress-release model also arise
in storage and insurance applications—wherever there is a process of steady
accumulation and random release. Vere-Jones (1988) discusses an insurance
interpretation.

The model is defined by an unobserved jump-type Markov chain X(t) that
increases linearly between events and decreases by a random amount (its
mark) when an event occurs. Let the event times and associated marks be
denoted by (ti, κi), where it is supposed that the κi are nonnegative. Then,
for t ≥ 0, X(t) has the representation

X(t) = X(0) + νt−
∑
i:0<ti<t κi .

Now suppose that the risk of an event occurring is an increasing function Ψ(x)
of the value x of X(t). Given an initial value X(0), and treating the κi as
known quantities, the conditional intensity for the ground process (all events
{ti}) can be written

λ∗
g(t) = Ψ[X(t)]. (7.2.12)

One of the remarkable features of this process is that, apart from the value
of X(0), the conditional intensity is fully determined by the parameters of the
model and the observations (ti, κi). In other words, (7.2.12) is an H-intensity
(internal intensity), in marked contrast to the doubly stochastic models, where
one has to distinguish carefully between the internal intensity (conditioning
on the observed event times and sizes only) and the intensity with respect to
the full history (conditioning on both the events and the realization of the
Markov process up to time t), and generally neither is very useful, the former
being intractable and the latter inaccessible.

If (as is commonly the case) it is assumed that the event sizes form an
i.i.d. sequence, the model again falls into the class of processes with unpre-
dictable marks. The first term of the likelihood, (7.2.11a), is then sufficient to
determine the parameter ν and any additional parameters arising in the spec-
ification of the function Ψ. In the particularly tractable special case where
Ψ(x) = exp(α+ ρx), the conditional intensity can then be represented in the
log-linear form

λ∗
g(t) = exp

(
α+ ρ[X(0) + νt−

∑
i:0<ti<t κi]

)
.

From this representation, it is immediately apparent that the parameter α is
confounded with the initial value X(0) and will not be separately estimable
unless X(0) is given. On the other hand, the sum α+ρX(0) can be treated as
a single unknown parameter, α∗ say, which is estimable and is also sufficient
to completely specify the conditional intensity λ∗

g(t), although not the process
X(t).

Conditions governing the existence of a stationary version of the process
have been examined by Zheng (1991) following studies of special cases by
Vere-Jones and Ogata (1984), Ogata and Vere-Jones (1984), Hayashi (1986),
and Vere-Jones (1988). Assuming that the marks form an i.i.d. sequence with
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finite mean µ and that the function Ψ is monotonically increasing, the essential
condition (see Zheng, 1991, Proposition 4.3; Vere-Jones, 1988) is that

lim
x→−∞

Ψ(x) < µc/µ < lim
x→+∞

Ψ(x). (7.2.13)

These two inequalities on µc/µ ensure that the process X(t) drifts neither to-
ward −∞ nor toward +∞. Some further properties are developed in Exercises
7.2.8–10.

The integral of the conditional intensity function over time also plays an
important role in the general theory. It is known as the compensator of the
point process, relative to some given history F , on account of the following
key property.

Lemma 7.2.V. Suppose {N(t): 0 ≤ t < ∞} is adapted to the history F
and admits a left-continuous F -intensity λ∗(t). Define Λ∗(t) as the pointwise
integral

Λ∗(t) =
∫ t

0
λ∗(u) du.

Then, the process M(t) = N(t)−Λ∗(t) is an F -martingale: for every s > t >
0,

E[M(s) | Ft] = M(t).

Proof. The idea behind the proof is simple. Consider the increment in the
counting process N(t) over an interval (t, t+ ∆). We have approximately

E
(
[N(t+ ∆)−N(t)]− [Λ∗(t+ ∆)− Λ∗(t)] | Ht

)
� E[N(t+ ∆)−N(t) | Ht]− λ∗(t)∆
� λ∗(t)− λ∗(t) = 0.

However, the simplicity of this argument is deceptive in that the identifi-
cation E[N(dt) | Ht] = λ∗(t) dt on which it depends, while intuitively clear,
is tantamount to accepting the martingale property as a first premise. When
F = H, the internal history, the challenge is to derive this seemingly simple
statement from the definition of the conditional intensity in terms of a family
of hazard functions. Exercise 7.2.2 gives a simple special case.

A formal proof starts from the Doob–Meyer decomposition of a submartin-
gale into an increasing, predictable part and a martingale (see Proposition
A3.4.IX). The predictable part is identified with the compensator and shown
to equal the integral of the conditional intensity function when such a function
exists. See Chapter 14 for details.

Lemma 7.2.V characterizes the compensator as the process that must be
subtracted from the increasing process N(t) to make it a martingale. It is
increasing and, as holds for the conditional intensity, it is required to have a
predictability property that in practice (at least when a conditional intensity
exists) reduces to continuity. It increases continuously even though the process
N(t) is a step function with irregularly spaced steps.
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By contrast, the martingale component includes jumps and is sometimes
referred to as the innovations process. It may be compared with the Brownian
motion term in a stochastic differential equation. However, it is only in very
special situations (notably the Poisson process) that the innovations process
for a point process has independent increments. In a renewal process, for ex-
ample, the compensator is a sum of log survivor functions or, more generally,
integrated hazard functions (IHFs) as in Section 4.6, and the martingale com-
ponent consists of a combination of continuous segments, predictable when
the last point is known, and unpredictable jumps (see Exercise 7.2.11).

Another remarkable property of the compensator is embodied in the ran-
dom time-change theorem outlined in Section 7.4. It provides a far-reaching
generalization of the assertion (see Exercise 2.4.4) that a nonstationary Pois-
son process can be transformed back into a stationary one by stretching the
time axis, specifically by setting τ = Λ(t) =

∫ t
0 λ(u) du.

Exercises and Complements to Section 7.2
7.2.1 Complete the details of the proof of Proposition 7.2.III.

[Hint: Use (7.2.1b), (7.2.2) and (7.2.3).]

7.2.2 Consider a one-point process with its point t1 uniformly distributed over (0, T )
for some positive T . Show that the conditional intensity is given by

λ∗(t) =

{
1/(T − t) (0 < t ≤ t1),

0 (t1 < t ≤ T ).

Find also the corresponding compensator Λ∗(t) and check that E[Λ∗(t)] =
t/T = E[N(t)] < 1 for 0 < t < T .

7.2.3 (a) For a d.f. F with density f , write h(x) = f(x)/F (x) for its hazard function,
where F (x) = 1 − F (x). Verify that a renewal process with lifetime d.f.
F on R+, with realization 0 = t0 < t1 < · · · < tn < · · · and N(t) =
sup{n: tn < t} (note that N(t) is then left-continuous), has conditional
intensity

λ∗(t) = h(t− tN(t)) (7.2.14)

and likelihood f(t1) f(t2−t1) · · · f(tN(t)−tN(t)−1)F (t−tN(t)) [see Example
5.3(b)].

(b) Now let N(·) denote the counting function on R+ of a delayed renewal
process in which t1 has d.f. G with density g and otherwise the lifetime
d.f. is F with mean λ−1 as in (a). Show that λ∗(t) = g(t)/G(t) if N(t) = 0
and otherwise (7.2.14) holds, and that the likelihood function equals G(t)
if N(t) = 0 and otherwise equals g(t1)(

∏N(t)−1
i=1 f(ti+1 − ti))F (t− tN(t)).

(c) For a stationary renewal process, put g(t) = λF (t) in (b).
(d) Evaluate the expressions in (a) and (c) when (i) F (x) = 1 − e−λx (x > 0);

(ii) F (x) = 1 − (1 + λx)e−λx (x > 0).

7.2.4 Let 0 = t0 < t1 < · · · be a realization on (0, t] of the Wold process detailed
in Exercise 4.5.8. Write down its likelihood function and its hazard function.
Investigate both these functions when the process is stationary (so that then
t0 < 0 in general). See Lai (1978) for another example.
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7.2.5 Hawkes model with exponential decay. Consider the model in (7.2.7) with
K = 0, writing it in the form

λ∗(t) = λ+ ν

∫ t

0

αe−α(t−u)N(du) = λ+ να
∑

ti≤t
e−α(t−ti),

where ν =
∫∞
0
µ(t) dt. Establish the properties below.

(i) The process Y (t) =
∫ t
0

e−α(t−u)N(du) is Markovian; hence also λ∗(t) =
λ+ ναY (t), with infinitesimal transitions and rates

Y (t+ dt) =

{
Y (t) + 1 with probability [λ+ ναY (t)] dt,

(1 − α dt)Y (t) with probability 1 − [λ+ ναY (t)] dt.

(ii) The distribution function Ft(y) = Pr{Y (t) ≤ y} satisfies the forward
Kolmogorov equation

∂Ft(y)
∂t

= αy
∂Ft(y)
∂y

−
∫ y

(y−1)+

(λ+ ναu)Ft(du). (7.2.15)

(iii) If ν < 1, an equilibrium distribution exists, with density π(x) say, that
satisfies

αyπ(y) =
∫ y

(y−1)+

(λ+ ναu)π(u) du,

for which π(y) = π(1)eν(y−1)y(λ/α)−1 for 0 < y < 1 and for real θ ≥ 0,

φ(θ) ≡
∫ ∞

0

e−θyπ(y) dy =
λ

α

∫ 1

exp(−θ)

(1 − w) dw
ν(1 − w) + logw

.

(iv) The likelihood for a set of observations 0 < t1 < · · · < tN(T ) from the equi-
librium process on (0, T ) is given by

∫ t1
0
Ly π(y) dy, where Ly is formed

in the usual way from the modified conditional intensity

λ∗
y(t) = ye−αt + λ+ ν

∫ t

0

αe−α(t−u)N(du).

7.2.6 (a) For each of the models implied by (7.2.8) and (7.2.9) with r parameters
b1, . . . , br, check that

r∑
j=1

r∑
k=1

vjvk
∂2 logL
∂bj ∂bk

≤ 0 (all real vj , j = 1, . . . , r).

Deduce that if a solution of the equations ∂L/∂bj = 0 (j = 1, . . . , r) is
found, then it is unique.

(b) For the log-linear model, show that along any ray {(ρb1, . . . , ρbk): −∞ <
ρ < ∞}, logL → ∞ for |ρ| → ∞, so that a maximum on the ray exists,
and hence a global maximum for logL exists.
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[See Ogata and Vere-Jones (1984) for an example. In the linear model, there
is no guarantee that with any parameters {b̂j} so determined, the likelihood of
any other set of observations will necessarily have positive likelihood, nor is it
even necessarily the case that the intensity at every point in the realization is
positive! In general, it is necessary to treat the problem as one of constrained
optimization: see e.g. Ogata (1983) and the discussion by Berman (1983).]

7.2.7 Poisson process in a random environment [see Example 7.2(e)]. As a simple
example of a modulated renewal process, suppose that the rate λ(t) of a simple
Poisson process takes different values λ1, . . . , λK in response to environmental
factors X(t); thus, we can write

λ∗(t) =
K∑
k=1

λkIAk(X(t)),

where Ak denotes the range of values of X(t) on which λ takes on the value λk.
If X(t) is an observed, continuous function of t but the λk are unknown pa-
rameters of the process, write down the likelihood conditional on a knowledge
of X(t) at time t. Hence, obtain an estimate of λk in terms of the proportion
of time spent by X(t) in Ak.

Is the result affected if instead of being an external variable, X(t) is a
function of the backward recurrence time (i.e. of the age of the ‘component’
in place at time t)?

7.2.8 E–M algorithm applied to a Cox process with a Markovian rate function.
In contrast to the previous exercise, suppose that the process X(t) govern-
ing the rate of occurrence of points is not observed but is known to be a
continuous-time Markov chain with finite state space K = {1, . . . ,K} and Q-
matrix Q = {qkl; k, l ∈ K}, and that when X(t) = k, points occur according
to a Poisson process with rate λk. The aim is to estimate the parameters
qkl and λk from observations on N(·) alone. Approximate the continuous-
time process by a discrete skeleton X(nδ); then the resulting Markov chain
has transition probabilities given approximately (for δ small) by pkk = 1 −
qkkδ , pkl = −qklδ, k �= l. Observations on the process consist of the counts
Yn = N(nδ, (n+1)δ], treated as Poisson or even binomial (presence or absence
of points). Write down and implement iterative procedures for estimating the
parameters of the discrete approximation, and hence of the underlying con-
tinuous process, using the E-M methodology.
[Hint: This example has been widely discussed in the literature on point pro-
cess filtering and will be reviewed further in Chapter 14. Since the Markov
process is unobserved, the example can be treated as a ‘hidden Markov model’
and is thus a natural candidate for analysis via the Baum–Welch and E–M
algorithms—see Dempster et al. (1977), Elliott et al. (1995), and MacDonald
and Zucchini (1997). The full likelihood is the likelihood for both the realiza-
tion of the Markov chain and the observed counts; the restricted likelihood is
the likelihood for the observed counts only, averaged over the possible realiza-
tions of the Markov chain. The references cited give general accounts of the
form of the averaging (E-step) and estimation (M-step) procedures that can
be employed to pass from the full to the restricted likelihoods and obtain the
resulting estimates.]
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7.2.9 Stress-release model: Stationary behaviour. In Example 7.2(g), let F (x, t) =
Pr{X(t) ≤ x}, S(u) = Pr{κ > u}.
(i) Show, using the notation of the example, that the forward equations for

the Markov process X(t) take the form

∂F

∂t
+ ν

∂F

∂x
=
∫ ∞

x

Ψ(y)S(y − x)F (dy, t).

(ii) Deduce that, if it exists, the density π(x) of the stationary distribution for
X(t) satisfies

νπ(x) =
∫ ∞

x

Ψ(y)S(y − x)π(y) dy,

and that its characteristic function ϕ(s) =
∫

eisxπ(x) dx = E(eisX(·)) sat-
isfies

ϕ(s) = γ(s)ϕΨ(s)

where, with µ = E(κ), γ(s) and ϕΨ(s) are the characteristic functions of
the distributions with densities S(x)/µ and (µ/ν)Ψ(x)π(x), respectively,
and E[Ψ(X(t))] = µν by stationarity.

(iii) If the mark distribution is exponential with mean µ, then

π(x) = A exp

(
x

µ
− 1
ν

∫ x

0

Ψ(u)du

)
.

(iv) If Ψ(x) = exp[β(x− x0)], the equation for ϕ(s) above takes the form

ϕ(s) = cγ(s)ϕ(s− iβ) , c = e−βx0µ/ν ,

which admits the solution in infinite product form

ϕ(s) = eisRγ(s)
∞∏
k=1

eis/(βk)
γ(s− ikβ)
γ(−ikβ)

,

where R = x0 + ( log(βν) − γ0)/β and γ0 = 0.5772 . . . .
(v) Show that, in the stationary regime, if the jump distribution has moment

generating function m(s), the risk Ψ[X(t)] has moments

E([Ψ(X)]k) =


µν (k = 1),

(νβ)k(k − 1)!∏k−1
�=0 [1 −m(−β�)]

(k = 2, 3, . . .),

E([Ψ(X)]−k) =

∏k

�=0[m(β�) − 1]
(νβ)� �!

(k = 1, 2, . . .).

[Hint: See Vere-Jones (1988) and Borovkov and Vere-Jones (2000).]

7.2.10 (Continuation) Variance properties.
(a) Let N(t) denote the number of jumps (events in the ground process) for

the stress-release model. Show that in the stationary case, if X(t) has
finite second moment, then varN(t) is bounded uniformly in t if and only
if the jump distribution is degenerate at a single point.
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[Hint: In this case, X(t) has bounded variance and the forward result is
trivial; for the converse, consider a bivariate version of Wald’s identity
using the joint characteristic function for the intervals Ti and number of
jumps Ni between successive crossings of a fixed level for X(t).]

(b) Under similar conditions, the mean rate and reduced second factorial
moment density for the stress-release model can be expressed in the forms

m =
∫

Ψ(x)π(x) dx,

m̆[2](u) =
∫ ∫ ∫

Ψ(x)π(x) dx j(y − x) dyΨ(z)Fu(y, dz),

where j is the density of the jump distribution and the transition kernel
Fu(y, z) = Pr{X(u) ≤ z | X(0+) = y}.

(c) In general, the difficulty of solving the forward equations to obtain the
transition kernel Fu(y, ·) renders the equations above of relatively aca-
demic interest. However, if Ψ(x) = σ for x > 0 and 0 otherwise, the
process alternates between ‘periods of prosperity’ when X(t) > 0 and
‘periods of recovery’ when X(t) < 0, the terminology being suggested by
the analogy of a collective risk model. Then, an argument similar to that
used for M/G/1 queue and analogous storage problems can be used to
show that the reduced covariance density c̆[2](u) has Laplace transform
of the form

c∗[2](s) = [1 + ω(s)]−1 ,

where ω(s) is the unique solution in Re(θ) > 0 of the equation θ − s =
σ[1 − j∗(θ)] and j∗ is the Laplace transform of the jump density.

7.2.11 Renewal process compensators.
(a) By integrating the conditional intensity function in (7.2.14), show that

when the lifetime distribution of a renewal process has a density f , the
compensator has the form

Λ∗(t) = −
∑N(t)

n=1
logS(Tn − Tn−1) − logS(t− TN(t)),

where S(·) is the survivor function for the lifetime d.f. with density f .
(b) Verify directly that Λ∗(t) as defined makes N(t) − Λ∗(t) a martingale.
(c) Show that (b) continues to hold for a general renewal process whose life-

time r.v.s are positive a.s., provided the log survivor function is replaced
by the integrated hazard function (IHF).

7.3. Conditional Intensities for
Marked Point Processes

The extension of conditional intensity models to higher dimensions is surpris-
ingly straightforward provided that a causal, time-like character is retained
for the principal dimension. When this is present, as in space–time processes,
the development of conditional intensities and likelihoods can proceed along
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much the same lines as was developed for one-dimensional simple point pro-
cesses in the preceding sections. When it is absent, as in purely spatial point
patterns, analysis is still possible in the finite case (compare the discussions
in Chapter 5 and Section 7.1) but raises major problems for nonfinite cases
such as occur for homogeneous processes in the plane. In this section, we
examine the extension of the ideas of Section 7.2 to MPPs in time and space–
time point processes. A more general and rigorous discussion of conditional
intensities and related topics, for both simple and marked point processes in
time, is given in Chapter 14. An approach to likelihood methods for spatial
processes, based on the Papangelou intensity, is in Chapter 15. The ground
work for the material in the present section was laid in the basic paper by
Jacod (1975); among many other references, Karr (1986) gives both a review
of inference procedures for MPPs and a range of examples and applications.

Consider then an MPP on [0,∞)×K, where, as in Section 6.4, K denotes
the mark space, which may be discrete (for multivariate point processes),
the positive half-line (if the marks represent weights or energies), two- or
three-dimensional Euclidean space (for space–time processes), or more general
spaces [e.g. for the Boolean model of Example 6.4(d)].

In order to define likelihoods for MPPs, we need first to fix on a measure in
the mark space (K,BK) to serve as a reference measure in forming densities.
We shall denote this reference measure by �K(·), using �(·) to denote Lebesgue
measure on R

d. When K is also some Euclidean space, it will often be conve-
nient to take �K to be Lebesgue measure on that space but not always so; for
example, in some situations it may be simpler to take �K to be a probability
measure on K. Similarly, when the mark space is discrete, it will often be
convenient to take the reference measure to be counting measure, but in some
situations it may again be more convenient to choose the reference measure
to be a probability measure.

Once the reference measure �K has been fixed, we can extend the notion
of a regular point process from simple to marked point processes. As in
Definition 7.1.I, we shall say that an MPP on X = R

d × K is regular on A
for a bounded Borel set A ∈ BX if for all n ≥ 1 the Janossy measure Jn is
absolutely continuous with respect to the n-fold product of �× �K and regular
if it is regular on A for all bounded A ∈ BX . Thus, when the MPP is regular
on A, for every n > 0 there exists a well-defined Janossy density jn(· | A×K)
with the interpretation

jn(x1, . . . , xn, κ1, . . . , κn | A×K) dx1 . . .dxn �K(dκ1) . . . �K(dκn)
= Pr{points around (x1, . . . , xn) with marks around (κ1, . . . , κn)}.

The following equivalences extend to MPPs the discussion around Propo-
sition 7.1.III.

Proposition 7.3.I. Let N(·) be an MPP on R
d × K, let � denote Lebesgue

measure on (Rd, BRd) and �K the reference measure on (K,BK), and let A be
a bounded set in BRd . Then, conditions (i)–(iv) below are equivalent.
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(i) N(·) is regular on A.
(ii) The probability measure induced by N(·) on Z∪

A, where ZA = A×K, is
absolutely continuous with respect to the measure induced by �× �K on
Z∪
A.

(iii) The ground process Ng(·) is regular on A, and for each n > 0 the con-
ditional distribution of the marks (κ1, . . . , κn), for a given realization
(x1, . . . , xn) of the locations within A, is absolutely continuous with re-
spect to �(n)

K with density fA,n(κ1, . . . , κn | x1, . . . , xn), say.
(iv) If Π(·) is a probability measure equivalent to �K on (K,BK), then N(·)

is absolutely continuous with respect to the compound Poisson process
N0(·) for which the ground process Ng

0 has positive intensity λ on A and
the marks are i.i.d. with common probability distribution Π.

Proof. The four statements are just alternative ways of stating the fact that
the Janossy measures Jn(·) in the proposition have appropriate densities on
all components of X∪.

When any one of the conditions is satisfied, the Radon–Nikodym derivative
of the probability measure P for N with respect to the probability measure
P0 of the compound Poisson process N0 in (iv) has the form [see (7.1.3b)]

e−λ�(A) dP
dP0

= J0I{N(T )=0}

+
∞∑
n=1

I{N(T )=n}
jgn(x1, . . . , xn | A)

λn
fA,n(κ1, . . . , κn | t1, . . . , tn)

π(κ1) · · ·π(κn)
,

(7.3.1a)
in which π(κ) = (dΠ/d�K)(κ) and is itself a portmanteau expression of the
statements that, given a realization (t1, κ1), . . . , (tn, κn) with N(T ) = n, the
likelihood ratio of N with respect to N0 is given by
L/L0 = jgn(x1, . . . , xn | A)fn(κ1, . . . κn | x1, . . . , xn)/[λnπ(κ1) · · ·π(κn)].

(7.3.1b)
Much as in the discussion leading to Proposition 7.2.I, we now rewrite the

Janossy densities in a way that takes advantage of the directional character
of time. Thus, the Janossy densities for the first few pairs may be represented
in the form

J0(T ) = S1(T ),
j1(t1, κ1 | T ) = p1(t1, κ1) = p1(t1) f1(κ1 | t1) (0 < t1 < T ),

j2(t1, t2, κ1, κ2 | T ) = p1(t1) f1(κ1 | t1) p2(t2 | (t1, κ1)) f2(κ2 | (t1, κ1), t2)
(0 < t1 < t2 < T ),

where the pi(·) refer to the densities, suitably conditioned, for the locations
in the ground process, and the fi(·) refer to the densities, again suitably con-
ditioned, for the marks. There is a subtle difference in the conditioning in-
corporated into the conditional densities fn(κn | (t1, κ1), . . . , (tn−1, κn−1), tn)
that appear in the equations above and those that appear in the proposition.
In the equations above we condition the distribution of the current mark, as
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time progresses, on both marks and time points of all preceding events; in the
proposition, we condition on the full set of time points in (0, T ), irrespective
of the marks and of their relative positions in time.

Once again, the dependence of the left-hand side on T is illusory, and
the densities for the locations can be expressed in terms of corresponding
hazard functions. The conditioning in the hazard functions may now include
the values of the preceding marks as well as the length of the current and
preceding intervals. All this information is collected into the internal history
H ≡ {Ht: t ≥ 0} of the process so that the amalgam of hazard functions and
mark densities can be represented as a single composite function for the MPP,
namely

λ∗(t, κ) =



h1(t)f1(κ | t) (0 < t ≤ t1),
...

hn
(
t | (t1, κ1), . . . , (tn−1, κn−1)

)
×

fn
(
κ | (t1, κ1), . . . , (tn−1, κn−1), t

)
(tn−1 < t ≤ tn, n ≥ 2),

...
(7.3.2)

where h1(t) is the hazard function for the location of the initial point,
h2(t | (t1, κ1)) the hazard function for the location of the second point condi-
tioned by the location of the first point and the value of the first mark, and
so on, while f1(κ | t) is the density for the first mark given its location, and
so on.

Definition 7.3.II. Let N be a regular MPP on R+ × K. The conditional
intensity function for N , with respect to its internal history H, is the repre-
sentative function λ∗(t, κ) defined piecewise by (7.3.2).

Predictability is again important in that the hazard functions refer to the
risk at the end of a time interval, not at the beginning of the next time interval,
so left-continuity should be preferred where there is a jump in the conditional
intensity. Similarly, the conditional mark density refers to the distribution to
be anticipated at the end of a time interval, not immediately after the next
interval has begun. More formal and more general discussions of predictibility
in the MPP context will be given in Chapter 14.

It is often convenient to write

λ∗(t, κ) = λ∗
g(t) f∗(κ | t) , (7.3.3)

where λ∗
g(t) is the H-intensity of the ground process (i.e. of the locations {ti}

of the events), and f∗(κ | t) is the conditional density of a mark at t given
Ht− (the reader will note that we use the ∗ notation as a reminder that the
‘functions’ concerned are also random variables dependent in general on the
random past history of the process). The two terms in (7.3.3) correspond
to the first and second factors in (7.3.2). Heuristically, equations (7.3.2) and
(7.3.3) can be summarized in the form

λ∗(t, κ) dtdκ ≈ E[N(dt× dκ) | Ht−] ≈ λ∗
g(t) f∗(κ | t) dtdκ . (7.3.4)



250 7. Conditional Intensities and Likelihoods

Notice that the H-intensity λ∗
g(t) is not in general the same as the con-

ditional intensity λg(t) of the ground process with respect to its own inter-
nal history Hg: H incorporates information about the values of the marks,
whereas Hg does not. The example below illustrates the difference in a simple
special case.

Example 7.3(a) Bivariate Poisson process [see Example 6.3(e)]. We consider
a bivariate Poisson process initiated at time 0 rather than the stationary ver-
sion considered earlier. We consider also just the process of linked pairs, in
which the points {ti} of component I form the ‘parents’ and arrive according
to a simple Poisson process with rate λ while the points {sj} of component II
represent the process of ‘offspring’. We assume each parent has just one off-
spring, delayed by nonnegative random times {τi} forming an i.i.d. sequence,
independent also of the times {ti}, with common exponential distribution
1− e−µτ .

We shall treat this process as a special case of an MPP with mark space
having two discrete points, corresponding to components I and II. The internal
history, H, for the full process records the occurrence times and marks for
both types of events but does not record which event in component II is
associated with which event in component I. Suppose that, at time t, NI(t) =
n,NII(t) = m, where necessarily m ≤ n. The full H-intensity is given by

λ∗(t, κ) =
{
λ (κ = I),
(n−m)µ (κ = II).

Let HI,HII, and Hg denote the internal histories of the component I pro-
cess, the component II process, and the ground process. The HI-intensity
of component I is clearly equal to its H-intensity λI ≡ λ. To find the HII-
intensity of component II, we have to average over the n ≥ m points of
component I. For a given value of n, the locations ti may be treated as n i.i.d.
variables uniformly distributed over (0, t). The probability that any one such
point produces an offspring that appears only after time t is given by

p(t) =
∫ t

0
e−µ(t−s) ds

t
=

1− e−µt

µt
.

The k = n−m parent points that fail to produce offspring in the interval
(0, t) then form a ‘thinned’ version of the original, Poisson-distributed number
n of the component I points in (0, t), the selected and nonselected points form-
ing two independent streams. Independently of the number m of successes,
the expected number of points with offspring still pending is thus λtp(t) and
we obtain for the HII-intensity of the component II process

λII(t) = E[(n−m)µ | NII(t) = m] = µλt(1− e−µt)/(µt) = λ(1− e−µt).

This is a nonrandom function of t, and we recognize it as the conditional
intensity of a nonstationary Poisson process. Thus, the two components sep-
arately are Poisson, and the rate of the component II process approaches that
of component I as t→∞. The ground process has H-intensity λ+ (n−m)µ
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and HII-intensity λ(2 − e−µt); its Hg-intensity is that of a Gauss–Poisson
process; see Exercise 7.3.1.

Similar distinctions need to be borne in mind with respect to the various
compensators and martingales that can be formed with the two component
processes. Thus, NI(t)− λt is both an H- and an HI-martingale, the process
NII(t)−µ(NII(t)−NI(t)) is an H-martingale, and NII(t)−λt(1− e−µt) is an
HII-martingale.

We now turn to an MPP extension of Proposition 7.2.III, expressing the
likelihood of a simple point process in terms of its conditional intensity. As
there, reversing the construction that leads from the point process distribu-
tions to the H-intensity in (7.3.2) yields an explicit expression for the Janossy
density of the MPP in terms of its conditional intensity (see below). Details
of the proof are left to Exercise 7.3.2.

Proposition 7.3.III. Let N be a regular MPP on [0, T ]×K for some finite
positive T , and let (t1, κ1), . . . , (tNg(T ), κNg(T )) be a realization of N over the
interval [0, T ]. Then, the likelihood L of such a realization is expressible in
the form

L =

[
Ng(T )∏
i=1

λ∗(ti, κi)

]
exp
(
−
∫ T

0

∫
K
λ∗(u, κ) du �K(dκ)

)

=

[
Ng(T )∏
i=1

λ∗
g(ti)

][
Ng(T )∏
i=1

f∗(κi | ti)
]

exp
(
−
∫ T

0
λ∗

g(u) du
)
, (7.3.5)

where �K is the reference measure on K. Its log likelihood ratio on [0, T ]
relative to the compound Poisson process N0 with constant intensity λ and
i.i.d. mark distribution with density π(·) is expressible as

log
L

L0
=
Ng(T )∑
i=1

log
λ∗(ti, κi)
λπ(κ)

−
∫ T

0

∫
K

[λ∗(u, κ)− λπ(κ)] du �K(dκ)

=
Ng(T )∑
i=1

log
λ∗

g(ti)
λ
−
∫ T

0
[λ∗

g(u)− λ] du+
Ng(T )∑
i=1

log
f∗(κi | ti)
π(κi)

. (7.3.6)

The second form in equations (7.3.5) and (7.3.6) follows from the assump-
tion that the densities over the mark space are proper (i.e. integrate to unity).
The reversibility of the arguments leading to the representation of the con-
ditional intensity function in (7.3.2) (see Exercise 7.3.2) implies the following
MPP analogue of Proposition 7.2.IV.

Proposition 7.3.IV. Let N be a regular MPP as in Proposition 7.3.III.
Then, the conditional intensity function with respect to the internal history
H determines the probability structure of N uniquely.

The next proposition gives specific examples of such characterizations,
makeing more explicit the distinction between point processes with indepen-
dent and unpredictable marks introduced already in Section 6.4.
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Proposition 7.3.V. Let N be a regular MPP on R+ ×K with H-intensity
expressible as

λ∗(t, κ) = λ∗
g(t)f∗(κ | t), (7.3.7)

where λ∗
g(t) is the H-intensity of the ground process. Then N is

(i) a compound Poisson process if λ∗
g(t) = λ(t) and f∗(κ | t) = f(κ | t) for

deterministic functions λ(t) and f(κ | t);
(ii) a process with independent marks if λ∗

g(t) equals the Hg-intensity for
the ground process and f∗(κ | t) = f(κ | t) as in (i); and

(iii) a process with unpredictable marks if f∗(κ | t) = f(κ | t) as in (i).

Proof. In a process with independent marks, the ground process and the
marks are completely decoupled (i.e. they are independent processes), whereas
for a process with unpredictable marks, the marks can influence the subse-
quent evolution of the process, though the ground process does not influence
the distribution of the marks. The compound Poisson process is the special
case of a Poisson process with independent marks. The forms of the con-
ditional intensities follow readily from these comments, which merely reflect
the definitions of these three types of MPP given in Definition 6.4.III and
preceding Lemma 6.4.VI. The lemma is then a consequence of the unique-
ness assertion in Proposition 7.3.IV. Some details and examples are given in
Exercise 7.3.5.

The following nonlinear generalization of the Hawkes process is important
for its range of applications. It has been used as a model for neuron firing in
Brémaud and Massoulié (1994, 1996), and it also embraces a range of other
examples, including both ordinary and space–time versions of the ETAS model
[Examples 6.4(d) and 7.2(f)].

Example 7.3(b) Nonlinear, marked Hawkes processes [see Example 7.2(b)].
We start by extending the basic Hawkes process N to a nonlinear version with
conditional intensity [see (7.2.6)]

λ∗(t) = Φ
(
λ+

∫ t

0
µ(t− u)N(du)

)
, (7.3.8)

where the nonnegative function Φ is in general nonlinear but satisfies certain
boundedness and continuity conditions; in particular, it is required to be
Lipschitz with Lipschitz constant α ≤ 1.

Such a nonlinear Hawkes process can immediately be extended to a non-
linear marked Hawkes process by giving the points independent marks with
density f(κ) so that the conditional intensity function for the marked version
is

λ∗(t, κ) = Φ
(
λ+

∫ t

0
µ(t− u)Ng(du)

)
f(κ) = λ∗

g(t)f(κ). (7.3.9)

The marks here make no contribution to the current risk, nor to the evolution
of the ground process, which therefore has the same structure as the process
N of (7.3.8). Consequently, in (7.3.9) we have Ng = N .
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By contrast, generalizing the ETAS model of Example 6.4(d) and using its
notation, we may equally well consider extensions in which the conditional
intensity has the form

λ∗(t, κ) = Φ
(
λ+

∫
(0,t)×K

ψ(χ)µ(t− u)N(du× dχ)
)
f(κ), (7.3.10)

where ψ(χ) modifies the strength of the infectivity density µ(·) according to
the mark χ. In this case, the process has unpredictable marks that, depending
on the form of ψ(·), can influence substantially the evolution of the ground
process.

In both cases, the likelihood for a finite observation period [0, T ] decouples
and, following the second form in (7.3.6), can be written as

logL =

[ ∑
i:0≤ti≤T

log λ∗
g(ti)−

∫ T

0
λ∗

g(u) du

]
+

∑
i:0≤ti≤T

log f(κi)

≡ logL1 + logL2,

where

λ∗
g(t) = Φ

(
λ+

∫
(0,t)×K

ψ(κ)µ(t− u)N(du× dκ)
)
.

In many parametric models, no parameter appears in both L1 and L2, so each
term can be maximized separately.

It is not necessary here to limit the mark to a measure of the size of the
accompanying event. As suggested in Example 6.4(d), elements in the mark
space may comprise both size and spatial components, κ ∈ K and y ∈ Y, say.
Then we can write, for example,

λ∗(t, κ, x) = Φ
(
λ+

∫
(0,t)×K×Y

ψ(χ)µ(t− u)g(x− y)N(du× dχ× dy)
)
f(κ),

where the spatial density g(·), like f(·), has been normalized to have unit
integral and determines the positions of the offspring about the ancestor.
Because of the independent sizes κi here, the log likelihood again separates
into two terms, the first of which is analogous to logL1 above but includes an
integration over both space and time.

From a model-building point of view, it is of critical importance to estab-
lish conditions for the existence of stationary versions of the process and for
convergence to equilibrium. General conditions are given by Brémaud and
Massoulié (1996) and discussed further in Chapters 13 and 14. In the special
case corresponding to the space–time ETAS model, where the function Φ is
linear (and can be taken to be the identity function), the process retains the
basic branching structure, and a sufficient condition for the existence of a sta-
tionary version is the subcriticality of the underlying branching component,
as outlined already in Example 6.4(d).

It is, of course, quite possible to devise models where the mark distributions
are dependent on the evolution of the process. A simple example is given
below.
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Example 7.3(c) Processes governed by a Markovian rate process. Several
models for both simple and marked processes are governed by an underly-
ing Markov process, X(t) say, which both influences and is influenced by the
evolving point process. Typically, in the marked case, both the ground pro-
cess intensity and the mark distribution depend on the current value of X(t).
Two simple models of this type are the simple stress-release model in Exam-
ple 7.2(g) and the Cox process with Markovian rate function considered in
Exercise 7.2.7.

To illustrate possible ramifications of such models, consider first a Hawkes
process with exponential infectivity density µ(x) = µe−µx. In this case, the
Markovian process X(t) is given by the sum

X(t) = µ
∑
i: 0<ti<t e−µ(t−ti),

and we can write
λ∗(t) = Φ[X(t)],

where in the simplest case, Φ(x) = λ + νx for some λ > 0 and 0 < ν < 1 as
in Exercise 7.2.5.

Next, we could consider a marked version of such a process, with random
event sizes Si = ψ(κi), defining X(t) by

X(t) = µ
∑

i:0<ti<t

ψ(κi)e−µ(t−ti). (7.3.11)

In the simplest case of independent marks, with common density f(κ),

λ∗(t, κ) = Φ[X(t)]f(κ), (7.3.12)

corresponding to an ETAS-type model but with exponential rather than
power-law decay function.

It might well be natural, however, to suppose that not only the rate λ∗(t)
but also the density f(κ) of the mark distribution could be affected by the
value of X(t), in which case f(κ) would be replaced by f(κ | X(t)). To take a
particular parametric example, let the mark distribution have an exponential
density βe−βκ, and set β = a+ bX(t) so that the conditional intensity takes
the form

λ∗(t, κ) = e−λ−νX(t) · [a+ bX(t)]e−[a+bX(t)]κ,

with X(t) given by (7.3.11). In this case, the log likelihood can still be written
as the sum of two terms, logL = logL1 + logL2, say, where the second term
equals

∑
i log f(κi | X(ti)), but it is no longer possible to decouple the two

parts of the likelihood completely because the parameters relating to X(t)
appear in both parts. In the specific example considered, logL equals(∑

i

log
(
Φ[X(ti)]

)
−
∫ T

0
Φ[X(u)] du

)
+
∑
i

log f(κi | X(ti)) = logL1+logL2,

where the parameters λ and ν appear in L1 only, the parameters a and b
appear in L2 only, but the parameter µ, as well as any parameter involved in
the definition of the function ψ, appears in both L1 and L2.
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Example 7.3(d) Linked stress-release model. This is a multivariate version
of the basic model outlined in Example 7.2(g). We consider a finite number of
distinct regions or components i = 1, . . . , I, say, each with its own stress level
Xi(t) and with the property that a proportion θij of a stress drop occurring
in region i is transferred to region j (but we do not necessarily require either
θij ≥ 0 or

∑
i θij = 1). The evolution of stress Xi(t) in the ith region can

thus be expressed in the form

Xi(t) = Xi(0) + ρit−
∑

j
θijS

(j)(t), (7.3.13)

where S(j)(t) is the accumulated stress release in region j over the period [0, t)
and ρi is the rate of stress input into region i. The process of events is doubly
marked: by the region i and by the size of the stress drop κ.

We suppose that both the risk functions (i.e. stress levels) and the jump
distributions are functions of the vector X(t). The assumptions imply that the
process X(t) controls the evolution of the point process and is itself Markovian.
They lead to a conditional intensity of the form

λ∗(t, i, κ) = Ψi

(
X(t)fi[κ | X(t)]

)
, (7.3.14)

where fi[κ | X(t)] is the density for the distribution of stress drop for an event
that occurs in region i at a time when the vector of stress levels is X(t), and
Ψi gives the risk in region i as a function of the vector of stress levels X(t).
Typically, Ψi(X) = exp(µi + νiXi), so that only the stress level in the region
under consideration affects the risk in that region. Then, the conditional
intensity function can be written in the reparameterized form

λ∗(t, i, κ) = exp
[
αi + νi

(
ρit−

∑
j

θijS
(j)(t)

)]
fi[κ | X(t)],

where αi = µi + νiXi(t), νi, ρi, and θij (i �= j) are the parameters to be
estimated, apart from those involved in the density function for the stress
drops, and we set θii = 1.

As in Example 7.3(c), the likelihood can be expressed as the sum of two
terms, the first relating to the times and the second to the stress drops of the
events, but only fully decouples when the stress drops are i.i.d.

In the present context, an appealing candidate for the mark distribution is
the tapered Pareto, or Kagan, distribution with survivor function

1− F (κ) =
(

c

c+ κ

)α
e−βκ. (7.3.15)

Typically, β is taken very small so that for small and intermediate values of
κ, the density is close to a power-law form, but for large κ it is dominated
by the exponential taper. Distributions of this general type have recently
been considered in several contexts where it is desirable for the body of the
distribution to have a power-law character but for the moments to remain
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finite (see e.g. Kagan, 1999; Kagan and Schoenberg, 2001; Vere-Jones et al.,
2001). For the present example, we might take α as fixed and equal to unity
and allow β to decrease with the value of X(t) in such a way that the upper
turning point 1/β increases to ∞. In this case, the tail of the distribution
would progressively lengthen (admitting larger and larger events) as the stress
level increased while its mean approached +∞. For applications of the linked
stress-release model to earthquake data, using generally independent marks
with exponential distribution, see e.g. Liu et al. (1999), Bebbington and Harte
(2001), and Lu and Vere-Jones (2000). See Exercise 7.3.6 for stability prop-
erties of the model.

Example 7.3(e) Cumulative processes. Let N ≡ {(ti, κi)} be a regular MPP
defined over the time interval (0, T ), and consider the random measure derived
from N as in (6.4.6) and characterized through the cumulative process

ξ(t) =
∫

(0,t)×K
κN(du× dκ).

We do not insist here that the process have independent or unpredictable
marks. Although ξ(t) corresponds to a random measure rather than a point
process, it is still germane to ask questions about its internal history, its like-
lihood, and its conditional intensity. The following points are straightforward
to verify and are left to the reader.
(i) The internal history of ξ coincides with the internal history for the un-

derlying MPP N .
(ii) The likelihood for ξ(t) over an interval (0, T ) coincides with the likelihood

for N over the same period.
(iii) A conditional intensity µ∗(t) for ξ(t) can be defined by

µ∗(t) dt ≡ E[dξ(t) | Hξt−] = λ∗(t) E[κ | HNt−] dt =
∫

K
κλ∗(t, κ) dκ,

where λ∗(t, κ) is the HN -conditional intensity for the MPP N .

Exercises and Complements to Section 7.3
7.3.1 Further properties of the bivariate Poisson process [see Example 7.3(a)].

(a) Discuss the F0-intensity for the process of the example.
[The difficulty here, as for other cluster processes, is in averaging over the
different possible ways that parents and offspring may be associated; see
the comments on Example 6.2(c) concerning the Gauss–Poisson process.]

(b) Verify the martingale properties asserted at the end of the example.

7.3.2 Write out explicitly the construction leading back from (7.3.2) to the Janossy
densities and hence complete the proof of Proposition 7.3.III.

7.3.3 Define a one-point MPP on (0, T ) × (0, T ) as follows. For any realization
{(t1, κ1)}, say, the point t1 has the density f(·) on (0, T ) and, given t1, κ1

is uniformly distributed on (0, T − t1). Find the conditional intensities for
this MPP and for the bivariate point process {(t1, t1 + κ1)}. What are the
corresponding compensators?
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7.3.4 Verify the forms of conditional intensity in Proposition 7.3.V for compound
Poisson processes and processes with independent or unpredictable marks.

7.3.5 Accelerated moment release model. Let tf denote the time of a major earth-
quake, and ξ(t) =

∑N(t)
i=1 κi the cumulative release of seismic moments of small

or moderate earthquakes up until time t < tf . According to Varnes (1989)
and Main (1996), there are physical grounds for supposing that ξ(t) increases
hyperbolically before the major event; i.e. ξ(t) ≈ A+ B(tf − t)−m, where A,
B and m are positive constants. Suggest an appropriate conditional inten-
sity model and associated likelihood, assuming that the relationship refers to
E[ξ(t)] and that the increase is due to either
(i) an increase in the frequency of events but not their average size; or
(ii) an increase in the average size of the events but not their frequency; or
(iii) an increase in both frequency and average size.
[Hint: In Vere-Jones et al. (2001), both exponential and tapered Pareto distri-
butions are used to model the event sizes, and a maximum entropy argument
is used to suggest that the increase in moment should be partitioned between
the mean size and mean frequency of events in such a way that each takes up
the square root of the overall increase.]

7.3.6 Stability results for linked stress-release model [see Example 7.3(d)].
(a) Suppose that a stationary regime exists; for events in region i, let li =

E(Ψi[X(t)]) denote their rate of occurrence and mi their mean size. Es-
tablish the balance equations

ρi =
∑
j

θij ljmj (i = 1, . . . , I).

(b) Let
Ri(x) = Ψi(xE[κi | X(t) = x]),

and write R(x) for the vector with components Ri(x), with x in domain
D. Then, a matrix analogue of condition (7.2.13) takes the form

lim infx∈D R(x) ≤ [2I − Θ]−1ρρρ ≤ lim supx∈D R(x),

where ρρρ is the vector of input rates. Investigate possible sufficient condi-
tions for the existence of a stationary version of the process.

7.4. Random Time Change and a
Goodness-of-Fit Test

The proposition below has been part of the folklore of point process theory
for many years. In essence, it goes back to the work of Watanabe (1964), who
first recognised that the Poisson process could be characterized by the form
of its compensator (the deterministic function λt), and Meyer (1971). It was
first clearly stated and proved by Papangelou (1974), who describes it in the
following terms:
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“Suppose that, starting at 0 say, we trace R+ in such a way that at the time
we are passing position t our speed is 1/λ∗(t), which can be ∞. (The value
λ∗(t) is determined by the past, i.e. by what happened up to t.) Then the
time instants at which we shall meet all the points in R+ of the process form
a homogeneous Poisson process.”

In other language, the random time transformation τ = Λ∗(t) =
∫ t
0 λ

∗(u) du
takes the point process with conditional intensity function λ∗(t) into a unit-
rate Poisson process.

Theorem 7.4.I. Let N be a simple point process adapted to a history F
with bounded, strictly positive conditional F -intensity λ∗(t) and F -compen-
sator Λ∗(t) =

∫ t
0 λ

∗(u) du that is not a.s.-bounded. Under the random time
change t �→ Λ∗(t), the transformed process

Ñ(t) = N
(
Λ∗−1(t)

)
(7.4.1)

is a Poisson process with unit rate.
Conversely, suppose there is given a history G, a G-adapted cumulative

process M(t) with a.s. finite, monotonically increasing and continuous tra-
jectories, and a G-adapted simple Poisson process N0(t). Let F denote the
history of σ-algebras Ft = GM(t). Then N(t) = N0

(
M(t)

)
is a simple point

process that is F -adapted and has F -compensator M(t).

Proof. The essence of this theorem is a generalization of the well-known
result, crucial to many simulation algorithms, that if the random variable X
has a continuous distribution function F (x), then Y = F (X) has a uniform
distribution on the unit interval. We first restate this result in a form that
will make the analogy more transparent.

Lemma 7.4.II. Let X be a random variable with continuous distribution
function F (·) and integrated hazard function H(x) = − log[1 − F (x)]. Then
Y = H(X) has a unit exponential distribution (i.e. with unit mean).

Conversely, if Y is a random variable with unit exponential distribution,
then X = H−1(Y ) has distribution function F (·).

If, therefore, we have a sequence of interval lengths X1, X2, . . . with con-
tinuous distributions F1(t), F2(t), . . . , the corresponding sequence of trans-
formed random variables Y1 = H1(X1), Y2 = H2(X2), . . . is a sequence
of unit exponential random variables. Now recall the construction for the
conditional intensity function as an amalgam of hazard functions hn(u |
t1, . . . , tn−1) in equation (7.2.3), and set F1(x) = 1 − exp[−H1(x)], F2(x) =
1− exp[−H2(x)], . . . , where for brevity of notation we have written Hn(x) =∫ x
0 hn(u | t1, . . . , tn−1) du. If the intervals X1, X2, . . . represent the sequence

of intervals for a point process with conditional intensity function λ∗(t) that
can be represented in terms of integrated hazard functions as above, then the
joint distribution of any finite sequence of these intervals is the product of the
distribution functions Fi(t), and the joint distribution of the corresponding
transformed random variables H1(X1), H2(X2), . . . is the product of unit ex-
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ponential distributions and therefore represents the joint distribution of a set
of i.i.d. unit exponential random variables. But such a point process is just a
unit-rate Poisson process.

This argument lies behind a possible proof of the direct part of the theorem
in the case where F is the internal history of N(·). The converse part, again
for the special case of the internal history, follows by a reversed argument
using the converse part of the lemma.

The proof in the general case requires the same kind of attention to ques-
tions of predictability that we have mentioned in earlier discussions of the
conditional intensity function and its integral. We sketch the general argu-
ment below, leaving a fuller discussion to Chapter 14.

Under the stated conditions, Λ∗(t) and its inverse are both continuous, so
that the process Ñ , like N itself, can increase only by unit jumps. It is also
clear that the family of σ-algebras Ft is mapped into the family of σ-algebras
Gt = FΛ∗−1(t), say, for the transformed process. (A rigorous definition of
these, and a strict proof, requires use of the optional-sampling theorem as in
Appendix A3.3.III.) Furthermore,

E[dÑ(t) | Gt−] = E
[
dN
(
Λ∗−1(t)

) ∣∣ FΛ∗−1(t)
]

≈ λ∗(Λ∗−1(t)
)

d
(
Λ∗−1(t)

)
= dt, (7.4.2)

which shows that the process Ñ has the lack-of-memory property and is there-
fore the Poisson process (Theorem 2.2.III).

The converse is a further application of the optional-sampling theorem.
Since each T = M(t) is a stopping time for N0(t), the σ-algebras Ft =
GM(t) are well defined, and N(t) = N0

(
M(t)

)
is F -adapted. Note the crucial

importance that G should contain the history of the process N0—indeed,
the minimal form of the theorem requires only that M(t) be adapted to the
internal history of N0. N(t) is also a.s. finite and monotonically increasing
with unit jumps; hence, it defines a simple point process. The optional-
sampling theorem and the martingale property for N0(t)− t then imply that,
for t > s, T = M(t) > S = M(s),

E[N(t)−M(t) | Fs] = E[N0(T )− T | GS ] = N0(S)− S = N(s)−M(s).

Thus, N(t)−M(t) is an F -martingale, from which it follows that M must be
the F -compensator for N .

Because of this result, a simple point process with continuous compensator
is sometimes called a process of Poisson type. The theorem implies that all
such processes can be derived from a simple Poisson process by a random time
transformation.

Example 7.4(a) Renewal process [see Exercises 7.2.3(a) and 7.2.11]. We
consider an ordinary renewal process started with an event at the origin.
We know from Exercise 7.2.11 that the conditional intensity function for this
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process is just the hazard function for the interval distribution, evaluated at
the backward recurrence time Bt, namely the time elapsed since the most
recent event before the present time t. Also, the compensator A(·) satisfies

A(t) = A(t−Bt)− log[1− F (Bt)] .

On the transformed time scale, the time interval τ from one event to the
next is given by τ = − log[1 − F (X)], where X is the length of the interval
on the original time scale. As in Lemma 7.4.II, the transformation takes
successive intervals into a sequence of i.i.d. exponentially distributed intervals
(i.e. into a unit-rate Poisson process). The general case with internal history is
a generalization of this argument to the situation where the distributions of
successive intervals are conditioned by the previous history of the process.

The requirement in Theorem 7.4.I that the compensator Λ∗(t) should in-
crease without bound ensures that there is no last point in the process. The
basic result remains valid without it, except insofar as the final interval is then
infinite and so cannot belong to a unit-rate Poisson process. The extreme case
in the next example makes the point.

Example 7.4(b) One-point process (see Exercises 7.2.2 and 7.4.1). Let a point
process on (0,∞) have exactly one point, at t1, say, where Pr{t1 ≤ x} = F (x),
and we assume that the d.f. F is continuous. Then

Λ∗(t) =
∫ min(t,t1)

0

dF (u)
1− F (u)

= − log
(
1− F [min(t, t1)]

)
.

The initial interval transforms, as in the previous example, to an interval with
unit exponential distribution; the transformed process then terminates.

The converse part of Theorem 7.4.I contains within it the basis for one gen-
eral approach to simulating point processes. Using the notation X1, X2, . . . ,
F1(·), F2(·), · · · and H1(·), H2(·) as in the proof of that theorem and Lemma
7.4.II, it may be summarized as follows.

Algorithm 7.4.III. Simulation of point processes by the inverse method.
1. Simulate a sequence Y1, Y2, . . . of unit exponential random variables (re-

spectively, a sequence U1, U2, . . . of uniform U(0, 1) random variables).
2. Transform to the sequence of successive interval lengths X1 = H−1

1 (Y1),
X2 = H−1

2 (Y2), . . . (respectively, the sequence F−1
1 (U1), F−1

2 (U2), . . .).
3. Form the point process (t1, t2, . . .) by setting t1 = X1, t2 = X1 +X2, . . . .

The use of exponential or uniform random variables to initiate the algo-
rithm is immaterial in that both lead to point processes with identical prop-
erties. The use of the exponential variates shows more clearly the relation to
the Poisson process and may be marginally more convenient when the process
is specified through its conditional intensity function because t1, t2, . . . then
solve the successive equations∫ t1

0
λ∗(u)du = Y1,

∫ t2

t1

λ∗(u)du = Y2,
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and so on. The main constraint in the use of this algorithm is the common
need to introduce an iterative numerical method to find the inverse of the
integrated hazard or distribution function.

In principle, the method may be extended to situations where the interval
distributions are conditioned by external as well as internal variables, provided
that all the relevant conditioning information is available at the beginning of
each new interval.

A second important application of Theorem 7.4.I is the technique some-
times referred to as point process residual analysis (see e.g. Ogata, 1988); it
uses the time transformation in testing the goodness-of-fit of a point process
model. It depends on the fact that if the compensator used for the trans-
formation is that of the true model, then the transformed process will be
unit-rate Poisson, whereas if the wrong compensator is used, the transformed
process will show some systematic departure from the unit-rate Poisson pro-
cess. This means that the problem of testing for goodness-of-fit for a given,
perhaps quite complex, model can be reduced to the well-studied and much
simpler problem of testing for a unit-rate Poisson process (e.g. Cox and Lewis,
1966).

This device fills what is otherwise something of a gap for point process
inference. While estimation and model comparison procedures can be based
on standard likelihood methods, and a variety of statistical tests on specific
characteristics, such as the interval lengths or the second-order properties of
count numbers, are also available [the now classical monograph by Cox and
Lewis (1966) remains an excellent introduction to a range of techniques of
this kind], the one feature not obviously present there is a general purpose
goodness-of-fit test for assessing the adequacy of a model overall.

Before outlining the method, we present a minor rephrasing and extension
of the basic theorem.

Proposition 7.4.IV. Let {0 < t1 < t2 < · · ·} be an unbounded, increasing
sequence of time points in the half-line (0,∞), N∗ a simple point process with
internal history H, and monotonic, continuous H-compensator Λ∗(t) such
that Λ∗(t) → ∞ a.s. Then, with probability 1, the transformed sequence
{τi = Λ∗(ti)} is a realization of a unit-rate Poisson process if and only if the
original sequence {ti} is a realization from the point process defined by Λ∗(t).

Proof. This proposition extends Theorem 7.4.I by incorporating the asser-
tion that the character of the transformed process can (with probability 1)
be unambiguously determined from a realization on the half-line R+. This
can be regarded as a consequence of the ergodic theorem (see Chapter 12):
for a stationary process, the probability of any of the events appearing in the
fidi distributions can be recovered as a limiting ratio. If the processes are not
identical, there must be at least one such event to which the two processes
ascribe different probabilities. Thus, the limiting ratios, and hence the ob-
servation sequence, must be able to discriminate between the two processes.
Granted this assertion, the result is a corollary of Theorem 7.4.I.
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Now suppose there is given a realization {t1, . . . , tN(T )} on a finite obser-
vation interval (0, T ) to which has been fitted a point process model with
compensator Λ∗(t). The procedure outlined below makes use of Proposition
7.4.II to define a goodness-of-fit test for point process models for which the
conditional intensity function, and hence the compensator, is explicitly known.

Algorithm 7.4.V. Goodness-of-fit test based on the residual point process.
1. Form the transformed time sequence {τi = Λ∗(ti), i = 1, . . . , N(T )}.
2. Plot the cumulative step-function Y (x) through the points (xi, yi) =

(τi/T, i/N(T )) in the unit square 0 ≤ x, y ≤ 1.
3. Plot confidence lines y = x ± Z1−α/2/

√
T , where with Φ denoting the

standard normal distribution function, Φ(Zp) = p.
4. Implement an approximate 100(1−α)% test of the hypothesis that the {τi}

come from a unit-rate Poisson process by observing whether the empirical
process Y (x) falls outside the confidence band drawn in step 3.
At step 4, this procedure uses the maximum deviation from the expected

rate curve in the transformed time domain to check for departures from the
unit rate expected for the data in the transformed time domain. It is analogous
in this context to the Kolmogorov–Smirnov test. The test is approximate in
two respects. First, it is a large sample test, based on the Brownian motion
approximation to the Poisson process. Second, and perhaps more importantly,
it does not take into account the effect of estimating the parameters from the
same data as are used to check the model. While both are typical large sample
approximations, the bias resulting from the latter in moderate-sized data sets
may be considerable, as shown for example in Schoenberg (2002), particularly
when the process has strong time-dependence features that reduce the effective
amount of information available in the data.

As with any portmanteau test, the test above has the further disadvan-
tage, offset by its wide range of applicability, that its effectiveness (power)
against different types of alternatives may be very variable. For more specific
alternatives, there are many other tests of Poisson character that could be
substituted for the Kolmogorov–Smirnov-type test suggested above [see e.g.
Cox and Lewis (1966), as already noted]. Such tests are likely to be more
powerful than the test above when the nature of the expected deviation from
Poisson character is known.

One advantage of the residual analysis is that it leads to a visual display
(step 2 in the algorithm above) that can be useful in gaining a qualitative
impression of the goodness-of-fit whether or not a formal test is applied. Ogata
has made ingenious uses of this feature for visually detecting departures from
a standard model, as illustrated below.

Example 7.4(c) Use of residual analysis to detect the return to normal back-
ground activity. The rate of occurrence of events in aftershock sequences
to (large) earthquakes is traditionally modelled by a Poisson process whose
intensity function decays as a power law, known as the modified Omori law
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in the seismology literature,

λ(t) = A/(t+ c)1+p (t > 0),

where A, c and p are nonnegative parameters and p is commonly close to zero.
It is a delicate question to determine the time at which the aftershocks merge
indistinguishably into the general background activity for the region. Leaving
aside the problem of defining precisely what is meant by this statement, the
visual pattern can be much enhanced by first transforming the time scale
by the compensator Λ∗(t) = (A/p)[c−p − (t + c)−p], (t ≥ 0) of the model
above. When the rate of aftershock activity has decayed to about the level
of the background activity, the dominant factor in the observed rate changes
from the aftershock decay term to the steady background rate, increasing the
observed rate above what would be expected from modelling the aftershock
sequence. The change point is hard to pinpoint visually on the original time
scale, but on the transformed time scale, it shows up relatively clearly as a
deviation above the diagonal y = x near the end of the observation sequence.
See e.g. Ogata (1988) and Utsu et al. (1995) for illustrations and further
details.

Residual analysis can also be adapted to more specific problems as below.

Example 7.4(d) Using the ETAS model to test for relative quiescence in
seismic data. At shallow depths (0–20 km or so), the ETAS model of Ex-
ample 6.4(d) usually provides a reasonable first approximation to the time–
magnitude history of moderate or small-size earthquake events in an observa-
tion region. For this reason, departures from the ETAS model, or changes in
its apparent parameter values, can be used as an indicator of anomalous seis-
mic activity that may be associated with the genesis of a forthcoming large
event. In particular, a reduction in activity below that anticipated by the
ETAS model may signify the onset of a period of seismic quiescence, a much
debated indicator of a larger event. The task of searching for changes in rate
is here complicated by the high level of clustering characteristic of earthquake
activity, which makes the evaluation of appropriate confidence levels particu-
larly difficult. Again, the task can be much facilitated by first transforming
the occurrence times according to the best-fitting ETAS model and then car-
rying out the change-point test on the transformed data. The problem is
then reduced to that of testing for a change point in a constant-rate Poisson
process, a relatively straightforward and well-studied problem. Ogata (1988,
1992, 2001) has developed detailed procedures, including a modification to
the usual AIC criterion, to take into account the nonstandard character of
the change-point problem (the additional parameters are absent in the null
hypothesis rather than being fitted to a special numerical value; Davies’ (1987)
work on the problem of hypothesis testing when parameters vanish under H0
is pertinent). Some further details are given in the exercises. Exercise 7.4.2
indicates extensions to the marked point process case.



264 7. Conditional Intensities and Likelihoods

As with the other procedures we have illustrated in this chapter, the results
on random time changes can be generalized relatively straightforwardly to
other types of evolutionary point processes (notably multivariate and marked
point processes) but only with more difficulty to spatial point patterns (see
Chapter 14). We indicate below the extensions to multivariate and marked
point processes; for more discussion, see e.g. Brown and Nair (1988). These
extensions hinge on the uniqueness of the compensator with respect to the
internal history H; see Proposition 7.3.IV for regular MPPs.

Consider first a multivariate point process. Here each component could be
transformed by its own compensator, as a result of which we would obtain
a multivariate Poisson process in which each component has unit rate. But
would these components then be independent?

The answer to this question depends crucially on the histories used to define
the compensators. If the full internal history is used for each component, then
any dependence between the original components is taken into account and
a Poisson process with independent, equally likely components is obtained.
On the other hand, if each component is transformed according to its own
internal history, the components of the resulting multivariate Poisson process
will have equal (unit) rates but in general will not be independent. The next
example provides a simple illustration.

Example 7.4(e) Bivariate Poisson process [see Example 7.3(a)]. The model
consists of an initial stream of input points from a Poisson process at con-
stant rate λ and an associated stream of output points formed by delaying
the initial points by random times exponentially distributed with mean 1/µ
independently for each initial point. Integrating the full H-conditional inten-
sities at (7.3.2), the corresponding compensators are for component I a line of
constant slope λ and for component II a broken straight line, with segments
whose slopes are nonnegative multiples of µ, the breaks in the line occurring
at the points of both processes, the slope increasing by µ whenever a com-
ponent I point occurs and decreasing by µ whenever a component II point
occurs.

The transformed points from component I are identical with the original
points apart from an overall linear change of scale. The time transformation
for component II is more complex: the distances between points are stretched
just after a component I point and shrunk after a component II point. Further,
if for any t all points of component I have been cleared (i.e. their associated
component II points have already occurred), the transformed time remains
fixed until the next component I point arrives. In this way, the dependence
between the two components is broken, and both component processes are
transformed into unit-rate Poisson processes.

A similar conclusion holds even if either or both components is augmented
by the addition of the points from an independent Poisson process or pro-
cesses: the relative scales of the time changes compensate for any differences
in the original component rates, producing always a unit rate in the trans-
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formed process, while any dependence between the two components is still
broken as explained above.

Consider now the case of a regular MPP. If the support of the mark dis-
tribution is no longer finite, then effectively we have an infinite family of
different components; clearly it is not possible to turn them all into unit-rate
Poisson processes and hope to retain an MPP as output. To achieve such a
result, at least the rates of the components should be adjusted to produce a
transformed process with finite ground rate. Here is one way of proceeding.

Suppose that the H-conditional intensity of the original process can be
represented in the form

λ∗(t, κ) = λ∗
g(t)f∗(κ | t),

where f∗(κ | t) is a probability density with respect to the reference mea-
sure �K(·), which we take here to be itself a probability measure so that∫

K �K(dκ) =
∫

K f(κ | t) �K(dκ) = 1. Let A(t, U) =
∫
U

∫ t
0 λ

∗(s, κ) ds �K(dκ) be
the full H-compensator for the process, and write Aκ(t) =

∫ t
0 λ

∗(s, κ) ds. To
avoid complications in defining the inverse functions, we suppose both λ∗

g(t)
and f∗(κ | t) are strictly positive for all t and κ.

Now consider the transformation that takes the pair (t, κ) into the pair
(Aκ(t), κ). We claim that the transformed process is a stationary compound
Poisson process with unit ground rate and mark distribution �K(·). To estab-
lish this result, we appeal to the uniqueness theorem for compensators (Propo-
sition 7.3.IV). The crucial computation, corresponding to equation (7.4.2), is

E[Ñ(dτ × dκ)] = E[N(dy × dκ)] ≈ λ∗(y, κ) dy �K(dκ) = dτ �K(dκ),

where y = A−1
κ (τ), so that dy = dτ/λ∗(y, κ). The last form can be identified

with the compensator for a stationary compound Poisson process with ground
rate λ̃g = 1 and mark distribution �K(·). The uniqueness theorem completes
the proof.

The results for both multivariate and marked point processes are summa-
rized in the following proposition (a more careful discussion of the arguments
above is given in Chapter 14).

Proposition 7.4.VI. (a) Let {Nj(t): j = 1, . . . , J} be a multivariate point
process defined on [0,∞) with a finite set of components, full internal history
H, and left-continuous H-intensities λ∗

j (t). Suppose that for j = 1, . . . , J , the
conditional intensities are strictly positive and that Λ∗

j (t) =
∫ t
0 λ

∗
j (s) ds→∞

as t→∞. Then, under the simultaneous random time transformations

t �→ Λ∗
j (t), (j = 1, . . . , J)

the process {(N1(t), . . . , NJ(t)): t ≥ 0} is transformed into a multivariate Pois-
son process with independent components each having unit rate.
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(b) Let N(t, κ) be an MPP defined on [0,∞)×K, where K is a c.s.m.s. with
Borel sets BK and reference probability measure �K(·), and let H denote the
full internal history. Suppose that the H-conditional intensity λ∗(t, κ) =
λ∗

g(κ)f∗(κ | t) exists, is �K-a.e. left-continuous in t and strictly positive on
[0,∞) × K, and that Λ∗

κ(t) =
∫ t
0 λ

∗(s, κ) ds → ∞ as t → ∞ �K-a.e. Then,
under the random time transformations

(t, κ) �→ (Λ∗
κ(t), κ),

the MPP N is transformed into a compound Poisson process Ñ with unit
ground rate and stationary mark distribution �K(·).
Example 7.4(f) ETAS model [see Example 6.4(d)]. This can serve as a typical
example of a process with unpredictable marks. The conditional intensity
factorizes into the form [see equation (7.3.10)]

λ∗(t, κ) =
(
λ0 + ν

∫
(−∞,t)×K

eα(χ−κ0)g(t− s)N(ds× dχ)
)
f(κ) ≡ λ∗

g(t)f(κ),

where f(·), the density of the magnitude distribution, is commonly assumed
to have an exponential form on K = [0,∞). For stationarity, we require
ρ = ν

∫∞
0 eακf(κ) dκ < 1. Under these conditions, it is natural to take the

reference measure on K to be f itself, in which case all the densities relative
to the reference measure are equal to unity. Consequently, the multiple time
changes here all reduce to the same form:

(t, κ) �→ (Λ∗
g(t), κ), where Λ∗

g(t) =
∫ t

0
λ∗

g(s) ds.

In other words, under the random time change associated with the ground
process, the original ETAS process is transformed into a compound Poisson
process with unit ground rate and stationary mark density f . Such transfor-
mations open the way to corresponding extensions of the procedures described
earlier for testing the process. In particular, checking the constancy of the
mark distribution simplifies the detection of changes in the relative rates of
events of different magnitudes.

Similar remarks apply to other examples with unpredictable marks, such
as the stress-release models of Examples 7.2(g) and 7.3(d).

Schoenberg (1999) gives a random-time change for transforming spatial
point processes to Poisson.

Exercises and Complements to Section 7.4
7.4.1 Consider a two-point process t1, t2, (t1 < t2) on [0, T ], where (t1, t2 − t1)

has continuous bivariate d.f. F (t, u). Find the compensator and define the
random time change explicitly in terms of F . The Poisson process here has
to be conditioned on the occurrence of two points within the interval [0, T ].
[Hint: Example 7.4(b) treats the one-point case.]
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7.4.2 Marked point process extension of Algorithm 7.4.III. Following the discussion
around equation (7.3.2), suppose there is given a family of conditional haz-
ard functions hn(u | (t1, κ1), . . . , (tn−1, κn−1)) and corresponding conditional
mark distributions fn(κ | (t1, κ1), . . . , (tn−1, κn−1);u). Formulate in detail a
sequence of simulation steps to solve successively the pairs of equations∫ tn

tn−1

hn(u | (t1, κ1), . . . , (tn−1, κn−1)) du = Yn ,∫ κn

0

fn(κ | (t1, κ1), . . . , (tn−1, κn−1);u) dκ = Un .

7.4.3 (Continuation). Using steps analogous to the simulation argument above,
provide an alternative, constructive proof of Proposition 7.4.VI.

7.4.4 Extension of Ogata’s residual analysis to multivariate and marked point pro-
cesses. Develop algorithms, analogous to those in Algorithm 7.4.V, for testing
multivariate and marked point processes.
[Hint: In the multivariate case, test both (a) that the ground process for the
transformed process is a unit-rate Poisson process and (b) that the marks are
i.i.d. with equal probabilities. In the marked case, take the reference measure
to be, say, a unit exponential distribution, and replace (b) with a test for a
set of i.i.d. unit exponential variates.]

7.5. Simulation and Prediction Algorithms
In the next two sections, we broach the topics of simulation, prediction, and
prediction assessment. In modelling, the existence of a logically consistent
simulation algorithm for some process is tantamount to a constructive proof
that the process exists. Furthermore, simulation methods have become a key
component in evaluating the numerical characteristics of a model, in checking
both qualitative and quantitative features of the model, and in the centrally
important task of model-based prediction. A brief survey of the principal ap-
proaches to point process simulation and of the theoretical principles on which
these approaches are based therefore seemed to us an important complement
to the rest of the text.

This section provides a brief introduction to simulation methods for evo-
lutionary models; that is, for models retaining a time-like dimension that
then dictates the probability structure through the conditional intensity func-
tion. Simulation methods can be developed also for spatial point patterns (see
Chapter 15), but considerable conceptual simplicity results from the ability
to order the evolution of the process in ‘time’. The growth in importance of
Markov chain Monte Carlo methods for simulating spatial processes is a tacit
acknowledgement of the fact that such methods introduce an artificial time
dimension even into problems where no such dimension is originally present.

Two general approaches are commonly used for simulating point processes
in time. The first we have already considered in Algorithm 7.4.III; it in-
volves simulating the successive intervals, making use of the description of the
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conditional intensity function as a family of hazard functions as in equation
(7.2.3). Its main disadvantage as a general method is that it requires repeated
numerical solution of the equation defining the inverse. The thinning meth-
ods outlined in the present section, by contrast, require only evaluations of
the conditional intensity function. Although the difference in computational
time between these two methods is not huge, it is the main reason why the
thinning method is given greater prominence in this section. In addition, the
theoretical basis behind thinning methods is of interest in its own right.

The most important theoretical result is a construction, originating in Ker-
stan (1964) and refined and extended in Brémaud and Massoulié (1996), that
has something of the character of a converse to Proposition 7.4.I. There we
transformed a point process with general conditional intensity to a Poisson
process; here we convert a Poisson process back into a process with general
conditional intensity. For this purpose, we use an auxiliary coordinate in the
state space, so we consider a unit-intensity Poisson process, Ñ say, on the
product space X = R × R+. The realizations of Ñ consist of pairs (xj , yj).
Also, let Ht denote the σ-algebra of events defined on a simple point process
over the interval [0, t) and H the history {Ht}. The critical assumption below
is that λ∗ is H-adapted.

Proposition 7.5.I. Let Ñ , H be defined as above, let λ∗(t) be a nonnegative,
left-continuous, H-adapted process, and define the point process N on R by

N(dt) = Ñ
(
dt× (0, λ∗(t)]

)
. (7.5.1)

Then N has H-conditional intensity λ∗(t).

Proof. Arguing heuristically, it is enough to note that

E[N(dt) | Ht−] = E
[
Ñ
(
dt× (0, λ∗(t−)]

) ∣∣ Ht−] = λ∗(t) dt.

There is no requirement in this proposition that the conditional intensity
be a.s. uniformly bounded as was required in the original Shedler–Lewis algo-
rithm. When such a bound exists, it leads to straightforward versions of the
thinning algorithm, as in Algorithm 7.5.II below.

The result can be further extended in various ways, for example to situa-
tions where more general histories are permitted or where the initial process is
not Poisson but has a conditional intensity function that almost surely bounds
that of the process to be simulated; see Exercises 7.5.1–2.

Example 7.5(a) Standard renewal process on [0,∞). We suppose the pro-
cess starts with an event at t = 0. Let h(u) denote the hazard function for
the lifetime distribution of intervals between successive points, so that [see
Exercise 7.2.3(a)] the conditional intensity function has the form

λ∗(t) = h(t− tN(t)) (t ≥ 0),
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where tN(t) is the time of occurrence of the last event before time t. However,
λ∗(t) should be defined on the history of Ñ rather than on N . To this end,
we first define the sequence of points ti in terms of Ñ . With t0 = 0, define
sequentially

tn+1 = min{xi:xi > tn and yi < h(xi − tn)} (n = 0, 1, . . .)

and then define λ∗(t) as above. Notice that the right-hand side of this expres-
sion is Ft-measurable and the whole process is F -adapted.

Thinning algorithms generally follow much the same lines as in Proposi-
tion 7.5.I and the example above. The main difficulty arises from the range of
yi being unbounded, which provides a flexibility that is difficult to match in
practice. The original Shedler–Lewis algorithm (Lewis and Shedler, 1976; see
also Exercise 2.1.6) was for an inhomogeneous Poisson process in a time inter-
val where the intensity is bounded above by some constant, M say. Then, the
auxiliary dimension can be taken as the bounded interval (0,M) rather than
the whole of R+, or equivalently the yi could be considered i.i.d. uniformly
distributed random variables on the interval (0,M). Equivalently again, the
time intensity could be increased from unity to M and the yi taken as i.i.d.
uniform on (0, 1), which leads to the basic form of the thinning algorithm
outlined in the algorithm below.

In discussing the simulation algorithms below, it is convenient to intro-
duce the term list-history to stand for the actual record of times, or times
and marks, of events observed or simulated up until the current time t. We
shall denote such a list-history by H, or Ht if it is important to record the
current time in the notation. Thus, a list-history H is just a vector of times
{t1, . . . , tN(t)} or a matrix of times and marks {(t1, κ1), . . . , (tN(t), κN(t))}.
We shall denote the operation of adding a newly observed or generated term
to the list-history by H �→ H ∪ tj or H �→ H ∪ (tj , κj). In the discussion
of conditioning relations such as occur in the conditional intensity, the list-
history Ht bears to the σ-algebra Ht a relationship similar to that between
an observed value x of a random variable X and the random variable X itself.

The algorithms require an extension of Proposition 7.5.I to the situation
where the process may depend on an initial history H0; we omit detail but
note the following. Such a history will be reflected in the list-history by a set
of times or times and marks of events observed prior to the beginning of the
simulation. This is an important feature when we come to prediction algo-
rithms and wish to start the simulation at the ‘present’, taking into account
the real observations that have been observed up until that time. It is also
important in the simulation of stationary processes, for which the simulation
may be allowed to run for some initial period (−B, 0) before simulation proper
begins. The purpose is to allow the effects of any transients from the initial
conditions to become negligible. Finding the optimal length of such a prelim-
inary ‘burn-in’ period is an important question in its own right. Its solution
depends on the rate at which the given process converges toward equilibrium
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from the initial state, but in general this is a delicate question that is affected
by the choice of initial state as well as decay parameters characteristic of the
process as a whole.

Suppose, then, that the process to be simulated is specified through its
conditional intensity λ∗(t), that there exists a finite bound M such that

λ∗(t) ≤M for all possible past histories,

and that the process is to be simulated over a finite interval [0, A) given some
initial list-history H0.

Algorithm 7.5.II. Shedler–Lewis Thinning Algorithm for processes with
bounded conditional intensity.
1. Simulate x1, . . . , xi according to a Poisson process with rate M (for exam-

ple, by simulating successive interval lengths as i.i.d. exponential variables
with mean 1/M), stopping as soon as xi > A.

2. Simulate y1, . . . , yi as a set of i.i.d. uniform (0, 1) random variables.
3. Set k = 1, j = 1.
4. If xk > A, terminate. Otherwise, evaluate λ∗(xk) = λ(xk | Hxk

).
5. If yk ≤ λ∗(xk)/M , set tj = xk, update H to H ∪ tj , and advance j to j+ 1.
6. Advance k to k + 1 and return to step 4.
7. The output consists of the list {j; t1, . . . , tj}.

This algorithm is relatively simple to describe. In the more elaborate ver-
sions that appear shortly, it is convenient to include a termination condition
(or conditions), of which steps 1 and 4 above are simple. In general, we may
need some limit on the number of points to be generated that lies outside the
raison d’être of the algorithm.

While this algorithm works well enough in its original context of fixed in-
tensity functions, its main drawback in applications to processes with random
conditional intensities is the need for a bound on the intensity that holds not
only over (0, A) but also over all histories of the process up to time A. To meet
this difficulty, Ogata (1981) suggested a sequential variant of the algorithm
that overcomes this difficulty, requiring only a local boundedness condition
on the conditional intensity. A minor variant of his approach is outlined in
Algorithm 7.5.IV.

For the sake of clarity, we return to the representation of the conditional
intensity function in terms of successive hazard functions, much as in Defini-
tion 7.2.II, but allowing all such functions to depend on an initial history H0,
namely

hn(s | H0, t1, . . . , tn−1), for 0 < t1 < · · · < tn−1 < s ≤ A.

For every t in (0, A) and associated σ-algebra Ht, we suppose there are given
two quantities, a local bound M(t | Ht) and a time interval of length L(t | Ht),
satisfying the following conditions.
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Condition 7.5.III. There exist functions M(t | Ht), L(t | Ht) such that, for
all initial histories H0, all t ∈ [0,∞), for every n = 1, 2, . . . , and all sequences
t1, . . . , tn−1 with 0 < t1 < · · · < tn−1 < t, the hazard functions satisfy

hn(t+ u | H0, t1, . . . , tn−1) ≤M(t | Ht) (0 ≤ u < L(t | Ht) ).

Placing the bound on the hazard function is equivalent to placing the bound
on the conditional intensity function under the constraint that no additional
points of the process occur in the interval (t, t+u) under scrutiny. As soon as
a new point does occur, in general the hazard function will change and a new
bound will be required. Thus, the bound holds until either the time step L(·)
has elapsed or a new point of the process occurs. For the algorithm below,
the list-history Ht consists of {H0, t1, . . . , tN(t)}, where N(t) is the number of
points ti satisfying 0 ≤ ti < t. For brevity, we mostly write M(t) and L(t) for
M(t | Ht) and L(t | Ht). Ogata (1981) gives extended discussion and variants
of the procedure.

Algorithm 7.5.IV. Ogata’s modified thinning algorithm.
1. Set t = 0, i = 0.
2. Stop if the termination condition is met; otherwise, compute M(t | Ht) and
L(t | Ht).

3. Generate an exponential r.v. T with mean 1/M(t) and an r.v. U uniformly
distributed on (0, 1).

4. If T > L(t), set t = t+ L(t) and return to step 2.
5. If T ≤ L(t) and λ∗(t + T )/M(t) > U , replace t by t + T and return to

step 2.
6. Otherwise, advance i by 1, set ti = t + T , replace t by ti, update H to
H ∪ ti, and return to step 2.

7. The output is the list {i; t1, . . . , ti}.

The technical difficulties of calculating suitable values for M(t) and L(t)
vary greatly according to the character of the process being simulated. In an
example such as a Hawkes process, at least when the hazard functions decrease
monotonically after an event, it would be enough in principle to consider only
t = ti (i.e. points of the process) and set M(ti) = λ∗(ti+). This leads to a very
inefficient algorithm, however, since the hazard decreases rapidly and a large
number of rejected trial points could be generated. A simple modification
is to set M(t) = λ∗(t) and L(t) = 1

2λ
∗(t+), irrespective of whether or not

t is a point of the process. Such a choice gives a reasonable compromise
between setting the bound too high, and so generating excessive trial points,
and setting it too low, thus requiring too many iterations of step 3.

The next example is a process with an increasing hazard, where the inter-
vention of step 3 is virtually mandatory.

Example 7.5(b) Self-correcting or stress-release model. We discuss the sim-
ulation of the model of Example 7.2(g). As described there, points {ti} occur
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at a rate governed by the conditional intensity function

λ(t) = Ψ[X(t)],

where X(t) is an unobserved Markov jump process that increases linearly
between jump times ti at which it decreases by an amount κi, so that

X(t) = X(0) + νt−
∑
i:ti<t κi.

Given an initial history H0, we can now simulate the process using Algor-
ithm 7.5.IV as, for example, we could take L(t) = 2/Ψ[X(t)] and M(t) =
Ψ[X(t) + νL(t)]. With high probability, the next event would occur within
twice the mean interval length at the start of the interval, and because of the
increasing nature of the hazard function, a simple bound would be its value
at the end of the search interval.

Algorithm 7.5.IV can be extended to cover the situation where the evolution
of the conditional hazard function depends on additional random processes,
themselves evolving jointly with the given point process. The immediate
requirements are for the existence of explicit algorithms for calculating the
intensity and for finding local bounds L(·) and M(·) that take into account
current and past values of the auxiliary variables. A deeper difficulty, how-
ever, relates to the need to simulate forward not only the point process but
also the auxiliary variables on which it depends. For auxiliary variables that
change only slowly, this may not be a serious handicap, but for longer-term
predictions, a full model is needed from which the point process and auxiliary
variables can be jointly simulated.

Extension of the simulation algorithms to marked point processes, including
even space–time processes, presents no significant difficulty. Once again, the
evolutionary character of the process makes a sequential approach straight-
forward and natural. First, a candidate for the next time point of the process
is selected and either accepted or rejected by the thinning algorithm using
the full H-intensity for the overall sequence of time points. Once a new time
point is selected, the corresponding mark, whether a weight, a spatial loca-
tion, or some further characteristic, is simulated, using the conditional density
f∗(κ | t) for the mark distribution. The situation is particularly simple if the
process has independent or unpredictable marks, as the mark distribution is
then independent of the history of the process. In general, the mark dis-
tribution can depend on the past history of the process, including both the
past locations and marks, and the simulation will be tractable provided this
dependence can be captured in a reasonably simple explicit manner.

For convenience, an outline algorithm is summarized more formally below.
In it, we use the same notation as for Algorithm 7.5.IV. The local bounds
M(t) and L(t) must be chosen for the full internal intensity λ∗

g(t) of the
ground process. Subject to replacing λ∗(t) by λ∗

g(t) at step 5, the first part of
the algorithm is just a restatement of the steps in Algorithm 7.5.IV. Note that
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we have paid particular attention to the need to update the list-history H. If
simulation is to be applied to point process prediction, it is essential to allow
the history at time 0 (corresponding to the present) to be nontrivial, in this
case including all relevant information on observations of the actual process
up to the time when simulation commences.

Algorithm 7.5.V. Thinning algorithm for marked point processes.
1. Set t = 0, i = 0, H0 = ∅.
2. Stop if the termination condition is met. Otherwise, calculate M(t), L(t)

for the ground intensity λg
H(t).

3. Generate an exponential r.v. T with mean 1/M(t) and an r.v. U uniformly
distributed on (0, 1).

4. If T > L(t), set t = t+ L(t), update the list-history H, and return to step
2.

5. If T ≤ L(t) and λ∗
0(t + T )/M(t) < U , replace t by t + T , update the

list-history H, and return to step 2.
6. Advance i by 1, set ti = t+T , replace t by ti, and generate a mark κi from

the distribution with density f(κ | ti).
7. Update the list-history H to H ∪ (ti, κi), and return to step 2.
8. The output is the list {i; (t1, κ1), . . . , (ti, κi)}.

In Example 7.5(b) above, for example, simulation proceeds as if the process
has nonanticipating marks until step 6 is reached, at which point the appro-
priate value φ[X(t)] must be read into the simulation routine for producing
values according to the tapered Pareto distribution. By way of illustrating
Algorithm 7.5.V, we consider the extension of Example 7.5(b) to the linked
stress-release model.

Example 7.5(c) Simulating the linked stress-release model [see Example
7.3(d)]. In this model, there are two types of marks: the region in which
the event occurs (as a surrogate for spatial location) and the size of the event.
The basic form of the conditional intensity is given in equation (7.3.14).

A key step in the simulation is updating the list-history. This will consist of
a matrix or list type object with one column for each coordinate of the events
being described: here the times ti, their regions Ki, and their magnitudes
Mi. When the simulation is started, the list-history may contain information
from real or simulated data from the past in order to allow the simulation
to join ‘seamlessly’ onto the past. Each time a new event is simulated, its
coordinates are added to the list-history.

Since the simulation of the next event depends only on the form of the
conditional intensity, as determined by the current list-history, and additional
random numbers, it can proceed on an event-by-event basis. First, the time of
the next event in the ground process is simulated, then the region is selected
with probabilities proportional to the relative values of the conditional inten-
sities for the different regions at that time, and then a magnitude is selected
from the standard magnitude distribution (this distribution is fixed in the
standard model, but it can also be made stress- or region-dependent).
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The prediction of point processes, in all but a few very special cases where
explicit algorithms are available, goes hand-in-hand with simulation. The
quantities that one would like to predict, such as the time to the next event,
the probability of an event occurring within a given interval in the future, or
the costs caused by events in the future, are commonly nonlinear functionals
of the future of the process. They rarely fall into any general category for
which analytic expressions are available. Since, on the other hand, simulation
of a point process is relatively straightforward once its conditional intensity
function is known, and moreover can be extended to situations where an
arbitrary initial history can be incorporated into the conditional intensity,
it is indeed natural to see prediction as an application and extension of the
preceding procedures.

Suppose there is given a realization of the point process on some finite
interval (a, b). To link up with the preceding algorithms, we identify the origin
t = 0 with the end point b of the interval so that, in our earlier notation, the
realization on (a, b) forms part of the initial history H0. Suppose for the sake
of definiteness that our aim is to predict a particular quantity V that can be
represented as a functional of a finite segment of the future of the process. To
fulfil our aim, we estimate the distribution of V .

An outline of a prediction procedure is as follows.
1. Choose a time horizon (0, A) sufficient to encompass the predicted quantity

of interest (we need not insist here that A be a fixed number, provided the
stopping rule is clearly defined and can be incorporated into the simulation
algorithm).

2. Simulate the process forward over (0, A) using the known structure of the
conditional intensity function and initial history H0.

3. Extract from the simulation the value V of the functional that it is required
to predict.

4. Repeat steps 2 and 3 sufficiently often to obtain the required precision for
the prediction.

5. The output consists of the empirical distribution of the values of V obtained
from the successive simulations.
In step 5 above, it is often convenient to summarize the empirical distribu-

tion by key characteristics, such as its mean, standard deviation, and selected
quantiles. Not all prediction exercises fit exactly into this schema, but many
are variations on it.

Example 7.5(d) Prediction of a Wold process with exponential intervals
[see Exercise 4.5.8 and Example 4.6(b)]. In the notation used previously,
let an interval preceded by an interval of length x have parameter λ(x) [and
hence mean 1/λ(x)]. Suppose that we wish to predict the time X0 to the next
event and the length X1 of the ensuing complete interval, given the current
list-history consisting of the times t0, t−1, . . . of the preceding events, where 0
denotes the present time so 0 > t0 > t−1 > · · · .
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The quantity V of the preceding discussion is the pair (X0, X1). The par-
ticular specification of the model here implies that the joint density function
of (X0, X1) equals

λ
(
|t0 − t−1|

)
e−λ(|t0−t−1|)X0λ

(
|t0|+X0

)
e−λ(|t0|+X0)X1 ;

then simulation via the model should lead to a joint histogram that in principle
is an approximation to this function.

For pragmatic purposes, we may be satisfied with the first moments

E(X0 | H0) =
1

λ
(
|t0 − t−1|

)
and

E(X1 | H0) =
∫ ∞

0

λ(|t0 − t−1|)
λ(|t0|+ u)

e−λ(|t0−t−1|)u du.

Exercises and Complements to Section 7.5
7.5.1 Extended form of Proposition 7.5.I. Let F be a history on [0,∞), λ1(t), λ2(t)

be two nonnegative, left-continuous (or more generally predictable), history-
dependent candidates for conditional intensity functions, and let N∗(dt× ds)
be an F-adapted unit-rate Poisson process on R+ × R that is unpredictable
in the sense that its evolution for s > t is independent of the history up to
t. Let N(t) on R+ consist of the time coordinates ti from those points of N∗

lying in the region

min{λ1(t), λ2(t)} < s < max{λ1(t), λ2(t)}.
Then N is F-adapted and has conditional intensity |λ1(t) − λ2(t)|.
[In most cases, as in Proposition 7.5.I, the history will be that generated by the
Poisson process itself, but the generalization opens the way to conditioning on
external variables. See Brémaud and Massoulié (1996) and Massoulié (1998).]

7.5.2 Extension of thinning Algorithm 7.5.II. In the setup for Algorithm 7.5.II,
suppose that the xi are simulated from a process with conditional intensity
λ+(t) that satisfies a.s.

λ+(t) ≥ λ∗(t) (0 < t < T )

and that the thinning probability at time t is equal to the ratio λ∗(t)/λ+(t).
Show that the thinned process is again the point process with intensity λ∗(t).
[See Ogata (1981).]

7.5.3 Simulation algorithms for Boolean models. Devise a simulation procedure for
the Boolean model of Example 6.4(d) with a view to describing distributions
of functionals such as the intensity function or a joint intensity (‘correlation’).

7.5.4 Show how Algorithm 7.5.V can be applied to a pure linear birth process.

7.5.5 Simulation of cluster processes. Brix and Kendall (2002) describe a technique
for the perfect simulation of a cluster point process in a given region A (hence,
the simulations have no edge effects—this is an analogue of having no ‘burn-
in’ period). The crucial step is to replace the parent process Nc, say, by a
process which has at least one offspring point in the observation region.
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7.6. Information Gain and Probability Forecasts

We come now to the problem of assessing probability forecasts of the type
described in the previous section. A distinction needs to be made here between
assessing the probability forecast as such and assessing a decision procedure
based on the probability forecast. Commonly, when probability forecasts for
weather and other phenomena are being assessed, a threshold probability level
is established, and the forecast is counted as a ‘success’ if either the forecast
probability rises above the threshold level and a target event occurs within
the forecasting period or region or the forecast probability falls below the
threshold level and no event occurs. The assessment is then based on the 2×2
table of observed and forecast successes and failures, and a variety of scores
for this purpose have been developed and studied (see e.g. Shi et al., 2001). In
effect, such a procedure converts the probability forecast into a decision rule,
and it is the decision rule rather than the forecast that is assessed. In fact,
many decision rules can be based on the same probability forecast, depending
on the application in view. For example, in earthquake forecasts, one relevant
decision for a government might be whether or not to issue a public earthquake
warning; but other potential users, such as insurance companies, emergency
service coordinators, and managers of gas, power, or transport companies,
might prefer to initiate actions at quite different probability levels and would
therefore score the forecasts quite differently. Our concern is with assessing
the probability forecasts as such.

The basic criterion we shall use for this purpose is the binomial or entropy
score, in which the forecast is scored by the negative logarithm − log p̂k of the
forecast probability p̂k of the outcome k that actually occurs. If outcome k
has true probability pk of occurring, then a ‘good’ set of forecasts should have
p̂k ≈ pk for outcome k, and therefore the expected score is approximately
−
∑
k pk log pk, which is just the entropy of the distribution {pk} (up to a

multiplicative factor in not using logarithms to base 2). This leads us to a
preliminary discussion of the entropy of point process models, a study taken
further in Chapter 14. The entropy score itself, summed over a sequence of
forecasts based on a specific parametric model, is nothing other than the log
likelihood of the model. In this sense, the discussion highlights an alternative
interpretation of the likelihood principle. Maximizing the likelihood from
within a family of models amounts to finding the model with the best forecast
performance in the sense of the entropy score. Equally, testing the model on
the basis of its forecasting performance amounts to testing the model on the
basis of its likelihood. Other criteria, such as the goodness-of-fit of first- and
second-moment properties, may be less relevant to selecting a model for its
forecasting ability. In any case, the analysis and assessment of probability
forecasts is a topic of importance in its own right, and it is this point of view
that motivates the present discussion.

To bring some of the underlying issues into focus, consider first the simpler
problem of producing and assessing probability forecasts for a sequence of
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i.i.d. multinomial trials in which observation Yi, for i = 1, . . . , N , may have
one of K different outcomes 1, . . . ,K, say, with respective true probabilities
pk = Pr{outcome is k} = Pr{Yi = k} (the trials are i.i.d.) and

∑K
k=1 pk = 1.

Suppose that there is a record available of observations {Y1, . . . , YN} on N

independent trials, and write p̂k = N−1∑N
i=1 δYi k ≡ Nk/N for the sample

proportion of outcomes equal to k (k = 1, . . . ,K). What should be our
forecast for trial N + 1?

In accordance with our general prescription, the forecast should be in the
form of a set of probabilities based on an assumed model (i.e. a model for which
the underlying probabilities are assumed known). In this simple situation, it
is intuitively obvious that the {pk} are also the probabilities that we would
use to forecast the different possible outcomes of the next event. However, it is
also possible to base this choice on somewhat more objective grounds, namely
that our choice should maximize some expected score, suitably chosen.

Denote the candidate probabilities for the forecast by ak. In accordance
with the discussion above, we consider here the likelihood ratio score

SLR =
N∑
i=1

log
aYi

πYi

= N

K∑
k=1

p̂k log
ak
πk

, (7.6.1)

where {πk} is a set of reference probabilities. The use of the logarithm of
the ratio ak/πk rather than the simple logarithm log ak has two benefits: it
introduces a natural standard against which the forecasts using the given
model can be compared; and it overcomes dimensionality problems in the
passage from discrete to continuous contexts (Exercise 7.6.1 gives some further
discussion). This score function has the character of a skill score, for which
higher values show greater skills.

Taking expected values has the effect of replacing the empirical frequencies
p̂k by pk in the second form of (7.6.1). Elementary computations then show
that the score SLR is optimized by the choice ak = pk; i.e. the procedure that
optimizes the expected score is to use the model probabilities as the forecast-
ing probabilities. Specifically, the optimum values achieved by following the
procedure above are given by

E(SLR) = NH(P ; Π), (7.6.2)

where P , Π denote the distributions with elements pk, πk, respectively, and
H(·) is the relative or generalized entropy or Kullback–Leibler distance be-
tween the two distributions. The appearance of the entropy here should not
come as a surprise, as it is nothing other than the expected value of (minus)
a log probability, or more generally a log likelihood.

In terms of SLR, the distribution that is hardest to predict is the discrete
uniform distribution, which has maximum entropy amongst distributions on
K points. If we use the uniform as the reference distribution {πk}, the change
in the expected score as the model distribution moves away from the maximum
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entropy distribution will be referred to as the expected information gain. It
represents the improvement in the predictability of the model used relative
to the reference model. The greatest expected gains, corresponding to the
most effective predictions, will be achieved when the model distribution is
largely concentrated on one or a small number of distinguished values. The
ratio pk/πk of the model probability pk to the reference probability πk for any
particular distinguished value k is sometimes called the probability gain for k.

Now let us examine how these ideas carry over to the point process con-
text. We start with a discrete-time framework, such as would arise if the
forecasts were being made regularly, after the elapse of a fixed time interval
(weekly, monthly, etc.). We also assume that the process is marked, with the
marks taking one of the finite set of values {1, . . . ,K}. In effect, this merely
extends the discussion from the case of independent to dependent trials, with
the assumption that the trials are indexed by a time parameter so that the
evolutionary character is maintained. Alternatively, and more conveniently
for our purposes, we may consider the model as a multivariate point process
in discrete time.

Rather than using the sequence of marks Yn (n = 1, 2, . . .) as before, in-
troduce Xkn = δYnk, and let the K component simple point processes Nk(n)
count the number of points with mark k up to ‘time’ n, with Nk(0) = 0 for
each k, so Nk(n) =

∑n
i=1Xki.

An argument similar to that given previously shows that the forecasting
probability that optimizes the expected value of the score at step n, given
the history Hn−1 up to time n− 1, is p∗

kn = E(Xkn | Hn−1), where H is the
full history of the process, recording information on the marks as well as the
occurrence times. If, as a reference process, we take the process of i.i.d. trials
having fixed probabilities πkn = fk, then the total entropy score over a period
of T time units can be written

log
L

L0
=

T∑
n=1

K∑
k=1

Xkn log
p∗
kn

πkn
, (7.6.3)

which is just the likelihood ratio for the given process relative to the refer-
ence process. This formulation shows clearly that the total entropy score for
the multivariate process is the sum of the entropy scores of the component
processes. There is no implication here that the component processes are inde-
pendent; dependence comes through the joint dependence of the components
on the full past history.

In the case of a univariate process, for which the only possible outcomes
are 0 and 1, the formula in (7.6.3) simplifies to the binomial score

log
L

L0
=

T∑
n=1

[
Xn log

p∗
n

πn
+ (1−Xn) log

1− p∗
n

1− πn

]
. (7.6.4)

Equation (7.6.3) assumes a form closer to that used previously for the
likelihood of a multivariate point process if we reserve one mark, 0 say, for



7.6. Information Gain and Probability Forecasts 279

the null event; that is, the event that no event of any other type occurs. Let
us assume in addition that the ground process is simple, so that at most one
nonnull event can occur in any one time instant, and introduce the notations
p∗
n =

∑
k p

∗
kn for the conditional intensity of the ground process, f∗

k|n = p∗
kn/p

∗
n

for the conditional distribution of the mark, given the past history and the
occurrence of an event at n, and Xn =

∑K
k=1Xkn for the ground process

itself. Let us also choose the reference probabilities in the form πkn = fkπn
for k �= 0, π0n = 1 − πn, corresponding to a discrete-time analogue of a
continuous-time compound Poisson process. Then we can rewrite (7.6.3) as

log
L

L0
=

T∑
n=1

[
K∑
k=1

Xkn log
f∗
k|np

∗
n

fkπn
+ (1−Xn) log

1− p∗
n

1− πn

]

=
T∑
n=1

[
Xn log

p∗
n

πn
+ (1−Xn) log

1− p∗
n

1− πn
+

K∑
k=1

Xkn log
f∗
k|n
fk

]
. (7.6.5)

Taking expectations of the nth term, given the past up to time n−1, gives
the conditional relative entropy or conditional information gain

In =
K∑
k=1

p∗
kn log

p∗
kn

pkn
+ (1− p∗

n) log
1− p∗

n

1− pn

= p∗
n log

p∗
n

pn
+ (1− p∗

n) log
1− p∗

n

1− pn
+ p∗

n

K∑
k=1

f∗
k|n log

f∗
k|n
fk

. (7.6.6)

It is the conditional relative entropy of the nth observation, given the in-
formation available prior to the nth step. Note that this quantity is still a
random variable since it depends on the random past through the condition-
ing σ-algebra Hn−1. It reduces to the zero random variable when p∗

kn = πkn
but is otherwise positive, as follows from Jensen’s inequality. In the special
case of a univariate process, it reduces to

I∗
n = p∗

n log
p∗
n

πn
+ (1− p∗

n) log
1− p∗

n

1− πn
. (7.6.7)

The relation
E[(I∗

n + I∗
n−1) | Hn−1] = E(I∗

n | Hn−1) + I∗
n−1

yields the joint conditional entropy of Xn and Xn+1, given the information
available at the (n− 1)th step. Continuing in this way, we obtain

E

[
N∑
n=1

I∗
n

∣∣∣∣ H0

]
=

N∑
n=1

E
[
I∗
n | H0

]
= E

[
log

L

L0

∣∣∣∣ H0

]
, (7.6.8)

the joint entropy of the full set of observations, conditional on the information
available at the beginning of the observation period. Dividing this quantity
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by N , we obtain the average expected information gain per time step. This
quantity is of particular interest when the whole setup is stationary and the
expectations in (7.6.8) have the same value, namely the expected information
gain per unit time. We shall denote this quantity by G. In this situation,
we expect the log likelihood to increase roughly linearly with the number
of observations, with the expected increment being equal to G. To avoid
difficulties with transient effects near n = 0, the histories in the stationary case
should cover the infinite past rather than the past since some fixed starting
time. Following the notation in later chapters, write p†

n = E[Xn+1 | H(−∞,n]]
and set πn = E(p†

n) = E(Xn) = p, say. Then, G can be expressed as

G = E
[
p†
n log

p†
n

p
+ (1− p†

n) log
1− p†

n

1− p + p†
n

K∑
k=1

log
f†
k

fk

]
. (7.6.9)

The first term represents the information gain from the ground process and
the second the additional information gain that comes from predicting the
values of the marks, given the ground process. Overall, G represents the
expected improvement in forecasting skill, as measured by the entropy score,
if we move from using the background probabilities as the forecast to using
the time-varying model probabilities.
G ranges from 0, when the trials are i.i.d. and the model probabilities coin-

cide with those of the reference model, to a maximum when the model trials
are completely predictable, related to the absolute entropy of the indepen-
dent trials model. To see this last point, suppose, to take a specific case, that
the background model is for i.i.d. trials with equal probabilities 1/K for each
outcome. Now write G in the form

G = E

[[
p†
n log p†

n + (1− p†
n) log(1− p†

n)
]
−
[
p†
n log p+ (1− p†

n) log(1− p)
]

+ p∗
n

K∑
k=1

f†
k|n log

f†
k|n
fk

]
(7.6.10)

and suppose that with high probability, p†
n is close to either one or zero

and that one of the f†
k|n is also close to one, so that the process is highly

predictable. Then, both the first two terms in the first sum above are very
small, while in the second sum either p†

n itself is very small or it is close to
one and the remaining sum is close to the value − log(1/K). After taking
expectations, recalling E(p†

n) = p, G reduces to approximately −[p log p +
(1−p) log(1−p) +p log(1/K)], the absolute entropy of the independent trials
model with equal probabilities for each outcome. In general, the final term
will be of the form pE[log fk† ], where fk† is the background probability of the
outcome k† that is successfully predicted.

In summary, we have the following statement.
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Proposition 7.6.I. For a stationary, multivariate, discrete-time process,
with full internal history F , overall occurrence rate p, and background model
as defined above, G, the expected information gain per time step, is given by
(7.6.9) above. It is a characteristic of the model and lies in the range

0 ≤ G ≤ −[p log p+ (1− p) log(1− p) + pE(log fk†)],

where fk† is the background probability of the outcome k† that is successfully
predicted. G takes the lower end point of the range when the increments Xnk

are independent and the upper end point when perfect prediction is possible.

Example 7.6(a) Discrete Hawkes process: logistic autoregression. This model
defines a univariate process in which p∗

n has the general form

log
p∗
n

1− p∗
n

= a0 +
K∑
i=1

aiXn−i = a0 +
K∑
i=1

I{Xn−i=1}ai , (7.6.11)

where the ai are parameters and, to accommodate the stationarity require-
ment, F is taken to be the complete history H†, so that H†

n is generated by
the Xi with −∞ < i ≤ n.

For simplicity, we examine just the case of a first-order autoregression;
there are then just two parameters, a0 and a1, in 1 : 1 correspondence with
the probabilities π1|0 = Pr{Xn = 1 | Xn−1 = 0} and π1|1 = Pr{Xn = 1 |
Xn−1 = 1}, respectively. Three extreme cases arise. If π1|0 is close to 0
and π1|1 is close to 1, then a realization will consist of long sequences of 0s
followed by long sequences of 1s, and any prediction should approximate the
weatherman’s rule: tomorrow’s weather will be the same as today’s. If π1|1 is
close to 0 and π1|0 is close to 1, then the realization will be an almost perfect
alternation of 0s and 1s, and any prediction rule should approximate the anti-
weatherman’s rule: tomorrow’s weather will be the opposite of today’s. In
the third case, π1|0 and π1|1 are both close to 1

2 , and the sequence will consist
of more or less random occurrences of 0s and 1s, and no good prediction rule
will be possible.

To examine such effects quantitatively, let us choose the parameters a0, a1
so that π1|0 and π1|1 can be written

π1|0 = ε , π1|1 = 1− ρε .

The stationary probability p solves the equation p = pπ1|1 + (1 − p)π1|0 so
p = 1/(1 + ρ). Thus, the parameter ε controls the mean length of runs of
the same digit, and the parameter ρ controls the relative probabilities of 0s
and 1s. We examine the behaviour of the predictions for small ε. When
Xn−1 = 0, we take as our prediction p∗

n = π1|0 = ε, and when Xn−1 = 1 we
take p∗

n = π1|1 = 1− ρε.
The information gain when Xn−1 = r for r = 0, 1 is then

Jr = π1|r log
π1|r
p

+ (1− π1|r) log
1− π1|r

1− p .
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The expected information gain per forecast isG = pJ1+(1−p)J0. Substituting
for π1|0, π1|1 and p, we find that, for small ε,

G = Hp + 2ρε log ε+O(ε),

where Hp is as in Proposition 7.6.I. As ε decreases, the expected information
gain approaches Hp, whereas if ε = 1/(1 + ρ), then π1|0 = π1|1 = 1/(1 + ρ)
and G = 0.

We have stressed that the expected information gain is a function of the
model: it is an indicator of its inherent predictability. In practice, other factors
may intervene to produce an observed mean information gain that is well
below that predicted by the model. This may happen, in particular, if the data
are being fitted by a poor model. There would then be substantial long-run
discrepancies between the actual data and the data that would be produced
by simulation from the model. In such a case, the average information gain
over a long sequence of trials could be well below the expected model value. In
this sense, the mean information gain, representing the average likelihood per
observation, forms the basis for a kind of goodness-of-fit test for the model.

We turn now to the problem of transferring these ideas to the continuous-
time, point process context. In practice, forecasts cannot be issued continu-
ously but only after intervals of greater or smaller length. We therefore adopt
the following framework.

Suppose there is given a finite interval (0, T ) and a partition T into subin-
tervals {0 < tT ,1 < · · · < tT ,N = T}. Forecasts are to be made at the end of
each subinterval (i.e. at the time points {tT ,k}) for the probability of an event
occurring in the next subinterval. Suppose further that the given partition
is a member of a dissecting family of partitions Tn in the sense of Appendix
A1.6: as n → ∞, the norm ‖T ‖ = max |tT ,k − tT ,k−1| → 0 so that the par-
titions ultimately distinguish points of (0, T ), and the intervals appearing in
the partitions are rich enough in total to generate the Borel sets of (0, T ).
Our aim is to relate the performance of the forecasts on the finite partition
to the underlying properties of the point process.

For this purpose, Lemmas A1.6.IV, on convergence to a Radon–Nikodym
derivative, and A1.6.V, on the relative entropy of probability measures on
nested partitions, play a key role. To apply these lemmas, we must relate
the partitions of the interval (0, T ) to the partitions of the measurable space
(Ω, E) on which the probabilities are defined. Here it is enough to note that
a partition of the interval into N subintervals induces a partition of (Ω, E)
into the (K + 1)N events corresponding to all possible sequences obtained by
noting whether or not the subinterval contains a point of the process and, if
so, noting the mark of the first point occurring within the subinterval.

From Lemma A1.6.IV, it follows that, as the partitions are refined, the
probability gains p∗

nk/πnk converge (P × �)-a.e. to the corresponding ratio of
intensities λ∗(t, k)/λ0(t, k). Lemma A1.6.V then implies that the correspond-
ing relative entropies increase to a limit bounded above by the point process
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relative entropy. The latter can be obtained directly by taking expectations
of the point process likelihood ratio. Specifically, starting from the MPP log
likelihood ratio at (7.6.5), taking expectations when the reference measure
corresponds to a compound Poisson process with constant rate λ0 and mark
distribution fk, the relative entropy H(PT ;P0,T ) equals

E

[
K∑
k=1

∫ T

0
λ∗(t, k) log

λ∗(t, k)
λ0fk

dt−
∫ T

0
[λ∗

g(t)− λ0] dt

]
(7.6.12)

= E
[ ∫ T

0
λ∗

g(t) log
λ∗

g(t)
λ0

dt−
∫ T

0
[λ∗

g(t)− λ0] dt

+
∫ T

0
λ∗

g(t)
K∑
k=1

f∗
k (t) log

f∗
k (t)
fk

dt
]
, (7.6.13)

where λ∗
g(t) is the conditional intensity for the ground process.

A proof of this result for the univariate case when H is the internal history
and the likelihood reduces to the Janossy density is outlined in Exercise 7.6.3.
The general case, as well as a more complete discussion of the convergence of
the p∗

nk to λ∗(t, k), is taken up in Chapter 14.
When the process is stationary and λ∗ is replaced by λ† (i.e. the condition-

ing is taken with respect to the infinite past), the relative entropy in (7.6.12)
reduces to a multiple of T . If further we assume that λ0 = E[λ†

g(0)] ≡ mg,
then (7.6.12) can be written

H(PT ;P0,T ) = T

(
E
[
λ†

g(0) log
λ†

g(0)
λ0

]
+mgE

[
K∑
k=1

log
f†
k|0
fk

])
. (7.6.14)

Again, we can write G for the coefficient of T and refer to it as the mean
entropy or expected information gain per unit time. It is worth noting that
here G can be written in the two alternative forms

G = E
[
λ†

g(0) log
λ†

g(0)
λ0

]
+mgE

[
K∑
k=1

log
f†
k|0
fk

]
=

K∑
k=1

E
[
λ†
k(0) log

λ†
k(0)
λk

]
,

where λ†
k(0) = λ†

g(0)f†
k|0 and λk = mgfk. The first form represents a division

of the information gain into components due to forecasting the occurrence
times of the points and their marks, while the second represents a division of
the information gain into components corresponding to the individual marks.
This equality does not hold in general for the approximating discrete-time
processes because the two forms then correspond to different ways of scoring
situations where more than one point of the process falls into a single time
step.

As in the discrete case, the quantity G is a characteristic of the model. It
represents an upper bound to the expected information gains per unit time
that could be obtained from any approximating discrete model. The results
are summarized in the proposition below.
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Proposition 7.6.II. Let N(t, κ) be a stationary regular MPP, let

λ†(t, κ) dt = λ†
g(t)f†

κ|t dt = E[dtN(t, κ) | H†
t−]

denote its complete H†-conditional intensity, and suppose that

G = E
[
λ†

g(0) log
λ†

g(0)
mg

]
<∞,

where mg = E[λ†
g(0)]. If T is any finite partition of the interval (0, T ) and GT

the associated average expected information gain per unit time, then GT ≤ G
and, as Tn increases through any nested sequence of partitions generating the
Borel sets in (0, T ), GTn ↑ G† ≡ limn→∞GTn ≤ G.

Proof. The result follows from further applications of Lemmas A1.6.IV and
A1.6.V, but a formal proof requires a more careful discussion of conditioning
and predictability than given here and is deferred to Chapter 14.

Since G here is a property of the model, it can be evaluated analytically
or numerically (by simulation). The model value of G can then be compared
with the mean likelihood T−1 logL obtained by applying the model to a set
of data, this latter being just the mean entropy score per unit time for the
given model with the given data. If the model is close to the true model for
the data, the estimate of G obtained in this way should be close to the model
G. When the data do not match the model well, the predictive power of the
model should be below that obtained when the model is applied to matching
data and hence below the theoretical G of the model. In such a situation, the
estimated G from the likelihood will generally come out well below the true
G of the model (as well as below the unknown G of the true model). The
difference between the model and estimated values of G can therefore serve as
a basis for model testing and is in fact so used in contingency table contexts,
corresponding roughly to the discrete time-models considered earlier in this
section.

Some of these points are illustrated in the following two examples.

Example 7.6(b) Renewal process. Consider a stationary renewal process with
interval distribution having density f(x), assumed at least left-continuous.
Then

λ†(t) = f(Bt)/S(Bt),

where Bt has the distribution of a stationary backward recurrence time. For
the mean rate and the expected information gain per unit time, we obtain,
respectively,

m = E[λ†(t)] = E
[
f(Bt)
S(Bt)

]
,

G = E
[
λ†(t) log

λ†(t)
m

]
= E
[
f(Bt)
S(Bt)

log
f(Bt)
mS(Bt)

]
, (7.6.15)
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the two expectations on the extreme right-hand sides being with respect to
the distribution of Bt, which has density

∫∞
y
f(u) du

/
µ, where µ is the mean

interval length [see (4.2.5) or Exercise 3.4.1]. Substituting and simplifying,
we find m = 1/µ and

G = m

[
1 +
∫ ∞

0
f(y) log

f(y)
m

dy
]
. (7.6.16)

The same result can be obtained from the general result that, for a sta-
tionary process, the expected information gain per unit time is just m times
the expected information gain per interval, where the latter is defined to be

GI = E
[ ∫ ∞

0
f†(x) log

f†(x)
f0(x)

dx
]
,

with f†(x) the density of the distribution of an interval given the history up to
its start, and f0(x) is the density of an interval under the reference measure.
Here, given m, the exponential distribution with mean 1/m has maximum
entropy so we take f0(x) = me−mx in the expression above, corresponding
precisely to the choice of the Poisson process with rate m used in the counting
process description.

Now suppose that probability forecasts are made for a forecasting period
of length ∆ ahead. The probability of an event occurring in the interval
(t, t+ ∆), given the past history F†

t , is given by

p∗(∆ | X) =
[
S(X)− S(X + ∆)

]/
S(X),

say, where S(x) is the survivor function for the interval distribution, and X is
the backward recurrence time. In the stationary case, writing p0 = 1− e−m∆

and taking expectations with respect to the stationary form of the backward
recurrence time distribution, we consider the quantity

G∆ = E[I∆ | H†
t ]

=
1
∆

E
[
p∗(∆ | X) log

p∗(∆ | X)
p0

+ [1− p∗(∆ | X)] log
1− p∗(∆ | X)

1− p0

]
.

(7.6.17)
It represents the average expected information gain for forecasts of length ∆,
is independent of t and can be shown to satisfy G∆ ≤ G = lim∆→0G∆. See
Exercise 7.6.4 for details and some numerical illustrations.

The next model both illustrates the ideas of Proposition 7.6.II in a relatively
simple context and adds a cautionary note to the discussion of probability
forecasts for point processes.

Example 7.6(c) Marked Hawkes process with exponential infectivity function
[see Example 7.3(b)]. Consider an MPP with complete conditional intensity
of the form
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λ†(t, κ) =
[
µ0 +

∑
{i:ti<t}

ψ(κi)βe−β(t−ti)
]
f(κ).

In common with the ETAS model where the marks κ are commonly denoted
by M for magnitudes, it has unpredictable marks, and its ground intensity is
just the term in square brackets above. The ground intensity can be written
in the form

λ†
g(t) = µ0 +A(t), A(t) =

∑
{i:ti<t}

ψ(κi)βe−β(t−ti).

Now, although the sum defining A(t) goes back into the indefinite past, in
fact it is a Markov process, its future evolution depending only on its present
value (discounted exponentially in the gaps between events) and the sizes of
future events that are chosen independently of the past.

Thus E[A(t)] = mg(1− µ0) and

G = E
[(
µ0 +A(t)

)
log

µ0 +A(t)
m

]
are both fully determined once the equilibrium distribution for the Markov
process A(t) is determined. In this example, the observed performance of
predictions based on the true model is likely to be worse than predictions
based on a Poisson process with the same mean rate m. This is because the
rate in intervals between points is assessed as µ0 by the model and as m by
the Poisson process. When an event occurs, however, it is likely to be followed
by several others within the same prediction interval, all of which are likely to
be scored (badly). In fact, this is one example where the distinction between
the scores SLR at (7.6.1) and SQ at Exercise 7.6.1 makes a crucial difference
in the estimation of the performance of the model. A related example with
numerical details from simulations is given in Vere-Jones (1999).

Exercises and Complements to Section 7.6
7.6.1 As a possible alternative to the likelihood score SLR in (7.6.1) for assessing

probability forecasts, define the quadratic score SQ by

SQ =
N∑
i=1

[ K∑
k=1

(δXi,k − ak)2
]

= N

[
1 − 2

K∑
1

p̂kak +
K∑
1

(ak)2
]
.

Show that, just as for SLR, the optimal result is achieved by using the model
probabilities as the forecast probabilities. Show also that when these proba-
bilities are used, E(SQ) = N [1 −K−1 − var pX ], where var pX =

∑
(pk − p̄)2

and p̄ =
∑

pk/K = 1/K.

7.6.2 (Continuation). Consider the effect on SQ of the limit procedure that passes
from a discrete probability to a continuous density. How should a reference
measure be introduced so as to secure a meaningful passage to a limit?
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7.6.3 Entropy of a regular finite point process.
(a) For a regular finite point process, define the point process entropy H(P)

as the expected value E[log(L/L0)] of the likelihood ratio. Express L in
terms of Janossy densities, and use the representation (i) of Theorem 5.3.II
to show (see Rudemo, 1964; McFadden, 1965) that H(P) equals

−
∑
k

pk log pk −
∑
k

∫
πsym
k (x1, . . . , xk) log[k!πk(x1, . . . , xk)] dx1 · · · dxk ,

where pk = Pr{N(X ) = k}.
(b) Now take X to be the interval (0, T ) and represent the Janossy densities

in terms of hazard functions and hence the internal conditional intensity.
Hence, derive (7.6.14).

7.6.4 Forecasts for renewal processes [see Example 7.6(b)].
(a) Recall that the backward recurrence time has density mS(x) in the nota-

tion of Example 7.6(b). Hence, simplify the expectation in (7.6.17) and
verify the inequality for G∆ using a convexity argument.

(b) Uniformly distributed intervals. Examine the special case

S(x) =

{
1 − x (0 < x < 1),

1 (x ≥ 1).

Substitute in (7.6.15) and (7.6.16) and investigate the result in (a) numer-
ically.

7.6.5 Information gain for the Wold process with exponential intervals [see Exercise
4.5.8 and Example 7.5(c)]. Using the earlier notation, show that the informa-
tion gain per unit time can be expressed as

G = E

(
log

λ0

λ(X)

)
,

where the expectation is over the stationary distribution for an interval length
X, and λ0 = 1/E(X).



CHAPTER 8

Second-Order Properties of
Stationary Point Processes

Second-order properties are extremely important in the statistical analysis of
point processes, not least because of the relative ease with which they can be
estimated in both spatial and temporal contexts. However, there are several
shortcomings when compared with, for example, the second-order properties
of classical time series. There are ambiguities in the point process context as to
just which second-order aspects of the process are in view. The second-order
properties of the intervals, in a point process on R, are far from equivalent
to the second-order properties of the counts, as already noted in Chapter 3
and elsewhere. In this chapter, our concern is solely with random measure or
counting properties, broadly interpreted.

A more important difficulty, however, is that the defining property of a
point process—that its realizations are integer-valued measures—is not clearly
reflected in properties of the moment measures. It does imply the presence
of diagonal singularities in the moment measures, but this property is shared
with other random measures possessing an atomic component. Nor does there
seem to exist a class of tractable point processes, analogous to Gaussian pro-
cesses, whose second-order properties are coextensive with those of point pro-
cesses in general. Indeed, there are still open questions concerning the class
of measures that can appear as moment measures for point processes or for
random measures more generally. Gibbs processes defined by point–pair inter-
actions come close to the generality required for a Gaussian process analogue
but have neither the same appeal nor the same tractability as the Gaussian
processes. Other examples, such as Hawkes processes, also come close to this
role without fulfilling it entirely. Ultimately, these problems are related to the
nonlinearity of key features of point processes such as positivity and integer
counts. Thus, the second-order theory, with its associated toolkit of linear

288
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prediction and filtering methods, although still important, is of less general
utility for point processes than for classical time series.

Nevertheless, it seems worthwhile to set out systematically both the as-
pects of practical importance and their underpinning mathematical proper-
ties. Such a programme is the aim of the present chapter, which includes a
discussion of both time-domain and frequency-domain techniques for second-
order stationary point processes and random measures. Deeper theoretical
issues, such as ergodicity, the general structure of moment measures for sta-
tionary random measures, and invariance under wider classes of transforma-
tions, are taken up in Chapter 12. Spatial processes are treated briefly here,
reappearing in Chapters 12 and 15.

To avoid encumbering the main text with tools and arguments that are
hardly used elsewhere in the book, the main technical arguments relating to
the Fourier transforms of second-moment measures are placed in the final
section, Section 8.6.

We shall assume throughout the chapter that the basic point processes are
simple. For multivariate and marked point processes, we take this to mean
that the ground process is simple. As we have already remarked in Chapter
6, there is no significant loss of generality in making this assumption since the
batch size in a nonsimple point process can always be treated as an additional
mark and the properties of the original process derived from those for marked
point processes.

8.1. Second-Moment and Covariance Measures
Second-order properties of stationary processes have already made brief ap-
pearances in Section 3.5 and Proposition 6.1.I. Here we take as our starting
point the second and third properties listed in Proposition 6.1.I. For the pur-
poses of this chapter, these can be restated as follows.

Proposition 8.1.I (Stationary random measure: Second-order moment
structure). Let ξ be a stationary random measure on X = R

d for which
the second-order moment measure exists.
(a) The first-moment measure M1(·) is a multiple of Lebesgue measure �(·);

i.e. M1(dx) = m�(dx) for a nonnegative constant m, the mean density.
(b) The second-moment measure M2(·) is expressible as the product of a

Lebesgue component �(dx) along the diagonal x = y and a reduced mea-
sure, M̆2(du) say, along u = x − y, or in integral form, for bounded
measurable functions f of bounded support,∫

X (2)
f(s, t)M2(ds× dt) =

∫
X

∫
X
f(x, x+ u) �(dx) M̆2(du). (8.1.1a)

In particular, by taking f(x, y) = IUd(x)IB(y − x),

M̆2(B) = E
[ ∫

Ud

ξ(x+B) ξ(dx)
]
. (8.1.1b)
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A point process or random measure for which the first- and second-moment
measures exist and satisfy (a) and (b) of Proposition 8.1.I will be referred to
as being second-order stationary. We should note, however, that a point
process for which the first- and second-order moments satisfy the stationarity
assumptions above is not necessarily stationary: nonstationary processes can
have stationary first and second moments (see Exercises 8.1.1 and 8.1.2).

We retain the accent ˘ to denote reduced measures formed by dropping
one component from the moment measures of stationary processes as a con-
sequence of a factorization of the form (8.1.1). Thus, M̆[2](·), C̆2(·), and
C̆[2] stand, respectively, for the reduced forms of the second factorial moment
measure, covariance measure, and factorial covariance measure. A proof of
such factorization can be based on the observation that, under stationarity,
M2(dx,d(x+u)) is independent of x and so should have the form �(dx)×Q(du)
for some measure Q(·); see Chapter 12 and Proposition A2.7.III for details
and background.

Our principal aim in this section is to study the properties of these reduced
measures and the relations between their properties and those of the point
processes or random measures from which they derive. We start with a dis-
cussion of M̆2, which is arguably the most fundamental if not always the most
convenient of the various forms.

Proposition 8.1.II. Let M̆2(·) be the reduced second-moment measure of
a nonzero, second-order stationary point process or random measure ξ on R

d

with mean density m. Then M̆2 is
(i) symmetric: M̆2(A) = M̆2(−A) ;

(ii) positive: M̆2(A) ≥ 0, with strict inequality at least when 0 ∈ A and
either ξ has an atomic component or A is an open set;

(iii) positive-definite: for all bounded measurable functions ψ of bounded
support, ∫

Rd

(ψ ∗ ψ∗)(x) M̆2(dx) ≥ 0 , (8.1.2)

where
ψ ∗ φ(x) =

∫
Rd

ψ(y)φ(x− y) dy, ψ∗(x) = ψ(−x);

(iv) translation-bounded: for every bounded Borel set A in R
d, there exists a

finite constant KA such that

M̆2(x+A) ≤ KA (all x ∈ R
d). (8.1.3)

If also ξ is ergodic and the bounded convex Borel set A increases in such a
way that r(A) = sup{r:A ⊇ Sr(0)} → ∞, where Sr(0) denotes the ball in R

d

of radius r and centre at 0, then in this limit, for all bounded Borel sets B,

M̆2(A) / �(A)→ m2 (8.1.4)
and

1
�(A)

∫
A

ξ(x+B) ξ(dx)→ M̆2(B) a.s. (8.1.5)
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Proof. Symmetry follows from the symmetry of M2 so that, in shorthand
form,

M̆2(du) �(dx) = M2
(
dx× d(x+ u)

)
= M2

(
d(x+ u)× dx

)
= M2

(
dy × d(y − u)

)
= M̆2(−du) �(dy),

which establishes (i). Nonnegativity of M̆2(A) follows directly from (8.1.1b).
Positivity for A � 0 when ξ has an atomic component follows from Proposition
8.1.IV below, while for the other case, since A is open so that A ⊇ S2ε(0) for
some sphere of radius 2ε > 0, we can choose ε < 1

2 and then

M̆2
(
A
)
≥ M̆2

(
S2ε(0)

)
= E

[ ∫
Ud

ξ
(
x+ S2ε(0)

)
ξ(dx)

]
≥ E
[ ∫

Sε(0)
ξ
(
S2ε(x)

)
ξ(dx)

]
since U

d ⊃ Sε(0),

≥ E
[ ∫

Sε(0)
ξ
(
Sε(0)

)
ξ(dx)

]
since S2ε(x) ⊃ Sε(0) for x ∈ Sε(0),

= M2
(
Sε(0)× Sε(0)

)
≥
[
m�
(
Sε(0)

)]2
> 0 since ε > 0.

Positive-definiteness is a consequence of

0 ≤ E
(∣∣∣∣ ∫

X
ψ(x) ξ(dx)

∣∣∣∣2) =
∫

X

∫
X
M̆2(du)ψ(x)ψ(x+ u) �(dx)

=
∫

X
M̆2(du)

∫
X
ψ∗(u− w)ψ(w) �(dw).

Properties (ii) and (iii) together show that M̆2 is a positive, positive-definite
(p.p.d.) measure; (iv) is then a consequence of general properties of p.p.d.
measures, as set out in Section 8.6.

The final two assertions follow from the ergodic theorems developed in
Chapter 11. In particular, a simple form of ergodic theorem for point processes
and random measures ξ on R

d asserts that, for sets A satisfying the conditions
outlined in (v), as r(A)→∞, ξ(A)/�(A)→ m a.s. and in L1-norm. If second
moments exist, then also E

∣∣ξ(A)/�(A)−m
∣∣2 → 0. From these results, it is easy

to show that provided both r(A) and r(B) → ∞, M2(A × A)/[�(A)]2 → m2

and, more generally, M2(A×B)/[�(A)�(B)]→ m2. Approximating further, we
find that M2(U)/(�× �)(U)→ m2 for a wide class of sets U ∈ X (2) including
cylinder sets such as U(A, r) = {(x, u):x ∈ A, y ∈ x+ Sr(0)}. But∫

U(A,r)
M2(ds× dt) =

∫
Sr(0)

�(du)
∫
A

M̆2(dv) = �
(
Sr(0)

)
M̆2(A),

and so (8.1.4) follows after dividing by (�× �)
(
U(A, r)

)
= �(A)�

(
Sr(0)

)
.

Equation (8.1.5) can be established by similar arguments and is a simple
special case of the higher-order ergodic theorems described in Chapter 11.
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Most of the results above transfer directly or with minor modifications to
the other reduced second-order measures. The most important of these is the
reduced covariance measure, which can be defined here through the relation

C̆2(du) = M̆2(du)−m2 �(du). (8.1.6)

The covariance measure itself can be regarded as the second-moment measure
of the mean-corrected random signed measure

ξ̃(A) ≡ ξ(A)−m�(A); (8.1.7)

note that ξ̃ is a.s. of bounded variation on bounded sets. The reduced form
inherits the following properties from M̆2(·).
Corollary 8.1.III. The reduced covariance measure C̆2(·) of a second-order
stationary random measure ξ is symmetric, positive-definite, and translation-
bounded but in general is a signed measure rather than a measure. If ξ is
ergodic, then for A, B and r(A)→∞ as for (8.1.5), and ξ̃ in (8.1.7),

C̆2(A)/�(A)→ 0, (8.1.8)
1

�(A)

∫
A

ξ̃(x+B) ξ̃(dx)→ C̆2(B) = E
[ ∫

Ud

ξ̃(x+B) ξ̃(dx)
]
. (8.1.9)

For point processes, a characteristic feature of the reduced forms of both
the moment and covariance measures is the atom at the origin. For a simple
point process, this is removed by transferring to the corresponding reduced
factorial measures M̆[2](·) and C̆[2](·). This is not the case, however, for more
general point processes and random measures. The situation is summarized in
the proposition below and its corollary (see also Kallenberg, 1983, Chapter 2).

Proposition 8.1.IV. Let ξ be a stationary second-order random measure
or point process on R

d with mean density m and reduced covariance measure
C̆2. Then C̆2(du) has a positive atom at u = 0 if and only if ξ has a nontrivial
atomic component, in which case C̆2({0}) = M̆2({0}) and both equal

E
[ ∫

Ud

ξ({x}) ξ(dx)
]

= E

[ ∑
i:xi∈Ud

[ξ({xi})]2
]
. (8.1.10)

Moreover, there exists a σ-finite measure µ(·) on R+ such that
(i) µ has finite mass outside any neighbourhood of the origin, and for every

b > 0, the atoms of ξ with mass greater than b can be represented as
a stationary marked point process on X × R+ with ground rate µ(b,∞)
and stationary mark distribution Πb(dκ) = µ(dκ]/µ(b,∞) on κ > b;

(ii) µ(·) integrates κ on R+, and
∫

R+
κµ(dκ) ≤ m;

(iii) ξ is purely atomic a.s. if and only if m =
∫

R+
κµ(dκ); and

(iv) µ(·) integrates κ2 on R+, and
∫

R+
κ2 µ(dκ) = M̆2({0}) = C̆2({0}).
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Proof. Choose any monotonically decreasing sequence of nonempty sets An
with diamAn ↓ 0 and An ↓ {0}. Then, for any x ∈ X , ξ(x+An) ↓ ξ({x}) a.s.
From (8.1.1b) and monotone convergence, we obtain

M̆2(An) = E
[ ∫

Ud

ξ(x+An) ξ(dx)
]
↓ E
[ ∫

Ud

ξ({x}) ξ(dx)
]

= E

[ ∑
xi∈Ud

ξ({xi})2
]
.

In particular, if ξ is a.s. continuous, it follows that both M̆2 and C̆2 are
continuous at the origin, and conversely.

Suppose next that b > 0 is given, and consider the atoms from ξ with
masses ξ({x}) > b. If ξ is second-order stationary, there can be at most a
finite number of such atoms in any finite interval. The set of such atoms is
therefore denumerable and can be represented as an ordered sequence of pairs
{(xi, κi)}, where xi < xj for −∞ < i < j < ∞ and b < κi = ξ({xi}). As in
Section 6.4, equation (6.4.6), the set of pairs therefore constitutes a marked
point process, which we denote by ξb(·).

Let mg
b and Πb(·) denote, respectively, the mean density of the ground

process for ξb and its stationary mark distribution. Consistency of the ergodic
limits requires that for b′ < b and B ⊆ (b,∞),

mg
b′Πb′(B) = mg

bΠb(B) ≡ µ(B). (8.1.11)

This relation therefore defines µ consistently and uniquely as a σ-finite mea-
sure on all of R+. Taking B = (b,∞) in (8.1.11) then implies that µ(b,∞) =
mg
b <∞, establishing (i). Moreover, the mean density of ξb, mb say, is given

by

mb = mg
b

∫ ∞

b

κΠb(dκ) =
∫ ∞

b

κµ(dκ) =
∫ ∞

0
κI{κ>b} µ(dκ) .

Since mb ≤ m <∞ and for any A, ξb(A) ↑ ξa(A) as b→ 0, where ξa denotes
the atomic component of ξ, we must have mb = E

(
ξb(Ud)

)
↑ E
(
ξa(Ud)

)
≡

ma ≤ E(ξ(Ud)) ≡ m as b→ 0. Hence,

ma = lim
b→0

∫ ∞

0
κI{κ>b} µ(dκ) =

∫ ∞

0
κµ(dκ),

establishing (ii). Assertion (iii) is the same as the diffuse measure ξ − ξa
having zero mean, implying that it is a.s. null.

Finally, for any b > 0, consideration of the second moment of ξb yields the
equations

mg
b

∫ ∞

b

κ2 Πb(dκ) =
∫ ∞

b

κ2 µ(dκ) = E

[ ∑
xi∈Ud : ξ({xi})>b

[ξ({xi})]2
]
.

Since the right-hand side is bounded above by M̆2({0}) < ∞ and converges
to M̆2({0}) as b→ 0, (iv) follows.
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Condition (iii) above identifies purely atomic stationary random measures
(see also Kallenberg, 1983). We would like to be able to use some property of
µ to identify point processes (i.e. integer-valued random measures) and then
simple point processes. The former identification is tantamount to a version
of the moment problem: when do the moments of a measure [here µ(·)] suffice
to identify the measure? This has no easy solution for our present purposes.
The latter is much simpler.

Corollary 8.1.V. A second-order stationary point process N with density
m is a simple point process if and only if C̆2({0}) = M̆2({0}) = m, which
is equivalent to the reduced second-order factorial moment and covariance
measures having no atom at the origin.

Proof. A stationary random measure ξ is a simple point process if and only
if it is integer-valued and all its atoms have mass 1. The latter condition
is satisfied if and only if

∫∞
1 κµ(dκ) =

∫∞
1 κ2 µ(dκ); i.e. µ has all its mass

on {1}, or equivalently, m = M̆2({0}). The equivalent form of the latter
condition follows from the relation M̆[2]({0}) = M̆2({0})−m.

Analytical derivations of the relations for
∫
κr µ(dκ) for positive integers r

and stationary point processes have been given in Propositions 3.3.VIII and
3.3.IX. In Chapter 12, there is an analogue of Corollary 8.1.V for a higher-
order reduced factorial measure of a stationary point process to vanish at {0}
as a condition for the process to have a bounded batch-size distribution or
equivalently the factorial moment of the same order of µ(·) to vanish.

Returning to more general properties, results such as (8.1.4) and (8.1.8)
can be rephrased in further equivalent ways. When X = R, for example, they
reduce respectively to

E[ξ2(0, x)] ∼ m2x2 , var ξ(0, x) = o(x2) (x→∞),

results already discussed for ergodic point processes in Section 3.4.
Other useful results follow as special cases of the general representations

(8.1.1). These imply, for example, that

cov
[ ∫

Rd

g(x) ξ(dx),
∫

Rd

h(y) ξ(dy)
]

=
∫

Rd

C̆2(du)
∫

Rd

g(x)h(x+ u) �(dx).

(8.1.12)
In particular, (8.1.12) leads to the following expressions for the variance:

V (A) ≡ var ξ(A) =
∫

Rd

∫
Rd

IA(x)IA(x+ u) �(dx) C̆2(du)

=
∫

Rd

IA(x) �(dx)
∫

Rd

IA−x(u) C̆2(du)

=
∫
A

C̆2(A− x) �(dx). (8.1.13a)
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When X = R and A = (0, x], this becomes

V (x) ≡ var ξ(0, x] =
∫ x

−x
(x− |u|) C̆2(du) = 2

∫ x

0−
Fc(u) du, (8.1.13b)

where for x > 0, Fc(x) = 1
2 C̆2({0}) + C̆2(0, x] = 1

2 C̆2[−x, x] is a symmetrized
form of the distribution function corresponding to the reduced covariance
measure. Properties of V (x) can be read off rather simply from this last rep-
resentation: for example, it is absolutely continuous with a density function of
which there exists a version that is continuous except perhaps for a countable
number of finite discontinuities. Further details and an alternative approach
in the point process case are outlined in Exercise 8.1.3. Note that, when it
exists, the covariance density is a second derivative in (0,∞) of V (x). See
Exercise 8.1.4 for an analogue of (8.1.13b) in the case of a stationary isotropic
point process in R

2.
The variance function V (A) is widely used in applications, often in the

form of the ratio to the expected value M(A); for a simple point process, this
is just

V (A)
M(A)

=

∫
A
C̆2(A− x) �(dx)

M(A)
= 1 +

∫
A
C̆[2](A− x) �(dx)

m�(A)
. (8.1.14)

This ratio equals 1 for a Poisson process, while values larger than 1 indicate
clustering and values less than 1 indicate repulsion or some tendency to regular
spacing. For suitably small sets, for which diamA → 0, V (A)/M(A) → 1;
that is, locally the process is like a Poisson process in having the variance-to-
mean ratio ≈ 1 (see Exercise 8.1.5). As �(A) → ∞, various possibilities for
the behaviour of V (A)/M(A) exist and are realizable (see Exercise 8.1.6), but
most commonly, the covariance measure is totally finite, in which case

V (A)/M(A)→ 1 +m−1C̆[2](X ) (A ↑ X ).

A stationary random measure is of bounded variability if V (A) itself re-
mains bounded as �(A)→∞ as for (8.1.5) [see Exercises 7.2.10(a) and 8.1.6].
[This terminology is preferred to controlled variability (Cox and Isham, 1980,
p. 94).]

Example 8.1(a) Stationary Poisson cluster processes. For a stationary Pois-
son cluster process and all values of the cluster centre x, monotone convergence
shows that the cluster member process satisfies

M[2](An ×An | x) → E[Z(Z − 1)]

as �(An) → ∞ through a convex averaging sequence {An}, where Z ≡
Nm(X | 0) denotes a generic r.v. for the total number of points in a clus-
ter. Then, since (6.3.12) for large A gives C[2](A×A) ∼ E[Z(Z − 1)]M c(A),
we have C̆[2](X ) = E[Z(Z − 1)] and thus

V (A)/M(A)→ 1 + E[Z(Z − 1)]/EZ = EZ2/EZ. (8.1.15)
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Characteristically, therefore, the variance-to-mean ratio for a Poisson cluster
process increases from a value approximately equal to 1 for very small sets
to a limiting value equal to the ratio of the mean square cluster size to the
mean cluster size for very large sets [see the formula for the compound Poisson
process in Exercise 2.1.8(b)]. The region of rapid growth of the ratio occurs
as A passes through sets with dimensions comparable to those of (the spread
of) individual clusters.

These comments provide the background to diagnostic procedures such as
plotting the ratio V (A)/M(A) against M(A) or �(A) as �(A)→∞ and to the
Greig-Smith method of nested quadrats, which uses a components-of-variance
analysis to determine the characteristic dimensions at which clustering ef-
fects or local inhomogeneities begin to influence the variance [see Greig-Smith
(1964) for further discussion].

The representation (8.1.1b) has important interpretations when ξ is a point
process rather than a general random measure, and for the discussion in this
section we assume that the process is orderly. In particular, it follows in this
case that

M̆2(A) = E
[
#{point-pairs (xi, xj):xi ∈ U

d and xj ∈ x1 +A}
]

(8.1.16a)

= E
[
rate of occurrence of point-pairs (xi, xj): xj − xi ∈ A

]
. (8.1.16b)

Dividing by the mean density (= intensity = average rate of occurrence) m
yields an interpretation of M̆2 in terms of the expectation measure of the
Palm process (see Section 3.4 and the discussion in Chapter 13) obtained by
conditioning on the presence of a point at the origin:

E
[
#points xi ∈ A | point at x = 0

]
= M̆2(A) /m. (8.1.17)

It is even more useful to have density versions of (8.1.17), assuming (as we
now do) that M̆[2] is absolutely continuous, so M̆[2](A) =

∫
A
m[2](x) dx. This

density is related to the corresponding covariance density by

m̆[2](x) = c̆[2](x) +m2. (8.1.18)

When the density exists, the ratio m̆[2]/m has been called the intensity of the
process (e.g. Cox and Lewis, 1966, p. 69) or the conditional intensity function
(e.g. Cox and Isham, 1980, Section 2.5). We call it the second-order intensity
and denote it by h̆2(·) so that

h̆2(x) = m̆[2](x)/m = m+ c̆[2](x)/m.

h̆2(x) can also be interpreted as the intensity at x of the process conditional
on a point at the origin; this is an interpretation taken up further in the
discussion of Palm measures in Chapter 13. Notice that, in d = 1, we have for
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a renewal process as in Chapter 4 with renewal function U(x) (x > 0) that is
absolutely continuous, h̆2(x) = h̆2(−x) = U ′(|x|). We call the ratio

r2(x) ≡ h̆2(x)
m

=
m̆[2](x)
m2 (8.1.19)

the relative second-order intensity [but note that in Vere-Jones (1978a) it is
called the relative conditional intensity]. It equals 1 for a stationary Poisson
process, while for other stationary processes it provides a useful indication of
the strength and character of second-order dependence effects between pairs
of points at different separations x ∈ R

d: for example, when r2(x) > 1, point-
pairs separated by the vector x are more common than in the purely random
(Poisson) case, while if r2(x) < 1 such point-pairs are less common.

In considering the reduced measures M̆2(A) and related functions, spheres
Sr(0) constitute a natural class of sets to use for A in dimension d ≥ 2; define

K̆2(r) = M̆2(Sr(0) \ {0}) = M̆[2](Sr(0)), (8.1.20)

the equivalent formulation here being a consequence of orderliness. Ripley
(1976, 1977) introduced this function, though what is now commonly called
Ripley’s K-function (including Ripley, 1981) is the density-free version

K(r) =
M̆2(Sr(0) \ {0})

m2 =
K̆2(r)
m2 , (8.1.21)

so, since λ = m because of orderliness,

λK(r) = E(# of points within r of the origin | point at the origin),
(8.1.22)

where on the right-hand side the origin itself is excluded from the count.
The function K(r) is monotonically nondecreasing on its range of definition
r > 0 and converges to 0 as r → 0. As can be seen from the examples below
and is discussed further in Chapter 12, this function is particularly useful
in studying stationary isotropic point processes because it then provides a
succinct summary of the second-order properties of the process. For a Poisson
process, K(r) = �(Sr(0)).

Recall the definition of K(r) in terms of the sphere Sr(0). Noting the
interpretation in (8.1.22), we see that the derivative (d/dr)K̆2(r) = K ′(r)
gives the conditional probability of a point on the surface of a spherical shell
of radius r, conditional on a point at the centre of the shell. Consequently,
for an isotropic process in R

2, the probability density that a point is located
at distance r from a given point of the process and in the direction θ equals
K ′(r)/(2πr), independent of θ because of isotropy. In dimension d ≥ 3, the
same equality holds on replacing the denominator 2πr by the surface area of
Sr(0).
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For stationary isotropic processes in R
2, the relative second-order intensity

r2(x), which → 1 as x → 0 when it is continuous there, is a function of |x|
alone, and

ρ(r) = r2(x)− 1, where r = |x|,
has been called the radial correlation function (see e.g. Glass and Tobler,
1971), though it may lack the positive-definiteness property of a true correla-
tion function. The same quantity can be introduced, irrespective of isotropy,
as a derivative of Ripley’s K-function K(r) in (8.1.21): write

ρ(r) =
dK(r)
d(πr2)

− 1 =
K ′(r)
2πr

− 1. (8.1.23)

Examples of the use of m̆[2](·) and ρ(r) are given in Vere-Jones (1978a),
Chong (1981) and Ohser and Stoyan (1981), amongst many other references.

Example 8.1(b) A two-dimensional Neyman–Scott process. By using the
general results of Example 6.3(a), it can be shown that the reduced second
factorial cumulant measure is given by

C̆[2](A) = µcm[2]

∫
R2
F (u+A)F (du) = µcm[2]G(A),

where F is the probability distribution for the location of a cluster member
about the cluster centre, G is the probability distribution for the difference
of two i.i.d. random vectors with distribution F , µc is the Poisson density
of cluster centres, and m[2] is the second factorial moment of the number of
cluster members. For the K-function, we find

K(r) = πr2 + [m[2]/(µcm2
1)]G1(r),

where G1(r) is the d.f. for the distance between two ‘offspring’ from the same
‘parent’, while

ρ(r) = [m[2]/(µcm2
1)]g1(r),

where g1(r) = G′
1(r) is the probability density function for the distance be-

tween two offspring from the same parent. Note that ρ is everywhere positive,
an indication of overdispersion or clustering relative to the Poisson process,
at all distances from an arbitrarily chosen point of the process.

Some particular results for the case where F is a bivariate normal distri-
bution are given in Exercise 8.1.7.

Example 8.1(c) Matérn’s Model I for underdispersion (Matérn, 1960). Let
{x′

n} denote a realization of a stationary Poisson process N ′ on the line with
intensity λ. Identify the subset {x′′

n} of those points of the realization that
are within a distance R of another such point, i.e.

{x′′
n} =

{
x ∈ {x′

n}: |x− y| < R for some y ∈ {x′
n} with y �= x

}
,

and let {x′
n}\{x′′

n} ≡ {xn} constitute a realization of a new point process N
(note that N = {xn} is defined without using any Poisson properties of N ′).
The probability that any given point x of N ′ will be absent from N is then
the probability, 1 − e−2λR, that at least one further point of N ′ is within a
distance R of x. While these events are not mutually independent, they have



8.1. Second-Moment and Covariance Measures 299

the same probability, so the mean density m for the modified process equals

m = λe−2λR ≤ e−1/(2R) for all λ;

the inequality is trict except for λR = 1
2 .

To find the second-order properties of N , consider the probability q(v) that
for a given pair of points distance v apart in N ′, both are also in N . Then

q(v) =


0 (0 < v ≤ R),
exp
[
− λ
(
2R+ v)

)]
(R < v ≤ 2R),

exp
(
− 4λR

)
(v > 2R).

The factorial moment density of N is thus m̆[2](x) = λ2q(x), and the relative
second-order intensity [see (8.1.19)] is given by

r2(x) =
{

0 (0 < x ≤ R),
eλ(2R−x)+ (x > R).

Thus, the process shows complete inhibition (as for any hard-core model) up
to distance R and then a region of overdispersion for distances between R and
2R before settling down to Poisson-type behaviour for distances beyond 2R.

The process is in fact of renewal type: the results above and others can be
deduced from the renewal function for the process [see Exercise 8.1.9(a) for
further details].

The model can readily be extended to point processes in the plane or space,
but the analogues of the explicit expressions above become more cumbersome
as the expression for the area or volume of the common intersection of circles
or spheres becomes more complex (see Exercise 8.1.8).

The set of rejected points {x′′
n} is ‘clustered’ in the sense that every point

has a nearest neighbour within a distance R [see Exercise 8.1.9(c)].

We conclude this section with some notes on possible estimates for reduced
moment measures, being guided by the interpretations of the model-defined
quantities and their interpretation described above. Assume, as is usually the
case, that we observe only a finite part of a single realization of an ergodic
process. Let B denote a suitable test set, such as an interval on the line or
a rectangle or disk in the plane, and A a (larger) observation region. Then,
replacing U

d by A in the right-hand side of (8.1.1b) and allowing for the
change to the second factorial moment, we obtain

M̆[2](B) =
1

�(A)
E

[ ∑
i: xi∈A

N∗(xi +B)

]
, (8.1.24)

where N∗(x+B) = N(x+B)−δ0(B), so that N(x+B) is reduced by 1 when
B contains the origin.
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The corresponding näıve estimate is obtained by dropping the expectation
sign in the expression above (i.e. by taking each point xi in A in turn as
origin, counting the number of points in sets xi+B having a common relative
position to xi but ignoring xi itself if it happens to lie within the test region,
and then dividing by the Lebesgue measure of the observation region); we
denote it by

M̂ [2](B;A) =
1

�(A)

∑
i:xi∈A

N∗(xi +B). (8.1.25)

Note that in the case of a process with multiple points, the points at each
xi should be labelled x(1)

i , . . . , x
(ni)
i , and the definition of N∗ implies that we

omit pairs (x(j)
i , x

(j)
i ) but not any pair (x(j)

i , x
(k)
i ) with j �= k.

In principle, (8.1.1b) implies that this estimate is unbiased, while the as-
sumed ergodicity of the process and the first assertion of (8.1.5) imply that
it is consistent. In practice, however, difficulties arise with edge effects since
N∗(xi +B) may not be observable if xi lies near the boundary of B.

Replacing it by N∗[(xi +B) ∩ A] introduces a bias that may be corrected
in a variety of ways. For example, we may subtract an explicit correction
factor [see Exercise 8.1.11(b)], or we may take observations over an extended
region A+B (plus sampling), thereby ensuring that all necessary information
is available but at the expense of the fullest use of the data.

One commonly used correction replaces (8.1.25) by the form

M c
[2](B;A) =

[
N(A)�(B)
�(A)

]∑
xi∈AN

∗[A ∩ (xi +B)]∑
xi∈A �[A ∩ (xi +B)]

(8.1.26)

so that each observation count N∗(xi +B) is given a relative weight equal to
that fraction of �(xi +B) that remains inside A; see also Exercise 8.1.10(a).

Estimates of the reduced covariance measure, and hence of the variance
function, can be obtained by subtracting appropriate multiples of �(B) as
noted in Exercise 8.1.11(c).

These comments are included to suggest a basis for the systematic treat-
ment of moment estimation for point processes; Krickeberg (1980) and Jolivet
(1978) discuss some further issues and special problems, while applications
are discussed by Ripley (1976, 1981), Diggle (1983), Vere-Jones (1978a), and
many others.

Exercises and Complements to Section 8.1

8.1.1 Consider a nonstationary Poisson cluster process on R with cluster centres
having intensity µc(t) and a cluster with centre t having either a single point
at t with probability p1(t) or two points, one at t and the other at t + X,
where the r.v. X has d.f. F . Show that p1(·) and µc(·) can be chosen so that
the process is first-order stationary but not second-order stationary.
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8.1.2 Construct an example of a point process that has stationary covariance mea-
sure but nonstationary expectation measure. [Hint: Such a process is neces-
sarily not simple: consider a compound Poisson process in which the rate of
occurrence of groups and mean square group size are adjusted suitably.]

8.1.3 Let V (x) = var(N(0, x]) denote the variance function of a second-order sta-
tionary point process N(·) on the line, and write M2(x) = E([N(0, x]]2) =
V (x) + (mx)2, where m = EN(0, 1].
(a) Show that M2(x) is superadditive in x > 0 and hence that V ′(0+) ≡

limx↓0 V (x)/x exists, with V ′(0+) ≥ m.
(b) Show that (M2(x))1/2 is subadditive and hence that limx→∞ V (x)/x2 ex-

ists and is finite.
(c) When N(·) is crudely stationary (see Section 3.2), show that V ′(0+) = m

if and only if the process is simple.
(d) Construct an example of a second-order stationary point process for which

the set of discontinuities of the left and right derivatives of V (·) is countably
dense in (0,∞).

(e) Writing M2(x) = λ
∫ x
0

(1 + 2U(y)) dy, where λ is the intensity of N(·),
show that limx→∞ U(x)/λx exists and is ≥ 1.

(f) Show that supx>0(U(x+ y) − U(x)) ≤ 2U(y) +m/λ.
(g) Use (8.1.13) to show that V (x) = 2

∫ x
0
Fc(u) du where, in terms of the

reduced covariance measure C̆2, Fc(u) = 1
2 C̆2({0})+C̆2(0, u] = 1

2 C̆2[−u, u].
Deduce that, when it exists, the covariance density is a second derivative
in R+ of V (x).

[Hint: See Daley (1971) for (a)–(e) and Berbée (1983) for (f).]

8.1.4 Suppose N(·) is a simple stationary isotropic point process in R
2 with intensity

λ, finite second-moment measure, and second-order intensity [see (8.1.18)]
h̆2(x) = h̆(|x|), say, for points distance |x| apart. Show that for a sphere Sr
of radius r, V (Sr) ≡ varN(Sr) equals

λπr2 + λ

∫ r

0

2πu du
∫ r+u

0+

arcos

(
max

{
− 1,

u2 + v2 − r2

2uv

})
vh̆(v) dv

Suppose that h̆(u) → 0 monotonically for u large enough. Deduce that when
limr→∞

∫ r
1
uh̆(u) du < ∞, limr→∞ V (Sr)/M(Sr) exists [see below (8.1.14)].

8.1.5 (a) If {In} is a nested decreasing sequence of intervals with �(In) → 0 as
n → ∞, show that for any second-order stationary simple point process
on R, V (In)/M(In) → 1.

(b) Show that replacing {In} by more general nested sets {An} may lead to
V (An)/M(An) �→ 1. [Hint: Consider a stationary deterministic process at
unit rate, and for some fixed integer j ≥ 2, let An =

⋃j
i=1(i, i+ 1/n].]

(c) Let {An} be a nested decreasing sequence of sets in R
d with diam(An) → 0

as n → ∞. Show that V (An)/M(An) → 1 as n → ∞ for second-order
stationary simple point processes on R

d.

8.1.6 Processes of bounded variability. Show that for a nontrivial stationary clus-
ter point process on R with finite second-moment measure to be of bounded
variability, the cluster centre process must be of bounded variability and all
clusters must be of the same size.
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As a special case, suppose the cluster centre process is deterministic and
that points are randomly jittered with jitter distribution F , say. What con-
ditions on F are needed for the jittered process to be of bounded variability?
[See Cox and Isham (1980, Section 3.5) for more discussion.]

8.1.7 Isotropic Neyman–Scott process. In Example 8.1(b), suppose that the d.f. F
is the bivariate normal distribution with zero mean and covariance matrix

Σ =
 σ2

1 ρσ1σ2

ρσ1σ2 σ2
2

 .

Then, the symmetrized d.f. G for the vector distance between two offspring
from the same parent is bivariate normal also with zero mean vector and
covariance matrix 2Σ.

When σ2
1 = σ2

2 = σ2, say, and ρ = 0, the process is isotropic and

K(r) = πr2 + [m[2]/(µcm
2
1)](1 − e−r2/4σ2

).

8.1.8 R
d-analogue of Matérn’s Model I. Let v(R, a) denote the volume of the in-

tersection of two R
d hyperspheres of radius R whose centres are distance a

apart. Construct a point process in R
d analogous to the process in R of Ex-

ample 8.1(b) and show that this R
d analogue has

M(A) = λe−λv(R,0)�(A),

h̆2(x) =


0 (0 < |x| ≤ R),

λ exp ( − λ[v(R, 0) − v(R, |x|)]) (R < |x| ≤ 2R),

λ exp ( − λv(R, 0)) (2R < |x|).

[Hint: See Cox and Isham (1980, Exercise 6.3) for the case d = 2.]

8.1.9 Matérn’s Model I: Further properties.
(a) Renewal process. Let {t′n:n = 1, 2, . . .} be the successive epochs in (1,∞)

of a Poisson process on R+ at rate λ, and attach marks I(t′n) = 0 or
1 successively as follows, starting with t′n initially unmarked. If t′n is
unmarked, then I(t′n) = 0 if t′n+1 < t′n + 1, in which case I(t′n+1) = 0
also, or else t′n+1 > t′n + 1, I(t′n) = 1, and t′n+1 is initially unmarked. If
I(t′n) = 0, then I(t′n+1) = 0 if t′n+1 < t′n+1, or else t′n+1 > t′n+1 and t′n+1

is initially unmarked. Show that {tn:n = 0, 1, . . .}, defined by t0 = 0 and
tn+1 = inf{t′j > tn: I(t′j) = 1} (n = 0, 1, . . .), are the epochs of a renewal
process with a renewal density function h(·) that is ultimately constant,
namely

h(x) dx =

{
0 (0 < x ≤ 1),

λe−λmin(x,2) (x > 1).

(b) Show that Example 8.1(c) is a version of the corresponding stationary
renewal process.

(c) The complementary set. Every point in the complementary set {x′′
n} of

‘rejected points’ in the construction of Matérn’s Model I in Example 8.1(c)
shows clustering characteristics: for one thing, the nearest-neighbour dis-
tance of any x′′

n is at most R. Investigate other properties of this process.
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[Hint: Consider first the case d = 1; find its density, cluster structure,
nearest-neighbour distribution, and covariance density. Which of these
are accessible when d ≥ 2? What properties of {x′′

n} can be deduced by
complementarity with respect to a Poisson process of the underdispersed
process of Example 8.1(c)?]

8.1.10 Matern’s Model II for underdispersion. Consider an independent marked
Poisson process with realization {(x′

i, κi)} in which the points {x′
i} have inten-

sity λ, say, and the independent marks have a common uniform distribution
on (0, 1) (any absolutely continuous distribution will do). A point x′

i is re-
jected if there is any other point within distance R and with mark larger than
κi. Show that the retained points {xi}, say, have density (1 − e−2λR)/(2R)
and that the relative second-order intensity r2(x) vanishes for |x| < R, equals
1 for |x| > 2R, and for R < |x| < 2R,

r2(x) =
2R+ (3R+ x)e−λ(R+x) − (5R+ x)e−λ(3R+x)

R(R+ x)(3R+ x)
> 1.

Examine the R
d analogues of the model (see Exercise 8.1.8).

8.1.11 (a) Show the weighted estimate Mc
[2](B) in (8.1.26) is unbiased.

(b) A simpler but cruder correction subtracts from (8.1.25) the expected bias
when the observed process is Poisson with the same mean rate. Express
this as a correction to Mc

[2](B). [Hint: See e.g. Miles (1974) and Vere-Jones
(1978a, p. 80) who give explicit forms.]

(c) Although the cumulative forms given above admit consistent estimates,
they are less easy to interpret than smoothed estimates of the correspond-
ing densities. For example, in R

2, estimates of the radial correlation func-
tion and related quantities can be obtained by counting the number of
points in an annulus about a given point of the realization, dividing by
the area of the annulus, subtracting the appropriate mean, and regarding
the resultant value as an estimate of ρ(r) at a distance r corresponding to
the mid-radius of the annulus. Fill out the details behind these remarks.
[Hint: See e.g. Vere-Jones (1978a) and Chong (1981) for applications.]

8.2. The Bartlett Spectrum

The spectral theory of point processes has two origins. On the theoretical
side, the results can be derived from specializations of Doob’s (1949, 1953)
theory of processes with stationary increments and related treatments of gen-
eralized stochastic processes by Bochner (1955) and Yaglom (1961). The key
features relevant to the practical analysis of point process data were identi-
fied by Bartlett (1963) and followed up by several authors, as summarized for
example in Cox and Lewis (1966) and Brillinger (1972, 1978). The treatment
given in this chapter is based on developments of the theory of Fourier trans-
forms of unbounded measures (see e.g. Argabright and de Lamadrid, 1974).
As such, it requires an extension, not quite trivial, of the classical Bochner
theorem and related results used in standard time series analysis. We describe
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this extension, concerned with properties of positive, positive-definite (p.p.d.)
measures, in Section 8.6. Here in this section, we summarize and illustrate
the properties that are most relevant to the practical analysis of point process
models.

We saw in Proposition 8.1.II that the reduced second-moment measure M̆2
of a stationary random measure is a p.p.d. measure so that all the proper-
ties developed for such measures in Section 8.6 apply. In particular, M̆2 is
transformable so that it possesses a well-defined Fourier transform (in the
sense of generalized functions), which is again a measure, and for which the
explicit versions of the Parseval relation and the inversion theorem, derived
in that section, are valid. The reduced covariance measure C̆2 is not itself a
p.p.d. measure, but it differs from M̆2 only by the term m2�, which is also a
p.p.d. measure [its Fourier transform is the multiple (m2/2π)δ0 of the mea-
sure consisting of a single atom at the origin]. Thus, C̆2 can be represented
as a difference of two p.p.d. measures, so that the same results (existence of
a Fourier transform that is a difference of two p.p.d. measures, Parseval rela-
tions, etc.) hold for it also. A similar remark applies to the reduced second
factorial moment measure and the corresponding factorial cumulant measure,
where it is a matter of subtracting an atom at the origin.

Any one of these four measures could be taken as the basis for further
development of the spectral theory. It is convenient, and consistent with
the standard convention in time series analysis, to choose as the spectrum
of the process ξ the inverse Fourier transform of the (ordinary) covariance
measure. The proposition below summarizes the main results pertaining to
this transform; (8.2.1) and (8.2.2) are examples of Parseval relations.

Proposition 8.2.I. Let ξ be a second-order stationary point process or ran-
dom measure on R

d with reduced covariance measure C̆2. Then
(a) there exists a symmetric, translation-bounded measure Γ on BRd such

that, for all ψ in the space S of functions of rapid decay defined below
(8.6.1), ∫

Rd

ψ(x) C̆2(dx) =
∫

Rd

ψ̃(ω) Γ(dω), (8.2.1)

where ψ̃(ω) =
∫

Rd ei(ω·u)ψ(u) du (ω ∈ R
d);

(b) the inversion relations (8.6.6–10) and (8.6.12) hold, with µ identified as
Γ and ν as C̆2; and

(c) for bounded measurable φ with bounded support and also for φ ∈ S, if
ζφ =

∫
Rd φ(x) ξ(dx), then

var ζφ =
∫

Rd

|φ̃(ω)|2 Γ(dω) =
∫

Rd

(φ ∗ φ∗)(u) C̆2(du) ≥ 0, (8.2.2)

where φ∗(u) = φ(−u).

Proof. The statements all follow from the p.p.d. properties noted in the
opening paragraph and the results for p.p.d. measures outlined in Section 8.6.
In particular, (8.2.2) follows from Proposition 8.6.IV.
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Definition 8.2.II. The Bartlett spectrum of a second-order stationary point
process or random measure ξ on R

d is the measure Γ(·) associated with the
reduced covariance measure C̆2 of ξ in Proposition 8.2.I.

Equations (8.2.1), usually in the form of (8.2.4) below, and (8.2.2) are
generally the most convenient results to use in establishing the form of the
Bartlett spectrum for a given process. Note in particular the special case for
X = R and ψ the indicator function for (0, t],

var ξ(0, t] =
∫

R

(
sin 1

2ωt
1
2ω

)2

Γ(dω), (8.2.3)

which is essentially Daley’s (1971) representation for the variance function of a
stationary point process or random measure [Daley uses a measure defined on
R+, while in (8.2.3), Γ(·) is a symmetric measure on R]. An alternative route
to (8.2.3) exploiting a skeleton process, the standard Bochner representation
and weak convergence, is sketched in Exercise 8.2.1.

It is clear from Proposition 8.2.I that while the spectral measure Γ is posi-
tive, it is not in general a p.p.d. measure. However, since the reduced second-
moment measure M̆2 is positive and is the Fourier transform of the positive
measure Γ(·)+[m2/(2π)d]δ0(·), Γ(·) can be made into a p.p.d. measure by the
addition of a sufficiently large atom at the origin.

In the point process case, the reduced covariance measure has an atom at
the origin that transforms into a positive multiple of Lebesgue measure, and
consequently the Bartlett spectrum of a point process is never totally finite.
On the other hand, the factorial covariance measure is often both absolutely
continuous and totally finite, and then Γ(·) is absolutely continuous with a
density γ(·), which can be written (for the case d = 1)

2πγ(ω) = m+
∫ ∞

−∞
e−iωxc[2](x) dx

= m+ c̃[2](−ω) = m+ c̃[2](ω). (8.2.4)

It was in this form that the spectral measure was originally introduced by
Bartlett (1963).

It is not known whether every p.p.d. measure can arise as the second-
moment measure of some random measure nor, when it does, how to construct
a process yielding the given measure as its second-moment measure. The stan-
dard construction using Gaussian processes or measures is not available here,
as such processes do not have nonnegative trajectories (see Wiener’s homoge-
neous chaos example in Chapter 9). Some partial results arise from the ex-
amples considered below and from Exercises 8.2.11–12 and 8.4.6–7. Davidson
(1974) provided a construction for identifying the second-moment measures of
stationary random measures on the circle (see the further discussion in Chap-
ter 12), but it relies on the finiteness of the invariant measure on a circle, and
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it is not obvious how it might be extended to either point processes or random
measures on the line. In the very special case of a discrete point process on
the four points of the compass (NESW), with translation interpreted as ro-
tation through π/2, the family of second-moment measures can be identified
explicitly and is strictly contained in the class of p.p.d. measures; see Exercise
8.2.5 for details.

We now discuss the Bartlett spectrum for some basic point processes on R
d.

Example 8.2(a) Poisson process with constant intensity on R
d. Here C̆2

consists only of the atom mδ0(·) so Γ is absolutely continuous with density
m/(2π)d. This ‘white-noise’ spectrum is consistent with the completely ran-
dom character of the process. Note that the Parseval relations (8.2.1) and
(8.2.2) take, respectively, the special forms, with ζφ =

∫
Rd φ(x)N(dx),

mψ(0) =
m

(2π)d

∫
Rd

ψ̃(ω) dω

and
var ζφ = m

∫
Rd

|φ(x)|2 dx =
m

(2π)d

∫
Rd

|φ̃(ω)|2 dω.

Example 8.2(b) Stationary renewal process. If the renewal density u(t) exists
and the process is stationary with mean rate λ = 1/µ, where µ is the mean
lifetime, we have from Example 5.4(b) that

m̆[2](x) = λu(|x|)

and hence
c̆2(x) = δ0(x) + λ

[
u(|x|)− λ

]
.

If further the difference u(x) − λ is integrable on (0,∞), (8.2.4) yields for
ω �= 0

γ(ω) =
λ

2π

[
1 +

F̃ (ω)

1− F̃ (ω)
+

F̃ (−ω)

1− F̃ (−ω)

]
=

λ

2π

[
1

1− F̃ (ω)
+

1

1− F̃ (−ω)
− 1
]
,

(8.2.5)
where F̃ (ω) =

∫∞
0 eiωx dF (x) is the characteristic function of the lifetime

distribution. For ω = 0, we obtain from the above or Exercise 4.4.5

γ(0) =
λ

2π

(
1 +

σ2 + µ2

µ2

)
=

λ

2π

(
1 + 2

∫ ∞

0

[
u(x)− λ

]
dx
)
.

Special cases, when lifetime distributions are of ‘phase type’ for example,
yield rational polynomials for F̃ and hence rational spectral densities (see
e.g. Neuts, 1979). Exercise 8.2.6 gives a simple nontrivial example. Since
a stationary renewal process has moment measures of all orders whenever it
exists, the Bartlett spectrum exists for all such processes, but without the
additional restriction it may not be absolutely continuous or (even if it is)
γ(0) need not be finite as above. The extreme case described in the next
example is worth particular mention.
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Example 8.2(c) Stationary deterministic process. Here, points occur on a
regular lattice of span a, the whole lattice being randomly shifted so that the
first point to the right of the origin is uniformly distributed on (0, a]. The
measure M̆2(·) has an infinite sum, with mass 1/a at each of the points ka,
(k = 0,±1, . . .). Its Fourier transform has mass 1/a2 at each of the points
2πj/a, (j = 0,±1, . . .). Moving to the Fourier transform of the covariance
measure deletes the atom at j = 0 so that Γ(·) can be written in terms of
Dirac measures as

Γ(A) =
1
a2

∞∑
j=1

[
δ2πj/a(A) + δ−2πj/a(A)

]
. (8.2.6)

Example 8.2(d) Cluster processes. For a general cluster process N in R
d,

the variance of an integral
∫

Rd φ(x)N(dx) can be written (see Exercise 6.3.4)

var
(∫

Rd

φ(x)N(dx)
)

=
∫

Rd

Vφ(u)M c(du)

+
∫

(Rd)(2)
mφ(u)mφ(v)Cc2(du× dv), (8.2.7)

where

mφ(u) =
∫

Rd

φ(x)M1(dx | u), Vφ(u) =
∫

(Rd)(2)
φ(s)φ(t)C2(ds× dt | u),

and we use the notation M c(·) and Cc2(·) from (6.3.4–5). In the stationary
case, M c(du) = mc du, where mc is the mean density of the cluster centre
process, while Cc2 has a reduced form that can be written in terms of the
Bartlett spectrum Γc of the cluster centre process. Since also C2(ds× dt | y)
depends only on the differences s − y and t − y, the first term in (8.2.7) can
be written in terms of the measure B defined via bounded measurable h by∫

Rd

h(y)B(dy) =
∫

(Rd)(2)
h(s− t)C2(ds× dt | 0).

Here the measure B is both positive-definite and totally finite (since the mean
square cluster size is necessarily finite); it has therefore an ordinary Fourier
transform B̃(ω) = (2π)−d ∫

Rd e−i(ω·x)B(dx), which can be written in the sym-
metric form

B̃(ω) = var
(∫

Rd

e−i(ω·x)Nm(dx | 0)
)
,

where, it should be recalled, varZ = E
(
|Z|2
)
− |EZ|2 for a complex-valued

r.v. Z. Thus, writing

M̃1(ω | 0) =
∫

Rd

e−i(ω·x)M1(dx | 0) = E
∫

Rd

e−i(ω·x)Nm(dx | 0),
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we obtain from (8.2.7)

var
(∫

Rd

φ(x)N(dx)
)

=
∫

Rd

|φ̃(ω)|2
[
B̃(ω)

mc

(2π)d
dω + |M̃1(ω | 0)|2 Γc(dω)

]
.

This relation shows that the Bartlett spectrum of the cluster process N can
be identified with the measure

Γ(dω) = B̃(ω)mc(2π)−d dω + |M̃1(ω | 0)|2 Γc(dω). (8.2.8)

The first term can be regarded as the contribution to the spectrum from the
internal cluster structure; the second term is a filtered version of the spectrum
of the cluster centre process with the filtering reflecting the mean distribution
of the cluster, as in Daley (1972b).

For a stationary Poisson cluster process, further simplification occurs. Let-
ting µc denote the intensity of the Poisson process of cluster centres, we find
that Γ has a density γ, which has the simple alternative forms

γ(ω) =
µc

(2π)d

[ ∫
Rd

M1(dx | 0) +
∫

Rd

∫
Rd

e−i(y·ω)M[2](dx× dy | 0)
]

=
µc

(2π)d
E

(∣∣∣∣ ∫
Rd

ei(x·ω)Nm(dx | 0)
∣∣∣∣2
)
, (8.2.9)

which is easily recognized as the transformed version of (6.3.5). Specific results
for the Neyman–Scott and Bartlett–Lewis processes follow readily from these
equations (see Exercises 8.2.9 and 8.2.10).

We shall see in Section 8.3 that, for filtering and prediction purposes, a par-
ticularly important role is played by point processes having a rational spectral
density. Many common and useful examples fall into this class. By suitable
specification of the components, both renewal and cluster processes can give
rise to spectral measures with rational spectral densities. For example, it is
clear from (8.2.5) that this will occur whenever the interval distribution of
a renewal process has a rational Laplace transform, that is, whenever the
distribution is expressible as a finite convolution or mixture of exponentials.
Several types of cluster processes, as well as Cox processes, have rational spec-
tral densities, in particular the Neyman–Scott process with an exponential or
Erlang distribution for the distances of the cluster elements from the cluster
centre [see also Exercise 8.2.7(b)]. The wide choice of such examples shows
not only the richness of the class but also the relative lack of discrimination
in the spectrum as a means of distinguishing between processes that in other
respects may be quite dissimilar.

One of the most important examples is the Hawkes process with suitably
restricted response function (i.e. infectivity measure) as described below.
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Example 8.2(e) Hawkes process with rational spectral density. From Exam-
ple 6.3(c) and the results on branching processes in Exercise 5.5.6, we see
that the Fourier transform M̃1 of the first-moment measure of the total off-
spring process is a rational function of the Fourier–Stieltjes transform µ̃ of
the infectivity measure, namely

M̃1(ω | 0) = 1/[1− µ̃(ω)], where µ̃(ω) =
∫ ∞

0
eiωx µ(dx).

Combining this result with the expressions for the mean rate and covariance
density given by (6.3.26) and (6.3.27) and with the general form (8.2.8) for
cluster processes, we obtain the spectral density for the Hawkes process in the
form

γ(ω) =
λ/(2π)

(1− ν) |1− µ̃(ω)|2 . (8.2.10)

Consequently, when µ̃(ω) is a rational function of ω, so too is M̃1(ω).
Because the form of (8.2.10) is similar to that of the spectral density of

an autoregression in continuous time, one might hope that the Hawkes model
could play a role similar to that of autoregressive models in the context of
mean square continuous processes. This hope is frustrated by the special
probabilistic structure of the Hawkes model, which requires that µ(·) ≥ 0. If
this condition is violated, it is not clear that there exists any point process
with the spectral form (8.2.10), and if such a process does exist, it certainly
will not have the Poisson branching structure of a Hawkes process. Despite
this difficulty, the possibility of using the Hawkes process to approximate
general point process spectra was explored by Hawkes (1971b), Hawkes and
Adamopoulos (1973), Ozaki (1979) and, more deliberately, by Ogata and
Akaike (1982), with an application in Ogata et al. (1982). Ogata and Akaike
(1982) suggest taking for µ a measure on [0,∞) with density function µ(t) =
eαt
∑K
k=0 bkLk(t) for α > 0 and Laguerre polynomials Lk(t). This form leads

automatically to processes with rational spectral densities since the Fourier
transforms of the Laguerre polynomials are themselves rational. The simplest
case occurs whenK = 0 and b0 = αν for 0 < ν < 1, so that µ̃(ω) = να/(α−iω)
and

γ(ω) =
λ

2π(1− ν)
· ω2 + α2

ω2 + α2(1− ν)2
.

Note the characteristic feature for point processes with rational spectral den-
sity that the numerator and denominator are of equal degree.

Further examples are given in the papers cited and in Vere-Jones and Ozaki
(1982). To yield a valid model, the parameters should be constrained to
ensure that the density of the infectivity measure (and hence the conditional
intensity) is everywhere nonnegative; for stationarity, the infectivity measure
should have total mass < 1. These conditions are relatively stringent and
quite difficult to impose in estimation procedures. Within these constraints,
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however, the Hawkes model is one of the most flexible models available in that
it allows both the calculation of the form of the spectrum and the investigation
of probabilistic aspects of the process.

The basic results described so far apply to stationary (translation-invariant)
point processes in any general Euclidean space R

d. When d > 1, however,
additional symmetries such as isotropy (invariance under rotations) become
possible and have important implications for the structure of the spectral
measures. As an illustration, we conclude this section with a brief discussion of
isotropic random measures in R

2, this time looking at the Fourier transforms.
In the stationary, isotropic case, the second-order properties of a random

measure in R
2 are fully defined by the mean density m and the function K̆2(·)

defined in (8.1.20). We examine the constraints on the Bartlett spectrum in
R

2 implied by this isotropy condition and show how to represent the spectrum
in terms of m and K̆2(·).

Consider first the effect of the double Fourier transform on a function
h: R

2 �→ R which, in addition to being bounded, measurable, and of bounded
support, is circularly symmetric, i.e.

h(x, y) = h(r cos θ, r sin θ) = g(r) (all r ∈ S)

for some function g. The transform is given by

h̃(ω, φ) ≡
∫

R2
ei(ωx+φy)h(x, y) dxdy =

∫ ∞

0
rg(r) dr

∫ 2π

0
eir(ω cos θ+φ sin θ) dθ

=
∫ ∞

0
rg(r) dr

∫ 2π

0
eirρ cos(θ−ψ) dθ

using (ρ, ψ) as polar coordinates in the (ω, φ) plane. Now the integral over θ
is simply a Bessel function J0(u) = 1/(2π)

∫ 2π
0 eiu cos θ dθ, so

h̃(ω, φ) = 2π
∫ ∞

0
rJ0(rρ)g(r) dr ≡ g̃B(ρ), where ρ = (ω2 + φ2)1/2.

(8.2.11)
Consequently, h̃(ω, φ) is again circularly symmetric, reducing to the function
g̃B(·), which we call the Bessel transform of g(·) (we have included the factor
2π—this is a departure from the usual definition) and is also called a Hankel
transform—see e.g. Copson (1935, p. 342). By arguing analogously from the
inverse Fourier transform

h(x, y) =
1

(2π)2

∫
R2

ei(ωx+φy)h̃(ω, φ) dω dφ,

it follows that the Bessel transform is inverted as in

g(r) =
1

2π

∫ ∞

0
ρg̃B(ρ)J0(rρ) dρ. (8.2.12)
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From this discussion, we should expect the Bartlett spectral density of a
stationary isotropic process to be circularly symmetric in frequency space and
to be related to the inverse Bessel transform of the density of K̆2(r). To cover
the situation where densities may not exist, the Bessel transform relation
needs to be put into the form of a Parseval relation so that it can be extended
to measures, as follows.

Proposition 8.2.III. Let Γ(·) be the Bartlett spectrum on R
2 associated

with a simple stationary isotropic point process in R
2. Then Γ(·) is circularly

symmetric and is expressible via (ω1, ω2) = (ρ cosψ, ρ sinψ) as

Γ(dρ× dψ) =
(
mρ

dρ
2π

+m2 κ(dρ) + 2πm2 δ0(dρ)
)dψ

2π
, (8.2.13)

where κ is related to the radial measure K̆2(·) of (8.1.20) by the Parseval–
Bessel equation ∫ ∞

0
g̃B(ρ)κ(dρ) =

∫ ∞

0
g(r) K̆2(dr) (8.2.14)

for all bounded measurable g of finite support on R+ and g̃B is defined by
(8.2.11).

Proof. Recall that the Bartlett spectrum is the Fourier transform in R
2 of

the complete covariance measure C̆2, which for disks Sr(0) takes the form

C̆2
(
Sr(0)

)
= m−m2πr2 +m2K̆2(r),

where the first term arises from the diagonal concentration associated with a
simple point process; the second, the term involving the square of the mean,
must be subtracted from the second moment to yield the covariance; and the
third is the form of the reduced second factorial moment measure. Using
mixed differential notation, this can be rewritten as

C̆2(dx× dy) = mδ0(dx× dy)−m2 dxdy +m2K̆2(dr)
dθ
2π

.

The first and second terms have the following inverse Fourier transforms,
respectively:

mdω1 dω2

(2π)2
=
mρdρdψ

(2π)2
= mρ

dρ
2π
· dψ

2π
,

4π2m2 δ0(dω1 × dω2)
(2π)2

= 2πm2 δ0(dρ) · dψ
2π

.

Denoting the double Fourier transform of the measure K̆2(dr) dθ/(2π) by
L(dω1 × dω2), the Parseval relation for such transforms implies that, with h
and h̃ as earlier,∫

R2
h̃(ω1, ω2)L(dω1 × dω2) =

∫ ∞

0
K̆2(dr)

∫ 2π

0
h(r cos θ, r sin θ)

dθ
2π

.
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Now∫ 2π

0
h(r cos θ, r sin θ)

dθ
2π

=
1

(2π)2

∫ ∞

0
dθ
∫ ∞

0
dρ
∫ 2π

0
e−iρr cos(θ−ψ)ρ h̃(ρ cosψ, ρ sinψ) dψ

=
1

2π

∫ ∞

0
dρ
∫ 2π

0
ρJ0(ρr)h̃(ρ cosψ, ρ sinψ) dψ,

where as before the invariance of integrating θ over any interval of length 2π
has been used. If, in particular, we take h̃(ω1, ω2) to have the product form
g̃B(ρ)f(ψ), we obtain from this relation and the Bessel transform equation
(8.2.12) that∫

(0,∞)×(0,2π)
g̃B(ρ)f(ψ)L(dρ× dψ) =

∫ 2π

0
f(ψ)

dψ
2π

∫ ∞

0
g(r) K̆2(dr).

Since the integral here depends on f only through its integral over (0, 2π),
a uniqueness argument implies that L(·) has a disintegration of the form
L(dρ× dψ) = κ(dρ) [dψ/(2π)], where κ(·) satisfies (8.2.14).

Note that (8.2.14) defines (1/r)K̆2(dr) dr (and not K̆2), in the sense of
generalized functions, as the Bessel transform of (1/ρ)κ(dρ) dρ.

Example 8.2(f) An isotropic Neyman–Scott process. Consider the circularly
symmetric case from Example 8.1(b) and Exercise 8.1.7, for which we have

K̆2(dr) = 2πr dr +
m[2]

µm2
1
re−r2/4σ2 dr

2σ2 .

It is easy to check from (8.2.14) that the measure 2πr dr on R+ is the Parseval–
Bessel transform of the measure consisting of a unit atom at the origin. The
second term is a density, and it can be derived (via the Fourier transform in
R

2 or otherwise) as the Parseval–Bessel transform of the density

κ(ρ) =
µm[2]

2πµm2
1
ρe−σ2ρ2 .

Consequently, for this isotropic Neyman–Scott model, the Bartlett spectrum
is absolutely continuous with spectral density

γ(ω, φ) =
µm1

4π2 +
µm[2]

2π
e−σ2(ω2+φ2) ≡ β(ρ)

2π
,

where the function β(·) as just defined exhibits the Bartlett spectrum in the
polar form β(ρ) dρ [dψ/(2π)].
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Exercises and Complements to Section 8.2

8.2.1 Given a second-order stationary point process N , the relation {Xh(n)} =
{N(nh, (n + 1)h]} defines a second-order stationary discrete time series. Ex-
press varN(0, nh] in terms of the second-moment structure of {Xh(n)}. Use
the standard spectral representation of the second moments of a discrete-time
process to give a spectral representation for varN(0, nh], and argue that for
h → 0 there is a weak limit as in (8.2.3).

8.2.2 Superposition. Show that if ξ1, ξ2 are independent second-order stationary
random measures with Bartlett spectra Γ1,Γ2, respectively, then ξ1 + ξ2 has
spectrum Γ1 + Γ2.

More generally, if ξ1, ξ2, . . . are independent second-order stationary random
measures such that the L2 limit

ξ = ξ1 + ξ2 + · · ·

exists, then ξ has Bartlett spectrum Γ1 + Γ2 + · · · .
8.2.3 Cox process. Let ξ be a second-order stationary random measure on R

d with
Bartlett spectrum Γ and mean density m. Show that the Cox process directed
by ξ has Bartlett spectrum Γ(·) + m(2π)−d�(·), where �(·) denotes Lebesgue
measure on R

d.

8.2.4 Quadratic random measure [see Example 6.1(c) and Exercise 6.1.3].
(a) Let Zi(t)(i = 1, 2) be independent mean square continuous second-order

stationary random processes on R with respective spectral d.f.s Fi and
zero mean. Show that the product Z1Z2 is a mean square continuous
second-order stationary process with spectral measure F1 ∗ F2.

(b) If Z is a mean square continuous stationary Gaussian process with spectral
d.f. F and zero mean, then the quadratic random measure whose sample
paths have density Z2(·) has covariance density 2|c(·)|2 and Bartlett spec-
trum 2F ∗ F, where c(x) = cov(Z(0), Z(x)).

(c) Investigate what changes are needed in (a) and (b) when the zero mean
assumption is omitted.

8.2.5 Cyclic point process on four points. Consider a {0, 1}-valued process on the
four compass points NESW that is stationary (i.e. invariant under cyclic per-
mutations). Denote the probabilities of the six basic configurations 0000, 1000,
1100, 1010, 1110, and 1111 by {p0, p1, . . . , p5}, respectively.
(i) Show that the mean density and reduced second-moment measure are given

respectively by

m = 1
4p1 + 1

2 (p2 + p3) + 3
4p4 + p5,

M̆2 = {a, b, c, d},

where a = m, b = d = 1
4p2 + 1

2p4 + p5, c = 1
2p3 + 1

2p4 + p5. Show that
M̆2 is a p.p.d. measure with Fourier transform proportional to (a+ c+ 2b,
a− c, a+ c− 2b, a− c).

(ii) Renormalize the probabilities so that m = 1 (equivalent to looking at the
Palm measure and its first moment) and the second-moment measure has
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standardized form {1, β, γ, β}. Show that this is a p.p.d. measure if and
only if β, γ are nonnegative and γ ≤ 1, 1 + γ ≥ 2β. However, this is the
second-moment measure of a point process on NESW if and only if, in
addition, 1 + β ≥ 2γ. [Hint: Write x = 1

2p4 + p5, y = 1
4p1 + 1

4p4, so that
x < min(β, γ) and (x, y) lies on the line y = 3x−K, where K = 2β+2γ−1.
Nonnegative solutions x, y exist if and only if 1

3K ≤ min(β, γ), which yields
both the p.p.d. condition and the additional condition.]

8.2.6 Stationary renewal process. Let the lifetime d.f. F (·) of the process as in
Example 8.2(b) be the convolution of two exponentially distributed random
variables with means 1/µj (j = 1, 2). Evaluate (8.2.5) explicitly.

8.2.7 Random translations. Let the point processN be second-order stationary with
Bartlett spectrum Γ and mean density m. If the points of N are subjected to
independent random translation with common d.f. F, show that the resultant
point process NT has Bartlett spectrum [see (8.2.8)]

ΓT (dω) = |F̃ (ω)|2 Γ(dω) +m(2π)−d(1 − |F̃ (ω)|2) �(dω).

8.2.8 Iterated random translations. Let the independent translation of points of N
as in Exercise 8.2.7 be iterated n times. Show that the Bartlett spectrum Γn
of the resulting process satisfies

Γn(dω) = |F̃ (ω)|2 Γn−1(dω) +m(2π)−d(1 − |F̃ (ω)|2) �(dω)

= |F̃ (ω)|2n Γ(dω) +m(2π)−d(1 − |F̃ (ω)|2n) �(dω)

and hence give conditions for Γn(·) to converge weakly to m(2π)−d�(·). (See
Chapter 11).

8.2.9 Neyman–Scott process [continued from Example 6.3(a)].
(a) Show that the Bartlett spectrum for a Neyman–Scott process on R, with

(Poisson) cluster centre process at rate µc, m[1] and m[2] for the first two
factorial moments of the cluster size distribution, and common d.f. F for
the distances of the points of a cluster from their centre, has density γNS(ω)
given by

γNS(ω) = (µc/2π)[m[1] +m[2]|F̃ (ω)|2],

where F̃ (ω) =
∫∞

−∞ eixω F (dx).

(b) In the particular case where F (x) = 1 − e−αx (x ≥ 0), deduce that γNS(·)
is the rational function

γNS(ω) =
µcm[1]

2π

[
1 +

α2m[2]/m[1]

α2 + ω2

]
.

(c) When the Neyman–Scott process is as above on R
d, show that

γNS(ω) = (µcm[1]/(2π)d)[1 + (m[2]/m[1])|F̃ (ω)|2]

with F̃ (ω) =
∫

Rd eix·ω F (dx). Deduce that when d = 2 and F (·) is a bivari-
ate normal d.f. with zero mean and the usual second-moment parameters
σ2

1 , σ2
2 and ρσ1σ2, the spectrum has density

γNS(ω1, ω2) =
µcm[1]

4π2

[
1 +

m[2]

m[1]
exp(−σ2

1ω
2
1 − 2ρσ1σ2ω1ω2 − ρ2

2ω
2
2)
]
.
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(d) Show that if in (a) the cluster structure is modified to include the cluster
centre, then

γNS(ω) = (µc/2π)[1 +m[1](1 + F̃ (ω) + F̃ (−ω)) +m[2]|F̃ (ω)|2].

(e) Show that if in (a) the cluster centre process is a general stationary point
process with mean intensity µc and Bartlett spectrum Γc(·), then the
Bartlett spectrum ΓNS(·) of the cluster process is given by

ΓNS(dω) = |m[1]F̃ (ω)|2 Γc(dω) +
µc
2π

[m[1] + (m[2] −m2
[1])|F̃ (ω)|2] �(dω).

[Hint: Except for (d), the results can be derived, first by compounding and
then by using random translations as in Exercise 8.2.7; otherwise, see (8.2.8).]

8.2.10 Bartlett–Lewis model [continued from Example 6.3(b)].
(a) Use (6.3.23) to show that the Bartlett spectrum has density γBL(·) given

by

γBL(ω) =
µc
2π

[ ∞∑
j=0

(j + 1)qj +
∞∑
j=1

∞∑
k=j

(k + 1 − j)qk(F̃ j(ω) + F̃ j(−ω))
]
.

Observe that γBL(ω) = γNS(ω) as in Exercise 8.2.9(d) in the cases q1 = 1
and m[1] = 1, m[2] = 0, respectively.

(b) Show that when qj = (1 − α)αj (j = 0, 1, . . .) with 0 < α < 1, so that
each cluster is a transient renewal process,

γBL(ω) =
µc

2π(1 − α)

[
1

1 − αF̃ (ω)
+

1

1 − αF̃ (−ω)
− 1

]
,

while when q0 = 0, qj = (1 − α)αj−1 (j = 1, 2, . . .),

γBL(ω) =
µc

2πα(1 − α)

[
1

1 − αF̃ (ω)
+

1

1 − αF̃ (−ω)
− 1 − (1 − α)2

]
.

(c) The formulae in parts (a) and (b) assume that the cluster centre is included
in the cluster process. Show that omitting the cluster centres leads to

γBL(ω) =
µc
2π

[
∞∑
j=1

jqj +
∞∑

k=j+1

(k − j)qk(F̃ j(ω) + F̃ j(−ω))

]

=
µc
2π

[
∞∑
j=1

jqj +
∞∑
j=2

qj

j−1∑
k=1

(j − k)(F̃ k(ω) + F̃ k(−ω))

]
.

8.2.11 Let M2 be a p.p.d. measure on BR with density m2. Show that if 0 < a ≤
m2(x) ≤ b < ∞ (all x) then there exists a zero-mean Gaussian process
X(t) such that m2(x) = E[X2(t)X2(t+x)] and hence that M2 is the reduced
second-moment measure of the process ξ(A) =

∫
A
X2(t) dt (A ∈ BR). Deduce

that any p.p.d. function c2(·) can be a reduced covariance density; i.e. there
is some a > 0 such that a + c2(x) is the second-moment density of some
second-order stationary random measure.

8.2.12 Let F be any totally bounded symmetric measure R
d. Show that F can be a

covariance measure. [Hint: Construct a Gauss–Poisson process and refer to
Proposition 6.3.IV. See Milne and Westcott (1972) for further details.]
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8.3. Multivariate and Marked Point Processes

This section provides a first introduction to the wide range of extensions of
the previous theory, incorporating both time-domain and frequency-domain
aspects. We look first at multivariate and marked point processes, with sta-
tionarity in time (i.e. translation invariance) still playing the central role.

The results given thus far for second-order stationary random measures and
point processes on R

d extend easily to multivariate processes on R
d, though

for convenience we discuss mostly the case d = 1. The first-moment measure
in Proposition 8.1.I(a) becomes a vector of first-moment measures

Mi(A) = E[ξi(A)] (i = 1, . . . ,K; A ∈ BR),

one for each of the K components. Under stationarity, which means transla-
tion invariance of the joint probability structure, not just of each component
separately, this reduces to a vector of mean densities {mi, i = 1, . . . ,K}.

Similarly, the second-order moment and covariance measures in the uni-
variate case are replaced by matrices M and C of auto- and cross-moment
(or covariance) measures with elements for i, j = 1, . . . ,K and A, B ∈ BR,

Mij(A×B) = E[ξi(A)ξj(B)],
Cij(A×B) = Mij(A×B)−Mi(A)Mj(B).

Under stationarity, the diagonal components Mii are invariant under simulta-
neous shifts in both coordinates and so possess reduced forms M̆ii, which
inherit the properties of the reduced moment measures listed in Proposi-
tion 8.1.II. More than this is true, however. Since every linear combina-
tion

∑k
i=1 αiξi(Ai) is again stationary, we find on taking expectations of the

squares that the quadratic forms
∑k
i=1
∑k
j=1 αiαjMij(Ai × Aj) are all sta-

tionary under diagonal shifts and therefore possess diagonal factorizations.
From this there follows the existence of reduced forms, M̆ij(·), C̆ij(·), say, for
the off-diagonal as well as the diagonal components of the matrices.

In the point process case, the off-diagonal components M̆ij , C̆ij (i �= j)
will not have the atom at the origin characteristic of the diagonal components
unless there is positive probability of pairs of points occurring simultaneously
in both the i and j streams. In particular, if the ground process Ng(·) =∑K
i=1Ni(·) is orderly, both the matrix of reduced factorial moment measures

M̆(A) =
(
M̆[i,j](A)

)
=
(
M̆ij(A)− [δijδ0(A)mi]�(A)

)
and the corresponding matrix of reduced factorial covariance measures with
elements

C̆[i,j](A) = M̆[i,j](A)−mimj�(A)

will be free from atoms at the origin.
Whether or not such atoms exist, the matrix M̆ enjoys matrix versions of

the properties listed in Proposition 8.1.II; we state them for clarity.
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Proposition 8.3.I (Stationary multivariate random measure: Second-order
moment properties).
(i) M̆(A) ≥ 0, with M̆ii(A) > 0 if A � 0 and either Ni has an atomic

component or A is an open set;
(ii) M̆(A) = M̆T (−A);

(iii) M̆ is positive-definite: for all finite sequences {fi} of bounded measurable
complex functions of bounded support,

K∑
i=1

K∑
j=1

∫
R

fi(x)fj(x+ u) M̆ij(du) ≥ 0; (8.3.1)

(iv) M̆ is translation-bounded: for given A, there exists a constant KA such
that ||M̆(x+A)|| =

∑K
i,j=1 |M̆ij(x+A)| < KA;

(v) If also the process is ergodic as for equations (8.1.4–5), then as r(A)→∞,
M̆(A)/�(A)→ M̆∞ ≡ (mimj), and for all bounded Borel sets B,

1
�(A)

∫
A

ξi(x+B) ξj(dx)→ M̆ij(B).

The properties follow readily from the same device of applying the univari-
ate results to linear combinations of the components (see Exercise 8.3.1).

Note that property (ii) implies that the diagonal measures are symmet-
ric, while for the off-diagonal measures M̆ij(A) = M̆ji(−A), confirming the
importance of order in specifying the cross-moments.

The spectral theory also extends easily to multivariate processes on R. For
any linear combination of the components, the basic p.p.d. properties (i) and
(iii) above are interchanged by the Fourier transform map, implying that the
moment measures can be represented by a matrix of spectral measures, which
again enjoys the properties listed above (see Exercise 8.3.2).

For practical purposes, the multivariate extension of the Bartlett spectrum
(Definition 8.2.II) is of greatest importance. This comprises the matrix Γ
of auto- and cross-spectral measures

(
Γij(·)

)
in which the diagonal elements

Γii(·) have the properties described in Section 8.2 and the matrix as a whole
has the positive-definiteness property in (8.3.1). Indeed, (8.3.1) can be re-
garded as being derived from the filtered form

X(t) =
k∑
i=1

∫ ∞

−∞
fi(t− u) ξi(du) (8.3.2)

for which the spectral measure ΓX has the form

ΓX(dω) =
k∑
i=1

k∑
j=1

f̃i(ω)f̃j(ω) Γij(dω). (8.3.3)

In the generality considered here, the components ξi at (8.3.2) may be
point processes or random measures. If the latter are absolutely continuous,
the appropriate components of the matrix Γ then reduce to the usual spectra



318 8. Second-Order Properties of Stationary Point Processes

and cross-spectra of the stationary processes formed by their densities. In
this way, the theory embraces both point and continuous processes as well
as mixed versions. If the continuous process has varying sign, as occurs with
a Gaussian process, or is given in the wide sense only, then the appropriate
framework is the matrix extension of the wide sense theory summarized after
Definition 8.4.VII.

From the practical viewpoint, these remarks mean that the interaction of
point process systems, or mixtures of point process and continuous systems,
can be studied in the frequency domain very much as if they were all contin-
uous systems. The essential difference is that each point process component
leads to a δ-function component in the diagonal term C̆ii(·) to which there is
then a corresponding nonzero constant contribution in the spectral measure
Γii(·). Bearing this in mind, all the standard concepts of multivariate spectral
theory, such as coherence and phase, or real and quadratic spectra, carry over
with minor variations to this more general context and provide valuable tools
for the descriptive analysis of multivariate point processes and mixed systems.
Brillinger (1975a, b, 1978, 1981) outlines both differences and similarities; for
an example studied in depth, see Brillinger (1992).

The next two examples illustrate simple special cases of these ideas.

Example 8.3(a) A bivariate Poisson process [continued from Example 6.3(e)].
The stationary bivariate point process described earlier is determined by three
parameters: rates µ1 and µ2 for the occurrence of single points in processes 1
and 2, respectively, and a boundedly finite measure Q̃3(du) = µ3G(du) on R,
in which µ3 is the rate of occurrence of pairs of points, one in each process and
G(du) is a probability distribution for the signed distance u from the process
1 point to the other point. It is convenient for the rest of the example to have
G(du) = g(u) du for some probability density function g(·) on R.

Since the two component processes are both Poisson, the only nonzero
second-order factorial cumulant measure is in the cross-covariance term, with

C̆[12](A) = µ3

∫
A

g(u) du = C̆[21](−A).

The matrices m̆(u), c̆(u) of densities for the matrices M̆, C̆ of reduced second-
moment measures are given respectively by

m̆(u) =
µ1 + µ3 0

0 µ2 + µ3

 δ0(u) + (µ1 + µ3)2 (µ1 + µ3)(µ2 + µ3) + µ3g(u)
(µ1 + µ3)(µ2 + µ3) + µ3g(−u) (µ2 + µ3)2


and

c̆(u) =
µ1 + µ3 0

0 µ2 + µ3

 δ0(u) +
 0 µ3g(u)
µ3g(−u) 0

 .
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The corresponding Bartlett spectra are all absolutely continuous, the den-
sities γij(ω) of the matrix Γ being given by

1
2π

 µ1 + µ3 µ3G̃(ω)
µ3G̃(−ω) µ2 + µ3

 , (8.3.4)

where G̃(ω) =
∫

R
e−iuωg(u) du. The coherence of the two processes, at fre-

quency ω, is the ratio

ρ12(ω) =
µ3|G̃(ω)|√

(µ1 + µ3)(µ2 + µ3)
,

while their phase at the same frequency is

θ12(ω) = arctan
(

Im(G̃(ω))

Re(G̃(ω))

)
.

Example 8.3(b) System identification: a special case. In the previous exam-
ple, the spectral densities completely determine the parameters of the process.
This leads to the more general problem of determining the characteristics of
a point process system, meaning some mechanism for producing a point pro-
cess output from a point process input. Deletions (or thinnings), delays (or
translations), and triggering of clusters can all be regarded as examples of
point process systems. The problem of system identification then consists of
determining the mechanism, or at least its main features, from measurements
on its input and output. The two components of the previous example can be
regarded as the input and output of a system specified as follows: a proportion
π1 = µ1/(µ1 + µ3) of the input points are randomly deleted while each of the
points in the remaining proportion π2 = 1− π1 is transmitted after indepen-
dent delays with d.f. G [such a specification requires G(·) to be concentrated
on a half-line], with this transmitted output being contaminated with ‘noise’
consisting of the points of a Poisson process at rate µ2. It is evident from the
spectral representation in (8.3.4) that the three system parameters π1, G and
µ2 can be identified by measuring the response of the system to a Poisson
input process and finding the joint first- and second-order properties of the
input and output. It is equally evident that this identification is impossible
on the basis of separate observations of the input and output.

Suppose now that the Poisson input process is replaced by any simple
stationary input process with mean density m and spectral density γ(·) in
place of (µ1 + µ3)/(2π). Then, in place of the matrix with components at
(8.3.4), we would have the matrix

γ(ω) γ(ω)G̃(ω)

γ(ω)G̃(ω)
µ2 +mπ2

2π
+ π2

1 |G̃(ω)|2
(
γ(ω)− m

2π

)
 . (8.3.5)

Once more it is evident that in principle the parameters π1, G and µ can be
identified from this matrix of spectral densities.
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Many applications of multivariate point process models arise as extensions
of contingency table models when more precise data become available con-
cerning the occurrence times of the registered events. Typical examples arise
in the analysis of medical or epidemiological data collected by different local
authorities. If the only data available represent counts of occurrences for each
region and within crude (e.g. yearly) time intervals, then methods of cate-
gorical data analysis may help to uncover and interpret spatial and temporal
dependences. If, however, the data are extended to record the times of each
individual occurrence, then marked point process methods may be more ap-
propriate. Several recent books, such as Cressie (1991), Ripley (1988) and
Guttorp (1995), provide useful introductions to and examples of such stud-
ies. The interpretation of the marks, however, is by no means restricted to
such spatial examples. Examples abound in neurophysiology, geology, physics,
astronomy, and so on in which interest centres on the evolution and interde-
pendencies of sequences of events involving different types of events.

The first stages in the point process analysis of such data are likely to in-
volve descriptive studies, which have the aim of mapping basic characteristics
and dependences. Here, while they may be followed later by model-fitting
and testing exercises, nonparametric estimates of the first- and second-order
characteristics are of particular importance. Such estimates closely follow the
univariate forms described earlier [see in particular (8.1.4–5) and (8.1.16–17)].
They take their cue from (8.1.5) in Proposition 8.1.II. Since we are consider-
ing MPPs with time as the underlying dimension, estimates such as (8.1.16)
for the reduced moment measures here take the form

̂̆
M jk((0, τ ]) =

1
T

∑
i:0≤tik<T

Nj(tik, tik + τ ] . (8.3.6)

In the cross terms, the sum is extended over events of type k while the counts
are for events of type j. Edge corrections of the type (8.1.26) can be in-
corporated, or more simply one could apply the plus sampling modification,
which in the one-dimensional context would amount to including within the
sum the full contributions N(tik, tik + τ ] initiated by events of type k with
tik < T < tik + τ .

Models for such processes typically involve extensions and modifications of
the basic univariate models. In particular, it is very easy to develop extensions
of the standard cluster models in which the cluster members may be events of
different types (see Exercise 8.3.3). More complex versions allow events of any
one type to produce ‘offspring’ of other types. Perhaps the most important
such example is the multivariate extension of the Hawkes process considered
below.

Example 8.3(c) Mutually exciting point processes. Hawkes (1971b, 1972)
generalized the model described in Examples 6.4(c) and 7.2(b) to both the
multivariate and marked point process cases. We give here the multivariate
model but via a cluster process representation, where the branching process
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now consists of points of K different types and for each i, j = 1, . . . ,K
there is a Poisson process of offspring of type j generated by an ancestor
of type i at time t governed by the parameter measure µij(· | t), all these
processes being independent and each new offspring generating its own Poisson
process. Assume homogeneity of such offspring processes by setting µij(s | t)
= µij(s − t) as earlier in Example 6.4(c) and, to ensure that there are a.s.
only finitely many descendants to any given individual, that the eigenvalue
of largest modulus of the matrix

(
µij(R)

)
, which by Perron–Frobenius theory

is necessarily positive, is smaller than 1. Finally, suppose that type i points
enter the system from outside as ancestors in a Poisson process at rate λi
(i = 1, . . . ,K).

For notational simplicity, we confine attention to the case where the µkl(·)
have densities (i.e. µkl(dv) = µkl(v) dv, say). Then, results from branching
processes in Section 5.5 (see e.g. Exercise 5.5.7) show for the cluster member
processes first that the first-moment measures Mki(·) have densities mki(·)
for which

mki(x) = δikδ0(x) +
K∑
l=1

∫
R

µkl(v)mli(x− v) dv, (8.3.7)

and for the second-order measures we have the densities

mk,ij(x, y) = mki(x)mkj(y) +
K∑
l=1

∫
R

µkl(v)ml,ij(x− v, y − v) dv. (8.3.8)

The first- and second-moment densities, which incorporate an appropriate
δ-function, can be interpreted as

mki(x) dx = Pr
{

ancestor of type k born at 0 has
type i descendant born in (x, x+ dx)

}
,

mk,ij(x, y) dxdy = Pr
{

ancestor of type k born at 0 has type i and j descen-
dants born in (x, x+ dx) and (y, y + dy), respectively

}
.

Thus, the mean density of type i points, assuming stationarity, is given by

mi ≡
K∑
k=1

λk

∫
R

mki(x) dx. (8.3.9)

The integral in (8.3.9) can be found by solving (8.3.7) after integration,
but for later use it is better now to introduce the Fourier transforms

m̃ij(ω) =
∫

R

eixωmij(x) dx, µ̃ij(ω) =
∫

R

eixωµij(x) dx,

so that m̃(ω) ≡
(
m̃ij(ω)

)
and µ̃(ω) ≡

(
µ̃ij(ω)

)
are related by

m̃(ω) =
(
I − µ̃(ω)

)−1
, (8.3.10)

and the column vector (m1, . . . ,mK)T = m̃(0)(λ1, . . . , λK)T . The inverse at
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(8.3.10) is well defined because the largest eigenvalue of
(
µij(R)

)
=
(
µ̃ij(0)

)
is by assumption less than 1.

Similar lengthier analysis starting from (8.3.8) and using the multitype
extension of the relation in (6.3.14) for the reduced covariance density in
terms of the second-order cluster member densities leads to

c̆ij(u) =
K∑
k=1

λk

∫
R

mk,ij(x, x+ u) dx,

in which the mk,ij(·) are multitype analogues of ρ[2](·) in (6.3.14). This leads
ultimately to the matrix of spectral densities as(
γij(ω)

)
=
(

1
2π

∫
R

eiuω c̆ij(u) du
)

=
1

2π
m̃T (−ω) diag(m1, . . . ,mK)m̃(ω)

=
1

2π
(
I − [µ̃(−ω)]T

)−1 diag(m1, . . . ,mK)
(
I − µ̃(ω)

)−1
, (8.3.11)

which generalizes (8.2.10).
Hawkes (1971b) derived (8.3.11) using a Wiener–Hopf argument and the

linear intensity structure

λ∗
i (t) = λi +

∑
k

∫ t

−∞
µki(t− s) dNk(s).

A range of further models can be obtained by varying the character of the
cluster centre process while keeping the mutually exciting form for the cluster
members (see Exercise 8.3.4).

We now turn to the second-order properties of MPPs with general mark
space. We consider point processes taking their values in X = R × K for
some c.s.m.s. K so that the process consists of pairs (ti, κi), where ti ∈ R

and κi ∈ K. We assume stationarity along the time axis R and suppose that
the first- and second-moment measures exist as boundedly finite measures
in X and X (2). The main emphasis is on time-domain properties—that is,
on the moment and covariance measures themselves—rather than on their
Fourier transforms. Much of this theory can be extended immediately to
homogeneous point processes in R

d, but mostly we leave such extensions to
follow the more systematic analysis of homogeneous processes in Chapter 12.

Although we have met already several examples of processes of this type,
particularly in Chapter 6, it may still be helpful to start by listing formally
the basic properties of their first- and second-order moment measures.

Proposition 8.3.II (Moment Structure of Stationary MPP). Let N(·) on
R × K be a simple stationary marked point process for which the first- and
second-moment measures exist. Then, defining u = t2 − t1, the first- and
second-moment measures have respective factorizations

M1(dt× dκ) = F (dκ) dt, (8.3.12)
M2(dt1 × dt2 × dκ1 × dκ2) = M̆2(du× dκ1 × dκ2) dt1, (8.3.13)
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corresponding, respectively, to the following integral relations, valid for
bounded measurable h with bounded support:∫

R×K
h(t, κ)M1(dt× dκ) =

∫
R

dt
∫

K
h(t, κ)F (dκ), (8.3.14)∫

(R×K)(2)
h(t1, t2, κ1, κ2)M2(dt1 × dt2 × dκ1 × dκ2)

=
∫

R

dt
∫

R×K×K
h(t, t+ u, κ1, κ2) M̆2(du× dκ1 × dκ2). (8.3.15)

Proof. Both statements are straightforward applications of the factorization
Lemma A2.7.II, the second after taking coordinates in the space X (2) so that
(t1, t2, κ1, κ2) �→ (t1, t1 + u, κ1, κ2) (see Exercise 8.3.5).

If the ground process has a finite mean density mg = E[N((0, 1]×K)], then
the measure F is totally finite with F (K) = mg, and we can thus introduce a
probability measure Π on (K,B(K)) by setting

Π(A) = F (A)/F (K)
(
A ∈ B(K)

)
. (8.3.16)

Π(A) can then be interpreted as the stationary distribution of marks.
The assumption mg < ∞ is not implied directly by the assumption that

the first-moment measure exists (i.e. defines a boundedly finite measure in
R× K), though to our knowledge all extant counterexamples are nonergodic
in character (see Exercise 8.3.6).

The distribution Π has two further important interpretations. First, it is
an ergodic probability in the sense (see Chapter 12) that, if the process is
ergodic and T →∞,

#{(ti, κi): 0 < ti < T, κi ∈ A}
T

=
N((0, T ]×A)

T
→ Π(A) a.s.

Second, it can be interpreted as the distribution of the mark associated with
an arbitrary (loosely, randomly selected) time point (event) ti of the process.
Equivalently, it is the distribution of the mark associated with an event at
the origin, given that an event of some kind occurs at the origin. This is the
interpretation as a Palm probability, as intimated in Chapter 6 and developed
in greater detail in Chapter 13.

The reduced second-moment measure M̆2(du×dκ1×dκ2) also has a range
of important interpretations. For u �= 0, it represents the rate of occurrence
of pairs of points u time units apart, the first having its mark in (κ1, κ1 +dκ1)
and the second, at the (signed) distance u from the first, having its mark in
(κ2, κ2 +dκ2). Note that the order of marks can be distinguished; when u �= 0
and the density m̆2(u) exists, we have

m̆2(u, κ1, κ2) = m̆2(−u, κ2, κ1),
�= m̆2(u, κ2, κ1) in general.
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Again, there is an interpretation as an ergodic limit: for T →∞,

#{pairs (ti, κi), (tj , κj): 0 < ti < T, 0 < tj − ti < u, κi ∈ A, κj ∈ B}
T

→ M̆2((0, u]×A×B) a.s.

Several different interpretations as a Palm measure are possible, depending
on whether one conditions on a point at the origin, without any condition on
the mark; on a point at the origin with specified mark; or on two points at a
given separation u apart, with the first at the origin. In particular,

M̆2(B | u, κ1) =
M̆2(du× dκ1 ×B)

duF (dκ1)
,

=

∫
B
m̆2(u, κ1, κ2) dκ2

mgf(κ1)
if the densities exist,

(8.3.17)

representing the rate of occurrence of points with marks in B conditional
on the occurrence of a point with mark κ1 at a time origin u time units
previously. It has the character of a cross-intensity. Further variants are set
out in Lemma 8.3.III.

The results so far have been stated in terms of the ordinary rather than
the factorial moment measures. When the ground process is simple (as we are
assuming throughout this chapter), the only differences arise when u = 0, in
which case the reduced form of the ordinary second-moment measure includes
a double δ-function term δ(u) δ[ρ(κ1, κ2)] (here, ρ(·) represents the distance
function in the mark space), a term that is missing from the correspond-
ing factorial moment density. Even if u = 0, the complete moment density
m̆2(0, κ1, κ2) can still exist (and is then zero) if κ1 �= κ2.

For u �= 0, the densities m̆2(u, κ1, κ2) and the corresponding covariance
densities c̆2(u, κ1, κ2) (or normalized versions of them) are usually the main
objects of investigation in a second-order analysis of a stationary marked or
multivariate point process.

Example 8.3(d) Stationary process with independent marks (see Proposi-
tion 6.4.IV). Let the simple point process N on R have mean density m and
suppose that marks are allocated independently according to the probability
distribution F (·). Then, F (·) coincides with the stationary mark distribution
Π(·) at (8.3.16) and with the mark kernel F (· | t) introduced in Proposition
6.4.IV (and here independent of t, from stationarity). For u �= 0, the reduced
moment measure M̆2 takes the form

M̆2(du× dκ1 × dκ2) = M̆g
[2](du)× F (dκ1)× F (dκ2) ,

and for the covariance measure,

C̆2(du× dκ1 × dκ2) = C̆g
2 (du)× F (dκ1)× F (dκ2),
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where M̆g
2 and C̆g

2 are the reduced moment and cumulant measures of the
initial process N , which here acts as the ground process Ng.

Such a simple model may be useful as a null hypothesis in testing for
more complex interactions, as, for example, in the discussion of earthquake
magnitudes in Vere-Jones (1970).

Another focus of practical interest is the bivariate distribution of the marks
from two points at a given separation from each other. One is typically
interested in how the properties of this distribution vary as a function of
the distance between the two points. The existence of such distributions,
while not a direct corollary of Proposition 8.3.II, does follow from it via a
further application of the disintegration theory outlined in Appendix A1.5.
We state the result for MPPs with state space X = R; note that the extensions
to stationary (homogeneous) processes on X = R

d are immediate (see also
Exercise 8.3.7).

Lemma 8.3.III. Let N(·) satisfy the conditions of Proposition 8.3.II, and
suppose in addition that for its ground process the second-moment measure
exists and has reduced form M̆g

2 (·). Then, there exists a bivariate mark kernel
Π2(K1 ×K2 | u), where K1,K2 ∈ B(K), such that
(i) for M̆g

2 -almost-all u, Π2(· |u) is a probability distribution on K(2);
(ii) Π2(K1 ×K2 | u) is a Borel measurable function of u for fixed K1, K2;

(iii) M̆2 has the factorization

M̆2(du× dκ1 × dκ2) = M̆g
2 (du) Π2(dκ1 × dκ2 | u),

or in integral form, for bounded Borel functions h on X × K(2) with
bounded support on X ,∫

R×K(2)
h(u, κ1, κ2) M̆[2](du× dκ1 × dκ2)

=
∫

R

M̆g
2 (du)

∫
K(2)

h(u, κ1, κ2) Π2(dκ1 × dκ2 | u).

Proof. The proof is a straightforward application of the disintegration theo-
rems A1.5.II and A1.5.III, starting from the observation that for fixed K1 and
K2, the measure M̆[2](du×K1×K2) is absolutely continuous with respect to
the moment measure M̆g

2 (du) of the ground process.

A point to note here is that the univariate mark distributions arising as
the marginals in the bivariate distribution above are not in general equal to
the stationary mark distribution: the former stem from an analysis of second-
order moments, while the latter comes from first-order moments. Nor is it
necessarily the case that the bivariate distributions are symmetric. These
points are illustrated in Exercise 8.3.8 and Example 8.3(e) below.

Assuming that the conditions of the lemma hold, various characteristics
of the bivariate mark kernel Π2(· | u) can be studied as functions of u. The
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most important are the covariance and the correlation, which we may de-
note by covK(u) and corrK(u), respectively. Exactly parallel concepts can
be introduced for spatial processes, with the simplification, when the process
is isotropic as well as homogeneous, that the functions depend only on the
distance |u|.
Example 8.3(e) Marked cluster process with cluster-dependent marks. We
consider cluster processes in which both the cluster centre process and the
cluster member processes carry marks and such that the mark, K say, for a
given cluster centre controls both the spatial and the mark distributions of
the cluster members. In the example that follows, we suppose for simplicity
that all marks are nonnegative integers.

Take a Neyman–Scott type MPP in which the cluster centre process has
realizations (xi,Ki), say, where {xi} are the points of a Poisson process at
rate λc and the marks Ki are i.i.d. with Pr{Ki ≥ k} = sk (all i). For a given
cluster centre with mark K, say, let the number of cluster members Nm, say,
have a negative binomial distribution with parameters (α,K/(1+K)) so that
the conditional mean and variance of the cluster size are αK and αK(K+ 1),
respectively. Suppose also that the associated marks for the cluster members,
given the parent mark K, are i.i.d. with discrete uniform distribution on
the integers 1, . . . ,K. Thus, the larger the parent mark K, the larger both
the number of offspring and their marks. Assume that offspring points are
distributed at i.i.d. distances from the parent with common distribution F
with density f . The MPP we consider is the collection of all offspring points
and associated marks.

Consider first the process of points having a given mark k ≥ 1. Only
clusters with parent mark K ≥ k can contribute to this process. Given Nm,
the number of cluster members having mark k from such a cluster is found
by binomial sampling, with probability of success 1/K, from the Nm cluster
members. The resulting number of cluster members with mark k again has
a negative binomial distribution with parameters (α, 1

2 ), independent of k,
provided K ≥ k, and with mean α. Overall, the mean density of points with
mark k is therefore λcαsk. For every positive k, the process of points with
mark k is well defined. Moreover, the process as a whole is a well-defined point
process on R × Z+. On the other hand, in order to be an MPP as defined
in Section 6.4, the ground process (meaning the set of all offspring points)
must be well defined (i.e. only finitely many points a.s. in bounded sets).
Since the cluster centre process is Poisson, and clusters are i.i.d., a sufficient
condition for the cluster process to be well defined is that the mean number
of events per cluster is finite [see Exercise 6.3.5(a)]. Here the mean number
of points per cluster for the ground process is given by E(K) =

∑∞
k=1 sk,

which is finite if and only if K has finite first moment. When this condition
is satisfied, the stationary distribution of marks overall has the length-biased
form πk = sk/E(K).

Consider next the process of pairs of points, with marks k1, k2, separated
by distance u > 0. The second-order moment density has the form
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m̆2(u; k1, k2) = λ2α2sk1sk2

+ λE
(
Hk1(K)Hk2(K)Nm(Nm − 1)

K2

)∫ ∞

0
f̆(x)f̆(x+ u) dx, (8.3.18)

where Hk(j) = 1 if j ≥ k, 0 otherwise, and the integral follows the notation
of equation (6.3.19). The first term here represents the product of the means,
while the second is the contribution to the second moment from pairs belong-
ing to the same cluster. Note that Hk1(K)Hk2(K) = Hmax(k1,k2)(K); taking
expectations with respect to the parent cluster mark in the second term yields

m̆2(u; k1, k2) = λ2α2sk1sk2 + λα(α+ 1)smax(k1,k2)φ(u), (8.3.19)

where φ(u) denotes the integral in (8.3.18). This quantity exists for the
marked process without any further restrictions, but the second-moment mea-
sure does not exist for the ground process unless the sum

∑
k1

∑
k2
smax(k1,k2)

=
∑
k(2k+1)sk converges, equivalent to the existence of a second moment for

the parent mark distribution. When this condition is satisfied, the bivariate
mark kernel at separation u, Π2(k1, k2 | u), can be found by renormalizing
[i.e. by dividing (8.3.19) by the double sum just described]. Even if we sum
out one variable, the marginal distribution of the other does not reduce to the
stationary mark distribution because of the intervention of the second term.
Expressions for the mark covariance and mark correlation at separation u can
be found from the bivariate mark kernel: details are left to the reader.

The assumption of i.i.d. marks within a cluster implies that there is no
dependence on the separation u except through the term φ(u). This implies
in particular that the bivariate mark kernel is symmetric in u. It would,
however, be quite natural in some modelling situations to incorporate an
explicit dependence of the mark distribution on the distance from the cluster
centre, in which case a further dependence on u would arise, causing the
bivariate distribution to be asymmetric in general.

MPPs can give rise to a diverse range of second-order characteristics (see
e.g. Stoyan, 1984; Isham, 1985): the ‘simple’ case of a finite mark space in
Proposition 8.3.I bears this out. Schlather (2001) gives a valuable survey.

From a theoretical viewpoint, some of the most interesting applications of
stationary MPPs are to situations where the marks are not merely statistically
dependent on the past evolution of the process but are direct functions of it.
As an extreme case, the mark at time t can be taken as the whole past history
of the point process up to time t. This idea lies behind one approach to the
Palm theory of Chapter 13. The following elementary example gives some
insight into this application.

Example 8.3(f) Forward recurrence times. Assume there is given a simple
stationary point process on R, and associate with any point ti of the process
the length Li = inf{u:N(ti − u, ti) ≥ 1} of the previous interval. Then, the
MPP consisting of the pairs (ti, Li) is stationary. Assuming that N has a
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finite mean density m, it follows from Proposition 8.3.II and (8.3.16) that a
stationary probability distribution ΠL(·) exists for the interoccurrence times.
The integral relation (8.3.14) then leads to important relations involving ΠL(·)
as for example in the following deduction of the distribution of the stationary
forward recurrence time random variable. The distance of the point nearest to
the right of the origin, t′1 say, has this distribution, with t′1 = inf{ti : ti > 0}.
If i′ is the index of this point, then 0 < t′1 = ti′ ≤ Li′ . Take any bounded
measurable function g(·) of bounded support and define h(t, κ) = g(t) if 0 ≤
τ ≤ κ, h(t, κ) = 0 otherwise. The left-hand side of (8.3.14) equals∫

R×R+

h(t, κ)M1(dt× dκ) = E
[ ∫

R×R+

h(t, κ)N(dt× dκ)
]

= E

[ ∑
i:t)i>0

h(ti, κi)

]
= E[g(t′1]

since h(t, κ) = 0 for t > t′1; evaluating the right-hand side as below gives

E[g(t′1)] = m

∫ ∞

0
g(u) du

∫ ∞

u

ΠL(dκ) = m

∫ ∞

0
[1− FL(u)]g(u) du,

where FL(t) =
∫ t
0 ΠL (du) is the distribution function for the interval length.

Since g is an arbitrary measurable function of bounded support, we can for
example choose g(t) = I(0,x](t) and obtain Pr{t′1 ≤ x} on the left-hand side,
equal to m

∫ x
0 [1 − FL(u)] du from the right-hand side; thus, the distribution

for the point t′1 immediately following the origin (i.e. the distribution for the
forward recurrence time) has the density

f1(x) = m[1− FL(x)] = [1− FL(x)]/µL ,

where µL is the mean interval length [see (4.2.3) and Proposition 4.2.I]. This
simple derivation of a Palm–Khinchin relation uses an argument similar to
the original work of Palm (1943).

Example 8.3(g) Vehicles on a road. We consider a spatially stationary dis-
tribution of cars along a long straight road, the car at xi having a (constant)
velocity vi, with vi �= vj in general. Our aim is to determine the evolution in
time, if any, of characteristics of the process.

The family of transformations that concerns us is given by

(xi, vi) �→ (xi + tvi, vi) (real t).

Denote by mt, Πt(·), and ct(u, v1, v2) the mean density, the stationary (in
space) velocity distribution, and the spatial covariance density at time t. We
can refer moments at time t to moments at time 0 on account of the following
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reasoning. From (8.3.14), we have for the space–velocity mean density at time
t, Mt(dx× dv) say,∫

R×R+

h(x, v)Mt(dx× dv) =
∫

R×R+

h(x+ tv, v)m0 dxΠ0(dv)

=
∫

R×R+

h(y, v)m0 dyΠ0(dv),

so that the mean vehicle density and velocity distribution remain constant in
time whatever their initial forms.

Applying a similar argument to the second-order integrals implies that if
the covariance densities ct(u, v1, v2) exist for t = 0, they exist for all t > 0
and are given by

ct(u, v1, v2) = c0
(
u+ t(v2 − v1), v1, v2

)
.

The asymptotic covariance properties of ct(·) at t → ∞ thus depend on the
behaviour of c0(u, v1, v2) for large u. In most practical cases, a mixing con-
dition holds and implies that for all v1, v2, c0(u, v1, v2) → 0 as |u| → ∞.
Under these conditions, any correlation structure tends to die out, this being
an illustration of the ‘Poisson tendency’ of vehicular traffic (Thedeen, 1964).

This example can also be treated as a line process and extended in various
ways (see e.g. Bartlett, 1967; Solomon and Wang, 1972).

Exercises and Complements to Section 8.3
8.3.1 Detail the argument that establishes Proposition 8.3.I by applying Proposition

8.1.I to the linear combinations
∑

aiξi(·).
8.3.2 Let the matrix (M̆ij(·)) of nonnegative measures be positive-definite as in

(8.3.1). Show that the matrix of Fourier transforms (Fij(·)) consists of non-
negative measures with the same positive-definite property.

8.3.3 Consider a multivariate Neyman–Scott process in which cluster centres occur
in time at rate µc and cluster members may be of different types with joint
density p(k, u) = πkfk(u),

∑
πk = 1 =

∫
fk(u)du (k = 1, . . . ,K). Find ex-

pressions, generalizing those of Example 6.3(c), for the means and covariance
densities of the different component streams and the corresponding multivari-
ate Bartlett spectra.

8.3.4 Consider a cluster process in which the cluster centres form a simple stationary
point process with mean density λc and Bartlett spectrum with density γ11(·),
while the clusters have the Hawkes branching structure of Example 8.3(c).
Regard the resultant process as the output of a system with the cluster centre
process the input and the generation of cluster members representing a type of
positive feedback with the linear structure characteristic of a Hawkes process.
(a) Arguing from the general relations for the second-order properties of a

cluster process, show that the output process here has the spectral density

γ22(ω) =
[λc/(2π)]((1 − ν)−1 − 1) + γ11(ω)

|1 − µ̃(ω)|2 ,
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where ν = µ̃(0), which [see (8.3.11)] is a different generalization of (8.2.10).
The only contributions to the cross-covariance terms are from the cluster
centre to cluster members, leading to c12(u) = λcm1(u | 0) (see the notation
in Exercise 5.5.6), and thus

γ12(ω) =
λc/(2π)

(1 − µ̃(ω))−1 = γ21(−ω).

(b) By specializing γ11(·), more specific examples of input/output systems are
obtained. For example, the input may be a Cox process directed by a
continuous nonnegative process X(·), in which case we have a continuous
input process X(·) causally affecting an output point process. If, more-
over, X(·) is itself a shot-noise process generated by some primary point
process, we recover a somewhat more general case of mutually exciting
point processes.

8.3.5 Explicitly state the mappings and show their use in applying the factorization
Lemma A2.7.II to prove Proposition 8.3.II.

8.3.6 MPPs with infinite mean ground density. Suppose given a countable infinity
of stationary (R×K)-valued MPPs Nj , j = 1, 2, . . . , defined on some common
probability space and K ⊆ R+. Suppose that Nj has finite mean density
mj and each point of Nj has the positive-valued mark κj , say, and there
is a probability distribution {πj} with πj > 0 for j = 1, 2, . . . such that∑

j
πjmj = ∞.

(a) Let the MPP N equal Nj with probability πj for j = 1, 2, . . . . Then N
is nonergodic: limT→∞ N((0, T ] × K)/T = limT→∞ Nj((0, T ] × K)/T =
mj with probability πj . Since each Nj is well defined, so is N , and its
mean ground density equals

∑
j
πjmj = ∞. Denoting a realization of N

by {(xi, κi)}, consider the stationary random measure ξ(A) =
∑

xi∈A κi.
Show that ξ(·) is nonergodic unless mjκj is independent of j a.s., and that
its mean density equals

∑
j
πjmjκj , which can be finite or infinite.

(b) Now suppose that the Nj are mutually independent marked Poisson pro-
cesses. (i) Show that the superposition of any specified finite collection of
the Nj is an MPP with finite mean density. (ii) Let J be a countably in-
finite subset of {1, 2, . . .}, and consider N =

∑
j∈J Nj . Then, N is not an

MPP because N((0, 1]×K) = ∞ a.s., contradicting the finiteness condition
in Definition 6.4.I(a).

(c) Suppose in (b) that the Nj are mutually independent simple stationary
MPPs (not necessarily Poisson). Do the conclusions (i) and (ii) continue
to hold?

8.3.7 Let the bivariate simple Poisson process model of Example 8.3(a) be stationary
so that it can be described in terms of three rate functions µ1, µ2, µ3 and a
distribution function G(·) of the signed distance between a pair of related
points, taking a type 1 point as the initial point. Show that in terms of these
quantities,

m1 = µ1 + µ3, m2 = µ2 + u3,

C̆[2](du; 1, 2) = µ3G(du) = C̆[2](−du; 2, 1).
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Use the p.g.fl. or otherwise to show that when X = R, the joint distribution
of the distances T1 and T2 from an arbitrary origin to the nearest points of
types 1 and 2, respectively, is given by

log Pr{T1 > x, T2 > y}

= −2m1x− 2m2y + µ3

∫ x+y

−x−y
( min(x, y − v) − max(−x,−y − v))G(dv),

while the joint distribution of the forward recurrence times T+
1 , T

+
2 from the

origin to the nearest points in the positive direction is given by

log Pr{T+
1 > x, T+

2 > y}

= −m1x−m2y + µ3

∫ y

−x
( min(x, y − v) − max(0,−v))G(dv).

Consider extensions to the case X = R
d.

8.3.8 Gauss–Poisson process with asymmetric bivariate mark distribution. In a
marked process of correlated pairs (marked Gauss–Poisson process), suppose
that the joint distribution of the marks corresponding to the two points in a
pair depends on the separation of the two points and that the mark of the first
occurring point in the pair is (say) always the larger. Construct an explicit
example for which the bivariate mark distribution at separation u depends
explicitly on u and is asymmetric.

8.3.9 Bivariate forward recurrence time. Extend the argument of Example 8.3(f)
to the case of a bivariate point process by using an MPP in which the mark
at a point ti of the process is of the form (ji;L1i, L2i), where ji is the type
of the point and L1i, L2i are the backward occurrence times to the last points
of types 1 and 2, respectively. Obtain a bivariate extension of the Palm–
Khinchin equations, and compare these with the extensions to nonorderly
point processes discussed in (3.4.14). Hence or otherwise, obtain expressions
for the joint distributions of the intervals between an arbitrary point of type
i (i = 1, 2) and the next occurring points of types 1 and 2 in Example 8.3(a).
[Daley and Milne (1975) use a different approach that exploits methods similar
to those of Chapter 3].

8.4. Spectral Representation
We take up next the possibility of developing a Cramér-type spectral repre-
sentation for stationary point processes and random measures. In R, such
a representation is essentially a corollary of the spectral representation for
processes with stationary increments given by Doob (1949) and for station-
ary interval functions given by Brillinger (1972). No essentially new points
arise, although minor refinements are possible as a result of the additional
properties available for p.p.d. measures. We give a brief but essentially self-
contained account of the representation theory for random measures in R

d

following the general lines of the approach in Vere-Jones (1974). The relation
to spectral representations for stationary generalized processes is discussed in
Daley (1971) and Jowett and Vere-Jones (1972).
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In order to be consistent with the representation theory for continuous-time
processes, we work throughout with the mean-corrected process

ξ0(dx) = ξ(dx) −mdx (8.4.1)

with zero mean, where ξ is a second-order stationary random measure with
mean density m. Thus, we are concerned with properties of the Bartlett
spectrum. An equivalent and perhaps slightly more direct theory could be
built up from the properties of ξ(·) and the second-moment measure: the
differences are outlined in Exercise 8.4.1.

The essence of the Cramér representation is an isomorphism between two
Hilbert spaces, one of random variables defined on a probability space and
the other of functions on the state space X = R

d. In the present context, we
use the notation L2(ξ0) to denote the Hilbert space of (equivalence classes of)
random variables formed from linear combinations of the second-order random
variables ξ0(A) (bounded A ∈ BX ) and their mean square limits, while L2(Γ)
denotes the Hilbert space of (equivalence classes of) measurable functions
square integrable with respect to Γ. Since Γ is not in general totally finite,
we cannot apply directly the theory for mean square continuous processes.
Rather, there are two possible routes to the required representations: we
can exploit the results already available for continuous processes by means of
smoothing techniques such as those used in Section 8.5, or we can develop the
theory from first principles, using appropriate modifications of the classical
proofs where necessary. We adopt the latter approach, although we only
sketch the arguments where they directly mimic the standard theory.

A convenient starting point is the following lemma in which S again denotes
the space of functions of rapid decay in R

d.

Lemma 8.4.I. Given any boundedly finite measure Γ in R
d, the space S is

dense in L2(Γ).

Proof. The result is a minor modification of standard results [see e.g. King-
man and Taylor (1966, p.131) and Exercise 8.4.2].

The key step in establishing the isomorphism between the spaces L2(ξ0)
and L2(Γ) is a special case of Proposition 8.6.IV, which, with the notation

ζf =
∫

Rd

f(x) ξ0(dx), (8.4.2)

where f is a bounded Borel function of bounded support, can be stated in the
form

‖f̃‖L2(Γ) =
∫

Rd

|f̃(ω)|2 Γ(dω) =
∫

Rd

C̆2(dx)
∫

Rd

f(x)f(x+ u) du

= var(ζf ) = ‖ζf‖L2(ξ0) . (8.4.3)

A first corollary of this equality of norms is the following counterpart of the
lemma above.
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Lemma 8.4.II. For ψ ∈ S, the random integrals ζψ =
∫

Rd ψ(x) ξ0(dx) are
dense in L2(ξ0).

Proof. It is enough to show that for any given bounded A ∈ B(Rd), ξ0(A)
can be approximated in mean square by elements ζψn with ψn ∈ S. Working
from the Fourier transform side, it follows from (8.4.3) that ĨA ∈ L2(Γ) and
thus by Lemma 8.4.I that ĨA can be approximated by a sequence of functions
in S. Now S is invariant under the Fourier transform map, so this sequence
can be written as ψ̃n with ψn ∈ S. Applying (8.4.3) with ψ = IAψn leads to

‖ĨA − ψ̃n‖L2(Γ) = ‖ξ0(A)− ζψn
‖L2(ξ0) .

By construction, the left-hand side → 0 as n→∞, and hence also the right-
hand side → 0, which from our opening remark is all that is required.

Lemmas 8.4.I and 8.4.II show that for ψ ∈ S there is a correspondence
ψ̃ ↔ ζψ between elements ψ̃ of a set dense in L2(Γ) and elements ζψ of a
set dense in L2(ξ0). The correspondence is one-to-one between equivalence
classes of functions and is norm-preserving. From this last fact, it follows that
the correspondence can be extended to an isometric isomorphism between
the full Hilbert spaces L2(Γ) and L2(ξ0) (see Exercise 8.4.3 for details), thus
establishing the following proposition.

Proposition 8.4.III. There is an isometric isomorphism between L2(Γ) and
L2(ξ0) in which, for ψ ∈ S, the integral ζψ in (8.4.2) ∈ L2(ξ0) and the Fourier
transform ψ̃ ∈ L2(Γ) are corresponding elements.

The main weakness of this proposition is that it does not give an explicit
Fourier representation of the random measure and associated integrals ζψ.
To overcome this deficiency, we adopt the standard procedure of introducing
a mean square integral with respect to a certain wide-sense random signed
measure with uncorrelated values on disjoint sets.

For any bounded A ∈ B(Rd), let Z(A) denote the random element in L2(ξ0)
corresponding to ψ̃(ω) ≡ IA(ω) in L2(Γ). For disjoint sets A1, A2, it follows
from the polarized form of (8.4.2) (obtained by expressing inner products in
terms of norms) that

E
(
Z(A1)Z(A2)

)
=
∫

Rd

IA1(ω)IA2(ω) Γ(dω) = 0, (8.4.4)

so that the Z(·) are indeed uncorrelated on disjoint sets (or, in the setting of
the real line, have orthogonal increments). The definition of a mean square
integral with respect to such a family is a standard procedure (see e.g. Doob,
1953; Cramér and Leadbetter, 1967) and leads to the conclusion that for every
g ∈ L2(Γ) the integral ∫

Rd

g(ω)Z(dω)
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can be defined uniquely as a mean square limit of integrals of simple functions
and can be identified with the unique random variable associated with g in
the isomorphism theorem described by Proposition 8.4.III. In particular, for
g = ψ̃ ∈ S, the integral below can be identified with the random element ζψ;
that is, ∫

Rd

ψ̃(ω)Z(dω) =
∫

Rd

ψ(x) ξ0(dx).

Also, referring to the convergence property displayed in the proof of Lemma
8.4.II (and this defines an equivalence relation as noted), the limit relation
can be written as

ξ0(A) = l.i.m.
n→∞

ζψn

(see e.g. Doob, 1953, p. 8). More generally, it follows from Proposition 8.6.IV
and (8.4.3) that the same conclusion holds for any bounded ψ of bounded
support. Thus, we have the following result, which is a slight strengthening,
as well as an extension to R

d, of the corresponding result in Vere-Jones (1974).

Theorem 8.4.IV. Let ξ be a second-order stationary random measure or
point process in R

d with Bartlett spectrum Γ. Then, there exists a second-
order wide-sense random measure Z(·) defined on bounded A ∈ B(Rd) for
which

(i) EZ(A) = 0 = E[Z(A)Z(B) ] for bounded disjoint A,B ∈ B(Rd); (8.4.4′)

(ii) varZ(A) = E(|Z(A)|2) = Γ(A); (8.4.5)

(iii) for all g ∈ L2(Γ), the random variable ζ corresponding to g in the isomor-
phism of Proposition 8.4.III is expressible as ζ =

∫
Rd g(ω)Z(dω); and

(iv) for all ψ ∈ S and all bounded measurable ψ of bounded support,

ζψ ≡
∫

Rd

ψ(x) ξ0(dx) =
∫

Rd

ψ̃(ω)Z(dω) a.s. (8.4.6)

Observe that in the Parseval relation in (8.4.6) the left-hand side represents
the usual random integral defined on a realization by realization basis, whereas
the right-hand side is a mean square integral that does not have a meaning
in this sense. The two most important classes of functions ψ are covered by
the theorem. In Exercise 8.4.4, we indicate how (8.4.6) can be extended to
somewhat wider classes of functions and, in particular, (8.4.6) continues to
hold whenever ψ is Lebesgue integrable and ψ̃ ∈ L2(Γ).

An alternative approach to the substance of part (iv) of this theorem is
simply to define the integral on the left-hand side of (8.4.6) to be equal to the
right-hand side there for all ψ̃ ∈ L2(Γ), but this begs the question as to when
this definition coincides with the a.s. definition of the integral used until now.

More explicit representation theorems can be obtained as corollaries to
(8.4.6). In particular, taking ψ(x) = IA(x), we have the following.
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Corollary 8.4.V. For all bounded A ∈ B(Rd),

ξ0(A) =
∫

Rd

ĨA(ω)Z(dω) a.s. (8.4.7)

We cannot immediately obtain an inversion theorem for Z(·) in this form
because the corresponding integral (2π)−d ∫

Rd ĨB(−x) ξ0(dx) need not exist.
The finite integral over U

d
T presents no difficulties, however, and leads to the

second corollary.

Corollary 8.4.VI. For all bounded A ∈ R
d that are Γ-continuity sets,

Z(A) = l.i.m.
T→∞

1
(2π)d

∫
Ud

T

ĨA(−x) ξ0(dx). (8.4.8)

Proof. From the theorem, the finite integral in (8.4.8) can be transformed
into the expression [for θ = (θ1, . . . , θd) and ω = (ω1, . . . , ωd) ∈ R

d]∫
Rd

Z(dω)
∫
A

[
d∏
i=1

(
sinT (ωi − θi)

ωi − θi

)]
dθ.

Provided A is a continuity set for Γ, the integrand convolved with IA(ω)
converges in L2(Γ) to IA(ω) as T → ∞ (see Exercise 8.4.5: the proof is
straightforward for intervals A but not so direct for general bounded A), and
hence the integral converges in mean square to Z(A).

In very simple cases, Corollary 8.4.VI can be used to calculate directly
the process Z(·) having orthogonal increments. Such an example is given
below, partly to illustrate the potential dangers of using the second-order
representation for anything other than second-order properties.

Example 8.4(a) The Fourier transform of the Poisson process. Let ξ be a
Poisson process on R with constant rate λ. Then, it follows from (8.4.8) that

Z((a, b]) = l.i.m.
T→∞

1
2πi

∫ T

−T

eixa − eixb

x

(
N(dx)− λ dx

)
.

Consider in particular the process

Ua(ω) ≡ Z(ω + a)− Z(ω − a) = l.i.m.
T→∞

1
π

∫ T

−T

e−iωx sin ax
x

(
N(dx)− λ dx

)
.

Using standard results from Chapter 9 for the characteristic functional of the
Poisson process, we find

Φ(ω, s) ≡ E exp(isUa(ω)
)

= exp
{
λ

∫ ∞

−∞

[
exp
( ise−iωx sin ax

x

)
− 1− ise−iωx sin ax

x

]
dx
}

= exp
{
λ

∫ ∞

−∞

[
− 1

2 s
2 cosωx

( sin ax
x

)2
+O(s3)

( sin ax
x

)3]
dx
}

= exp
{
− 1

2πλas
2 +O(s3)

}
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uniformly in ω [see e.g. Copson (1935, p. 153) for evaluation of the integral]. It
follows that the variance of Ua(ω) is proportional to the length of the interval
and independent of its location, corresponding to the presumption that Z(·)
in this case must be a process with orthogonal and second-order stationary
increments.

On the other hand, Z(·) clearly does not have strictly stationary incre-
ments, for the full form of the characteristic function depends nontrivially on
ω. Similarly, it can be checked from the joint characteristic function that Z
does not have independent increments. Indeed, as follows from inspecting its
characteristic function, Ua(ω) has an infinitely divisible distribution of pure
jump type, with a subtle dependence of the jump distribution on a and ω that
produces the requisite characteristics of the second-order properties.

The spectral representation for stationary random measures and point pro-
cesses plays a similar role in guiding intuition and aiding computation as it
does for classical time series. We illustrate its use below by establishing basic
procedures for estimating the Bartlett spectrum in two practically important
cases: simple point processes and random (point process) sampling of a sta-
tionary continuous process. Further examples arise in Section 8.5, where we
examine linear filters and prediction.

Example 8.4(b) Finite Fourier transform and point process periodogram.
Estimates of the Bartlett spectrum provide a powerful means of checking for
periodicity in point process data as well as for investigating other features
reflected in the second-order properties. The basic tool for estimating the
spectrum is the point process periodogram, defined much as in the continuous
case through the finite Fourier transform of the realization of a point process
on a finite time interval (0, T ), namely

JT (ω) =
∫ T

0
e−iωt [N(dt)−mdt] =

N(T )∑
k=1

e−iωtk −m1− e−iωT

iω
, (8.4.9)

in terms of which the periodogram is then defined as

IT (ω) =
1

2πT
|JT (ω)|2 (ω ∈ R). (8.4.10)

Express JT (ω) in the form of the left-hand side of (8.4.6) by setting ψ(t) =
e−iωtI(0,T )(t), which is certainly bounded and of bounded support. Then, it

follows from Proposition 8.4.IV(iv) that

JT (ω) =
∫

R

eiT (ω′−ω) − 1
i(ω′ − ω)

Z(dω′) a.s.

The orthogonality properties of Z now imply that

E[IT (ω)] =
1

2πT

∫
R

∣∣∣∣eiT (ω′−ω) − 1
i(ω′ − ω)

∣∣∣∣2 Γ(dω′) (8.4.11a)

=
T

2π

∫
R

[
sin 1

2T (ω′ − ω)
1
2T (ω′ − ω)

]2
Γ(dω′). (8.4.11b)
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If Γ(·) has an atom at ω, then it follows from (8.4.11a) that IT (ω) ∼ T Γ({ω}).
On the other hand, if Γ(·) has a continuous density γ(ω′) in a neighbour-
hood of ω, then it follows from (8.4.11b) that E[IT (ω)] → γ(ω). Thus, the
periodogram is an asymptotically unbiased estimate of the spectral density
wherever the density exists. The contrast between the two cases is the basis
of tests for periodic effects, meaning here some periodic fluctuation in the
rate of occurrence of events. Consistency is another story, however, and some
degree of smoothing must be introduced to obtain consistent estimates of the
spectral density.

The theory here parallels the standard theory except insofar as the obser-
vations are not Gaussian and some spectral mass is carried at arbitrarily large
frequencies. The latter feature is a consequence of assuming that the points
{tk} of the process are observed with complete precision, which is a fiction in
any real context: in reality, only limited precision is possible, amounting to
some smoothing or rounding of the observations, which then induces a taper-
ing of the spectrum at very high frequencies. Nevertheless, the lack of any
natural upper bound to the observed frequency range, even from a finite set
of observations, causes difficulties in tackling questions such as the detection
and estimation of an unknown periodicity modulating the occurrence times
of the observed points. Indeed, the very definition of such a modulation, ex-
cept for specific models such as the Poisson process (when it can appear as a
periodic modulation of the intensity), is a matter of some difficulty. The crux
of the matter for the spectral theory is that, whatever the form of modula-
tion may be, it should induce a periodic variation in the reduced covariance
measure. Vere-Jones and Ozaki (1982) discuss some of these issues in sim-
ple special contexts; the general problem of testing for unknown frequencies
in point process models appears to lack any definitive treatment. Brillinger
(1978, 1981) gives a systematic overview of the differences between ordinary
time series and point process analogues.

Example 8.4(c) Random sampling of a random process. A situation of some
practical importance arises when a stationary continuous-time stochastic pro-
cess X(t) is sampled at the epochs {ti} of a stationary point process. The
resultant process can be considered in two ways, either as a discrete-time
process Yi = X(ti) or as a random measure with jump increments

ξ(dt) = X(t)N(dt).

Neither operation is linear, but the second equation is just a multiplication of
the two processes and leads to the more tractable results. Neither N(·) nor
ξ(·) is a process with zero mean; to express the latter as a process with zero
mean, suppose for simplicity that X(·) has zero mean, and then write

ξ(dt) = X(t)N0(dt) +mX(t) dt,

where N0(dt) = N(dt) − mdt and m = EN(0, 1] is the mean rate of the
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sampling process. Proceeding formally leads to∫
R

φ(t) ξ(dt) =
∫

R

∫
R

φ̃(u− v)ZX(du)N(dv) +m

∫
R

φ̃(u)ZX(du),

corresponding to a representation of the measure Zξ as a convolution of ZX
and ZN with an additional term for the mean. Leaving aside the general case,
suppose that the processes X(·) and N(·) are independent. Then we find

var
(∫

R

φ(t) ξ(dt)
)

=
∫

R

∫
R

|φ̃(u− v)|2 γX(du) γN (dv) +m2
∫

R

|φ̃(u)|2 γN (du),

from which we deduce that

γξ(dω) =
∫

R

γX(dω − u) γN (du) +m2 γX(dω).

Hence, for the covariance measures we have

C̆ξ(du) = c̆X(u)
(
m2 du+ C̆N (du)

)
= c̆X(u) M̆2(du).

Of course, the last result can easily be derived directly by considering

E
(
X(t)N(t, t+ dt]X(t+ u)N(t+ u, t+ u+ du]

)
.

In practice, one generally must estimate the spectrum γX(·) given a (finite
portion of a) realization of ξ(·). When N is a Poisson process at rate m,

γξ(dω) = (m/2π)(varX) dω +m2γX(dω),

so γX can be obtained quite easily from γξ. In general, however, a deconvolu-
tion procedure may be needed, and the problem is complicated further by the
fact that the spectral measures concerned are not totally finite. Consequently,
numerical Fourier transform routines cannot be applied without some further
manipulations [see Brillinger (1972) for further details].

Only partial results are available for the extension of the spectral theory
to random signed measures. One approach, which we outline briefly below,
follows Thornett (1979) in defining a second-order random measure as a family
of random variables {W (A)}, indexed by the Borel sets, whose first and second
moments satisfy the same additivity and continuity requirements as the first-
and second-moment measures of a stationary random measure. The resulting
theory may be regarded as a natural generalization to R

d of the theory of
random interval functions developed by Bochner (1955) and extended and
applied to a statistical context by Brillinger (1972).
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Definition 8.4.VII. A wide-sense second-order stationary random measure
on X = R

d is a jointly distributed family of real- or complex-valued random
variables {ξ(A):A ∈ BX } satisfying the conditions, for bounded A, {An} and
B ∈ BX ,
(i) Eξ(A) = m�(A), var ξ(A) <∞;

(ii) var((Sxξ)(A)) = var ξ(TxA) = var ξ(A);
(iii) ξ(A ∪B) = ξ(A) + ξ(B) a.s. for disjoint A, B; and
(iv) ξ(An)→ 0 in mean square when An ↓ ∅ as n→∞.

If the random variables ξ(·) here are nonnegative, then (iii) reduces to
the first part of (6.1.2) and implies that in (iv) the random variables ξ(An)
decrease monotonically a.s.; that is, ξ(An+1) ≤ ξ(An) a.s., so that (iv) can
be strengthened to ξ(An) → 0 a.s. when An ↓ ∅ as n → ∞ [see the second
part of (6.1.2)]. We then know from Chapter 9 that there exists a strict-sense
random measure that can be taken as a version of ξ(·) so that nothing new
is obtained. Thus, the essence of the extension in Definition 8.4.VII is to
random signed measures.

For the sequel, we work only with the mean corrected version, taking m = 0
in the definition. Given such a family then, we can always find a Gaussian
family with the same first- and second-moment properties: the construction
is standard and needs no detailed explanation (see Doob, 1953; Thornett,
1979). For example, the Poisson process, corrected to have zero mean, has
var ξ(A) = λ�(A), where λ is the intensity; this function is the same as the
variance function for the Wiener chaos process in Chapter 9.

While the definition refers only to variances, covariances are defined by
implication from the relation, valid for real-valued ξ(·),

2 cov
(
ξ(A), ξ(B)

)
= var ξ(A∪B) + var ξ(A∩B)−var ξ(A \B)−var ξ(B \A),

which is readily verified first for disjoint A and B and then for general A and
B by substituting in the expansion of

cov
(
ξ(A), ξ(B)

)
= cov

(
ξ(A ∩B) + ξ(A\B), ξ(A ∩B) + ξ(B\A)

)
.

Although we can obtain in this way a covariance function C(A × B) defined
on products of bounded A,B ∈ BX , it is not obvious that it can be extended
to a signed measure on B(X (2)). Consequently, it is not clear whether or not a
covariance measure exists for such a family. When it does, the further theory
can be developed much as earlier. Irrespective of such existence, it is still
possible to define both a spectrum for the process and an associated spectral
representation. Thus, for any bounded Borel set A, consider the process

XA(x) ≡ ξ(TxA).

Mean square continuity follows from condition (iv), so XA(·) has a spectral
measure ΓA(·), and we can define

Γ(dω) = |ĨA(ω)|−2 ΓA(dω)
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for all ω such that |ĨA(ω)| �= 0. Since we cannot ensure that |ĨA(ω)| �= 0 for
all ω, some care is needed in showing that the resultant measure Γ(·) can in
fact be consistently defined for a sufficiently rich class of sets A [one approach
is outlined by Thornett (1979) and given as Exercise 8.4.6]. Just as before,
the measure Γ is translation-bounded and hence integrates (1 + ω2)−1, for
example. On the other hand, it is not positive-definite in general and not
all the explicit inversion theorems can be carried over. Nevertheless, for all
bounded A ∈ BX , we certainly have

var ξ(A) =
∫
|ĨA(ω)|2 Γ(dω) (8.4.12)

and its covariance extension

cov
(
ξ(A), ξ(B)

)
=
∫
ĨA(ω) ĨB(ω) Γ(dω). (8.4.13)

Since the indicator functions are dense in L2(Γ), more general integrals of the
form

∫
φ(x) ξ(dx) can be defined as mean square limits of linear combinations

of the random variables ξ(A), at least when φ̃ ∈ L2(Γ). For such integrals,
the more general formulae

var
(∫

φ(x) ξ(dx)
)

=
∫
|φ̃(ω)|2 Γ(dω)

and

cov
(∫

φ(x) ξ(dx),
∫
ψ(x) ξ(dx)

)
=
∫
φ̃(ω)ψ̃(ω) Γ(dω)

are available, but it is not clear whether the integrals make sense other than
in this mean square sense. As noted earlier, it is also an open question as
to whether Γ is necessarily the Fourier transform of some measure, which we
could then interpret as a reduced covariance measure.

The isomorphism result in Proposition 8.4.III can be extended to this wider
context with only minor changes in the argument: it asserts the isomorphism
between L2(X) and L2(Γ) and provides a spectral representation, for bounded
A ∈ BX ,

ξ(A) =
∫
ĨA(ω)Z(dω) a.s. (8.4.14)

just as in the previous discussion.
To summarize, we have the following theorem of which further details of

proof are left to the reader.

Theorem 8.4.VIII. Let {ξ(·)} be a wide-sense second-order stationary ran-
dom measure as in Definition 8.4.VII. Then, there exists a spectral measure
Γ(·) and a process Z(·) of orthogonal increments with varZ(dω) = Γ(dω) such
that (8.4.12–14) hold.
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Exercises and Complements to Section 8.4
8.4.1 Representation in terms of the second-moment measure. Show that the effect

of working with the Fourier transform of the second moment rather than the
Bartlett spectrum would be to set up an isomorphism between the spaces
L2(ξ) generated by all linear combinations of the r.v.s ξ(A) and L2(ν), where
ν is the inverse Fourier transform of M̆2. Show that the representation∫

Rd

φ(x) ξ(dx) =
∫

Rd

φ̃(ω)Z1(dω)

holds for functions φ in a suitably restricted class, where Z1(A) = mδ0(A) +
Z(A), and Z and Z1 differ only by an atom at ω = 0.

8.4.2 Let Γ be a nontrivial boundedly finite measure. Show the following:
(a) Simple functions of the form

∑
k
akIAk [bounded Ak ∈ B(Rd)] are dense

in L2(Γ).
(b) For bounded A ∈ B(Rd), there exist open sets Un ∈ B(Rd) with Un ⊇ A,

Γ(Un) ↓ Γ(A).
(c) Any such Un is the countable union of hyper-rectangles of the form {αi <

xi ≤ βi, i = 1, . . . , d}.
(d) Indicator functions on such hyper-rectangles can be approximated by se-

quences of infinitely differentiable functions of bounded support.
Now complete the proof of Lemma 8.4.I.

8.4.3 Given ψ̃ ∈ L2(Γ), choose ψn ∈ S such that ‖ψ̃ − ψ‖L2(Γ) → 0 (n → ∞),
and deduce that {Zψn} is a Cauchy sequence in L2(ξ0). Show that there is a
unique r.v. ζ ∈ L2(ξ0) such that Zψn → ζ in mean square. Interchange the
roles of L2(Γ) and L2(ξ0) and deduce the assertion of Proposition 8.4.III.

8.4.4 Show that (8.4.6) can be extended to all L1 functions φ such that φ̃ ∈ L2(Γ).
[Hint: The left- and right-hand sides can be represented, respectively, as an
a.s. limit of integrals of bounded functions of bounded support and as a mean
square limit. When both limits exist, they must be equal a.s. This argument
establishes a conjecture in Vere-Jones (1974).]

8.4.5 Establish the following properties of the function hT (ω) = ω−1 sinωT (they
are needed in a proof of Corollary 8.4.IV).
(a)
∫∞

−∞ hT (ω) dω = π.
(b) For any continuous function φ with bounded support, the function

φT (ω) ≡
∫ ∞

−∞
φ(ω − u)hT (u) du → φ(ω) pointwise as T → ∞

[this is an application of Fourier’s single integral (see Zygmund, 1968,
Section 16.1)]. Show that the result still holds if only φ ∈ L1(ξ) and φ is
of bounded variation in any closed interval contained in its support.

(c) φT (ω) → φ(ω) in L2(Γ) for any p.p.d. measure (or for any Bartlett spec-
trum) Γ. [Hint: |φT (ω)| ≤ constant/|ω| for large |ω| while supω |φT (ω)| <
∞; these properties are enough to ensure that |φT (ω)|2 ≤ g(ω) for some
Γ-integrable function g.]
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(d) Interpret the convergence in (c) as∫
R

|φT (ω)|2 Γ(dω) =
∫

R

∫
R

hT (ω − u)φ(u) du
∫

R

hT (ω − v)φ(v) dv Γ(dω)

=
∫

R

∫
R

φ(u)φ(v) du dv
∫

R

hT (ω − u)hT (ω − v) Γ(dω)

=
∫

R2

φ(u)φ(v) Γ∗
T (du× dv)

→
∫

R2

φ(u)φ(v) Γ∗(du× dv)

=
∫

R

|φ(ω)|2 Γ(dω),

where Γ∗
T (du × dv) and Γ∗ are measures in B(R2), the former with den-

sity
∫

R
hT (ω − u)hT (ω − v) Γ(dω), while the latter reduces to Γ along the

diagonal u = v.
These results are enough to establish that Γ∗

T → Γ∗ vaguely in R
2 and hence

that a similar result holds when φ(·) is replaced by the indicator function of
a bounded Borel set in R

1 that is a continuity set for Γ.

8.4.6 Show that for Γ to be the spectral measure of a wide-sense second-order sta-
tionary random measure, it is necessary and sufficient that Γ integrate all func-
tions |ĨA(ω)|2 for bounded Borel sets A. Deduce that any translation-bounded
measure can be a spectral measure. [Hint: Use a Gaussian construction for
the sufficiency; then use Lin’s lemma. See also Thornett (1979).]

8.4.7 (a) Show that if a wide-sense second-order stationary process has a reduced co-
variance measure C̆(·), then C̆({0}) = limT→∞ Γ((−T, T ])/(2T ) continues
to hold (see Theorem 8.6.III).

(b) Use Exercise 8.2.4 to show that not all spectral measures are transforms;
that is, not all wide-sense processes have an associated reduced covariance
measure (see also Exercise 8.6.3).

8.5. Linear Filters and Prediction

One of the most important uses of spectral representation theory is to obtain
spectral characteristics of processes acted on by a linear filter, meaning here
any time-invariant linear combination of values of the process or any mean
square limit of such combinations. This use carries over formally unchanged
from mean square continuous processes to second-order point processes and
random measures and includes the procedures for developing optimal linear
predictors for future values of the process. Obtaining the precise conditions for
these extensions and their character requires some care, however, and forms
the main content of the present section.
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Let ξ(·) be a second-order stationary random measure and ψ ∈ L1 a
smoothing function; consider the smoothed process defined by

X(t) =
∫ ∞

−∞
ψ(t− u) ξ(du). (8.5.1)

Substituting from the Parseval relation (8.4.6) and recalling that the Fourier
transform of the shifted function ψ(t− u) is ψ̃(−ω)eiωt, we find

X(t) =
∫ ∞

−∞
eiωtψ̃(−ω)Z(dω). (8.5.2)

The spectrum ΓX(·) of the transformed process is

ΓX(dω) = |ψ̃(−ω)|2 Γ(dω). (8.5.3)

This will be totally finite, which implies that X(·) is a mean square continuous
process, provided ψ̃ ∈ L2(Γ).

The relation (8.5.1) can be interpreted even more broadly; for example, if
A(·) is a totally finite measure, the convolution A ∗ ξ still defines a.s. a ran-
dom measure and (8.5.2) and (8.5.3) continue to hold. Thus, (8.5.1) continues
to make sense, with a generalized function interpretation of ψ, provided the
outcome defines a.s. a random measure. However, the situation becomes de-
cidedly more complex when, as is often necessary in applications to prediction,
signed measures intervene; then at best the wide-sense theory can be used,
and the character of the filtered process, in a realization-by-realization sense,
has to be ascertained post hoc.

Example 8.5(a) Binning. A special case of practical importance arises when
X = R and the measure ξ is ‘binned’; that is, integrated over intervals of
constant length ∆, say. Considering first the continuous-time process X(t) ≡
ξ
(
t− 1

2∆, t+ 1
2∆], (8.5.2) yields

X(t) =
∫ ∞

−∞
eiωt

sin 1
2ω∆

1
2ω

Z(dω), hence ΓX(dω) =
(

sin 1
2ω∆

1
2ω

)2

Γ(dω).

It is commonly the case that the binned process is sampled only at the lattice
points {n∆:n = 0,±1, . . .}. The sampled process can then be represented in
the aliased form

Y (n) ≡ X(n∆) =
∫ sπ/∆

0
einθ

∞∑
k=−∞

ZX

(2kπ
∆

+ dθ
)
.

Taking ∆ as the unit of time, we see from this representation that the discrete-
time process {Y (n)} has spectral measure GY (·) on (0, 2π] given by

GY (dθ) = sin2 θ

∞∑
k=−∞

Γ(2kπ + dθ)
(θ + 2kπ)2

. (8.5.4)
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In the simplest case of a Poisson process, Γ(dω) = [µ/(2π)] dω, so that

GY (dθ) = sin2 θ

∞∑
k=−∞

[µ/(2π)] dθ
(θ + 2kπ)2

=
µ

2π
dθ

since the infinite series is just an expansion of cosec2 θ. This reduction reflects
the fact that the random variables Y (n) are then independent with common
variance µ.

Binning is widely used in practical applications of time series methods to
point process data, and even where it is not explicitly invoked, it is present
implicitly in the rounding of observations to a fixed number of decimal places.
Indeed, the point process results themselves can be regarded as the limit when
the binsize approaches zero and the character of the process Y (n) approaches
that of a sequence of δ-functions in continuous time. See e.g. Vere-Jones and
Davies (1966) and Vere-Jones (1970), where these ideas are applied in the
earthquake context.

Perhaps the most important examples of linear filtering come in the form
of linear predictions of a time series or point process. By a linear predictor we
mean a predictor of the form

∫ t
−∞ f(t−u) ξ(du); that is, a linear functional of

the past, with the quantity to be predicted a linear functional of the future.
In the point process case, the problem commonly reduces to predicting, as
a linear functional of the past, the mean intensity at some time point in
the future. When the process has a mean square continuous density, this
corresponds exactly to the classical problem of predicting a future value of
the process as a linear functional of its past. Thus, our task is essentially to
check when the classical procedures can be carried over to random measures
and to write out the forms that they take in random measure terms.

It is important to contrast the linear predictors obtained in this way with
the conditional intensity functions we described in Chapter 7. The conditional
intensity function comprises the best nonlinear predictor of the mean rate at
a point just ahead of the present. It is best out of all possible functionals
of the past, linear or nonlinear, subject only to the measurability and non-
anticipating characteristics described in Chapter 7. The linear predictors are
best out of the more restricted class of linear functionals of the past. They are
difficult to use effectively in predicting nonlinear features such as a maximum
or the time to the next event in a point process. On the other hand, they
perform well enough in predicting large-scale features where the law of large
numbers tilts the distributions toward normality. They are generally easy
to combine and manipulate and can sometimes be obtained when the full
conditional intensity is inaccessible.

The Wold decomposition theorem plays an important role in finding the
best linear predictor for mean square continuous processes, and we start with
an extension of this theorem for random measures. As in Section 8.4, we use ξ
and ξ0 to denote a second-order stationary random measure and its zero mean
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form, respectively, with the additional understanding that X = R. Since the
results to be developed depend only on the spectral representation theorems,
ξ can be either a strict- or wide-sense random measure. We continue to use
L2(ξ0) to denote the Hilbert space of equivalence classes of random variables
formed from linear combinations of ξ0(A) for bounded A ∈ B and their mean
square limits. Similarly, L2(ξ0; t) denotes the Hilbert space formed from ξ0(A)
with the further constraint that A ⊂ (−∞, t].
Definition 8.5.I. The second-order strict- or wide-sense stationary random
measure ξ is deterministic if

⋂
t∈R

L2(ξ0; t) = L2(ξ0) and purely nondeter-
ministic if

⋂
t∈R

L2(ξ0; t) = {0}.
The following extension of Wold’s theorem holds (Vere-Jones, 1974).

Theorem 8.5.II. For any second-order stationary random measure ξ, the
zero mean process ξ0 can be written uniquely in the form

ξ0 = ξ01 + ξ02 ,

where ξ01 and ξ02 are mutually orthogonal, stationary, wide-sense zero-mean
random measures, and ξ01 is deterministic and ξ02 purely nondeterministic.

Proof. Again we start from the known theorems for mean square continuous
processes [see e.g. Cramér and Leadbetter (1967), especially Chapters 5–7] and
use smoothing arguments similar to those around (8.5.1) to extend them to
the random measure context. To this end, set

X(t) =
∫ t

−∞
e−(t−u) ξ0(du), (8.5.5)

where the integral can be understood, whether ξ0 is a strict- or wide-sense
random measure, as a mean square limit of linear combinations of indicator
functions. These indicator functions can all be taken of sets ⊆ (−∞, t], so we
have X(t) ∈ L2(ξ0; t), and more generally, X(s) ∈ L2(ξ0; t) for any s ≤ t, so
L2(X; t) ⊆ L2(ξ0; t). To show that we have equality here, we write

X(t+ h)− e−hX(t)− ξ0(t, t+ h] =
∫ t+h

t

[e−(t+h−u) − 1] ξ0(du),

=
∫ ∞

−∞
eiωt
[

eiωh − e−h

1 + iω
− eiωh − 1

iω

]
Z(dω),

where Z is the process of orthogonal increments associated with ξ0 as in
Theorem 8.4.IV. Subdividing any finite interval (a, a+ ∆] into n subintervals
of length h = ∆/n, we obtain

n∑
k=1

[
X(a+ kh)− e−hX

(
a+ (k + 1)h

)]
− ξ0(a, a+ ∆]

=
∫ ∞

−∞

(
n∑
k=1

eiω(a+kh)

)(
eiωh − e−h

1 + iω
− eiωh − 1

iω

)
Z(dω).
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The variance of the left-hand side therefore equals∫ ∞

−∞

(
sin 1

2ω∆
sin 1

2ωh

)2∣∣∣∣1− e−h − eiω − 1
iω

∣∣∣∣2 Γ(dω)
1 + ω2 .

The measure (1 + ω2)−1 Γ(dω) is totally finite (see Exercise 8.6.5), the term
| · |2 is uniformly bounded in ω by 4h2 and for fixed ω it is o(h2) as h → 0,
and the term in braces is bounded by (∆/h)2 and for fixed ω equals const.×
h−2(1+o(1)) as h→ 0. The dominated convergence theorem can therefore be
applied to conclude that this variance → 0 as h → 0 and hence that ξ0(a, b]
can be approximated in mean square by linear combinations of {X(t): t ≤ b}.
This shows that L2(ξ0; t) ⊆ L2(X; t), and thus L2(ξ0; t) = L2(X; t) must hold.

The Wold decomposition for X(t) takes the form

X(t) = X1(t) +X2(t),

where X1(·) is deterministic and X2(·) purely nondeterministic. The decom-
position reflects an orthogonal decomposition of L2(X), and hence of L2(ξ0)
also, into two orthogonal subspaces such that X1(t) is the projection of X(t)
onto one and X2(t) the projection onto the other. Then ξ01(A) and ξ02(A) may
be defined as the projections of ξ0(A) onto these same subspaces. Further-
more, ξ01(a, b] and ξ02(a, b] can be expressed as mean square limits of linear
combinations of X1(t) and X2(t) in exactly the same way as ξ0(a, b] is ex-
pressed above in terms of X(t): the deterministic and purely nondeterminis-
tic properties of X1(·) and X2(·), respectively, carry over to ξ01(·) and ξ02(·).
Uniqueness is a consequence of the uniqueness of any orthogonal decomposi-
tion. To verify the additivity property of both ξ01(·) and ξ02(·), take a sequence
{An} of disjoint bounded Borel sets with bounded union. From the a.s. count-
able additivity of ξ0, which is equivalent to property (iv) of Definition 8.4.VII,
we have

ξ0

( ∞⋃
n=1

An

)
=

∞∑
n=1

ξ0(An) a.s.;

hence,

ξ01

( ∞⋃
n=1

An

)
−

∞∑
n=1

ξ0(An) = ξ02

( ∞⋃
n=1

An

)
−

∞∑
n=1

ξ(An) a.s.

Since the expressions on the two sides of this equation belong to orthogonal
subspaces, both must reduce a.s. to the zero random variable. Properties (i)–
(iii) of Definition 8.4.VII are readily checked, so it follows that both ξ01(·) and
ξ02(·) are wide-sense second-order stationary random measures. But note that
even when ξ0 is known to be a strict-sense random measure, the argument
above shows only that ξ01 and ξ02 are wide-sense random measures.

The classical results that relate the presence of a deterministic component
to properties of the spectral measure can also be carried over from X(·) to
the random measure ξ(·). They are set out in the following theorem.
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Theorem 8.5.III. Let ξ(·) be a strict- or wide-sense second-order stationary
random measure with Bartlett spectrum Γ. Then ξ(·) is purely nondetermin-
istic if and only if Γ is absolutely continuous and its density γ satisfies the
condition ∫ ∞

−∞

log γ(ω) dω
1 + ω2 > −∞. (8.5.6)

This condition is equivalent to the existence of a factorization

γ(ω) = |g̃(ω)|2, (8.5.7)

where g̃(·) is the Fourier transform of a (real) generalized function with sup-
port on [0,∞) and can be written in the form g̃(ω) = (1 − iω)g̃1(ω), where
g̃1(·) is the Fourier transform of an L2(R) function with its support in R+.
The function g̃(·) can be characterized uniquely among all possible factoriza-
tions by the requirement that it have an analytic continuation into the upper
half-plane Im(ω) > 0, where it is zero-free and satisfies the normalization
condition

g̃(i) = exp
(

1
2π

∫ ∞

−∞

log γ(ω)
1 + ω2 dω

)
. (8.5.8)

Proof. Since ξ is purely nondeterministic if and only if X defined at (8.5.5) is
purely nondeterministic, the results follow from those for the continuous-time
process X(·) as set out, for example, in Hannan (1970, Section 3.4). From
Sections 8.2 and 8.6, it follows that the spectral measure ΓX of X(·) is related
to the Bartlett spectrum Γ of ξ by ΓX(dω) = (1 + ω2)−1 Γ(dω), so ΓX has a
density γX if and only if Γ has a density, and the density γ satisfies (8.5.6) if
and only if γX does because the discrepancy

∫∞
−∞(1 + ω2)−1 log(1 + ω2) dω is

finite.
Similarly, if γX(ω) = |g̃X(ω)|2, where g̃X(·) is the Fourier transform of an

L2(R) function with support in R+, we can set g1 = gX so that (8.5.7) holds
together with the assertions immediately following it.

Finally, (8.5.8) follows from the corresponding relation for g1 since

g̃(i) = 2g̃1(i) = 2 exp
(

1
2π

∫ ∞

−∞

log γX(ω)
1 + ω2 dω

)
= exp

(
1

2π

∫ ∞

−∞

log γ(ω)
1 + ω2 dω

)
using the identity ∫ ∞

−∞

log(1 + ω2)
1 + ω2 dω = 2π log 2.

These extensions from ΓX to Γ are to be expected because the criteria are
analytic and relate to the factorization of the function γ rather than to its
behaviour as ω → ±∞. We illustrate the results by two examples.
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Example 8.5(b) Two-point Poisson cluster process. Suppose that clusters
occur at the instants of a Poisson process with parameter µ and that each
cluster contains exactly two members, one at the cluster centre and the other
at a fixed time h after the first. Then, the reduced covariance measure has
just three atoms, one of mass 2µ at 0 and the others at ±h, each of mass µ.
The Bartlett spectrum is therefore absolutely continuous with density

γ(ω) = µ(1 + cosωh)/π = µ(2 cos2 1
2ωh)/π.

In seeking a factorization of the form (8.5.7), it is natural to try (2µ/π)1/2 ×
cos 1

2ωh as a candidate, but checking the normalization condition (8.5.8) re-
veals a discrepancy: using the relation∫ ∞

−∞
(1 + ω2) log

(
cos2 1

2ωh
)

dω = 2π log
( 1

2 (1 + e−h)
)

leads to (2µ/π)1/2(1 + e−h)/2 for the right-hand side of (8.5.8), while the
candidate gives g̃(i) = (2µ/π)1/2 cosh 1

2ωh. It is not difficult to see that the
correct factorization is

g̃(ω) =

√
2µ
π

1 + eiωh

2
=

√
2µ
π

eiωh/2 cos 1
2ωh.

In this form, we can recognize g̃(·) as the Fourier transform of a measure with
atoms [µ/(2π)]1/2 at t = 0 and t = h, whereas the unsuccessful candidate
function is the transform of a measure with atoms of the same mass but at
t = ± 1

2h; that is, the support is not contained in [0,∞).

Example 8.5(c) Random measures with rational spectral density. When the
spectral density is expressible as a rational function, and hence of the form(

m∏
j=1

(ω2 + α2
j )

)/(
n∏
j=1

(ω2 + β2
j )

)

for nonnegative integers m,n with m ≤ n, and real αj , βj , the identification of
the canonical factorization is much simpler because it is uniquely determined
(up to a constant of unit modulus) by the requirements that g̃(ω) be ana-
lytic and zero-free in the upper half-plane. Two situations commonly occur
according to whether m < n or m = n. In the former case, the process has a
mean square continuous density x(·) and Γ(·) is a totally finite measure. The
problem reduces to the classical one of identifying the canonical factorization
of the spectrum for the density of the process. For point processes, however,
the δ-function in the covariance measure produces a term that does not con-
verge to zero as |ω| → ∞, implying that m = n; the same situation obtains
whenever the random measure has a purely atomic component.
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As an example of the latter form, recall the comments preceding Example
8.2(e) concerning point process models with spectral densities of the form

γ(ω) =
A2(α2 + ω2)
β2 + ω2 .

The canonical factorization here takes the form (with A, α, and β real and
positive)

g̃(ω) =
A(α− iω)
β − iω = A

(
1 +

α− β
β − iω

)
corresponding to the time-domain representation

g(t) = A
(
δ0(t) + (α− β)I[0,∞)(t)e−βt).

Similar forms occur in more general point process models, with polynomial a
sum of products of exponential and polynomial factors in place of the expo-
nential.

The main thrust of these factorization results is that they lead to a time-
domain representation that can be used to develop explicit prediction formu-
lae. The fact that the canonical factor g̃(ω) is in general the transform not
of a function but only of a generalized function leads to some specific difficul-
ties. However, much of the argument is not affected by this fact, as we now
indicate.

Let Z(·) be the process of orthogonal increments arising in the spectral rep-
resentation of ξ0, and g̃(·) the canonical factor described in Theorem 8.5.III.
Introduce a further process U(·) with orthogonal increments by scaling the
Z(·) process to have stationary increments as in

Z(dω) = g̃(ω)U(dω), (8.5.9)

where the invertibility of g̃ implies that for all real ω

E|U(dω)|2 = |g̃(ω)|−2E|Z(dω)|2 = dω.

Note that the use of the complex conjugate of g̃ in (8.5.9) is purely for conve-
nience: it simplifies the resulting moving average representation in the time
domain.

Corresponding to U in the frequency domain, we may, in the usual way,
define a new process V in the time domain through the Parseval relations, so∫ ∞

−∞
φ(t)V (dt) =

∫ ∞

−∞
φ̃(ω)U(dω), (8.5.10)

which in this case can be extended to all functions φ ∈ L2(R). It can be
verified that V (·) also has orthogonal and stationary increments, with

E|V (dt)|2 = 2π dt,
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corresponding to the more complete statement

var
(∫ ∞

−∞
φ(t)V (dt)

)
= 2π

∫ ∞

−∞
|φ(t)|2 dt

=
∫ ∞

−∞
|φ(ω)|2 dω = var

(∫ ∞

−∞
φ̃(ω)U(dω)

)
.

On the other hand, from the Parseval relation for the ξ0 process, we have for
integrable φ, for which φ̃ ∈ L2(Γ),∫ ∞

−∞
φ(t) ξ0(dt) =

∫ ∞

−∞
φ̃(ω)Z(dω) =

∫ ∞

−∞
φ̃(ω) g̃(ω)U(dω). (8.5.11)

Thus, if we could identify φ̃¯̃g with the Fourier transform of some function
φ ∗ g∗ in the time domain, it would be possible to write∫ ∞

−∞
φ(t) ξ0(dt) =

∫ ∞

−∞
(φ ∗ g∗)(s)V (ds) =

∫ ∞

−∞
φ(t) dt

∫ t

−∞
g(t− s)V (ds),

corresponding to the moving average representation

ξ0(dt) =
∫ t

−∞
g(t− s)V (ds) dt.

Because g(·) is not, in general, a function, these last steps have a purely
formal character. They are valid in the case of a process ξ0 having a mean
square continuous density, but in general we need to impose further conditions
before obtaining any meaningful results. In most point process examples, the
generalized function g(·) can be represented as a measure, but it is an open
question as to whether this is true for all second-order random measures.

We proceed by imposing conditions that, although restrictive, are at least
general enough to cover the case of a point process with rational spectral
density. They correspond to assuming that the reduced factorial cumulant
measure Ĉ[2] is totally finite, so that the spectral density can be written in
the form

γ(ω) = (2π)−1(m+ c̃[2](ω)
)
.

Specifically, assume that
g̃(ω) = A

(
1 + c̃(ω)

)
(8.5.12)

for some positive constant A and function c̃ ∈ L2(R). Then, the generalized
function aspect of g(·) is limited to a δ-function at the origin, and there exists
an L2(R) function c(·) such that

g(t) =
{
A
(
δ0(t) + c(t)

)
(t ≥ 0),

0 (t < 0).
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Under the same conditions, the reciprocal 1/g̃(ω) can be written

1/g̃(ω) = A−1(1− d̃(ω)
)
,

where d̃(ω) = c̃(ω)/(1 + c̃(ω)), and from∫ ∞

−∞
|d̃(ω)|2 γ(ω) dω = A2

∫ ∞

−∞
|c̃(ω)|2 dω <∞

it follows that d̃ ∈ L2(γ). Often, we have L2(γ) ⊆ L2(R), in which case
d̃ ∈ L2(R), implying the existence of a representation of a Fourier inverse of
1/g̃(ω) as {

A−1
(
δ0(t)− d(t)

)
(t ≥ 0)

0 (t < 0)
(8.5.13)

for some function d ∈ L2(R).

Proposition 8.5.IV (Moving Average and Autoregressive (ARMA) Rep-
resentations). Suppose (8.5.12) holds for some c̃ ∈ L2(R). Then, using the
notation of (8.5.12–13), for φ ∈ L1(R) such that φ̃ ∈ L2(R), the zero-mean
process ξ0(·) is expressible as∫

R

φ(t) ξ0(dt) =
∫

R

φ̃(t)V (dt) +
∫

R

φ̃(t)X(t) dt a.s., (8.5.14)

where V (·) is a zero-mean process with stationary orthogonal increments such
that

E|V (dt)|2 = 2πA2 dt (8.5.15)

and X(·) is a mean square continuous process that can be written in the
moving average form

X(t) =
∫ t

−∞
c(t− u)V (du) a.s. (8.5.16)

or, if furthermore d̃ ∈ L2(R), in the autoregressive form

X(t) =
∫ t

−∞
d(t− u) ξ0(du) a.s. (8.5.17)

Proof. Under the stated assumptions, it follows from (8.5.11) that∫
R

φ(t) ξ0(dt) = A

∫
R

φ̃(ω)U(dω) +A

∫
R

φ̃(ω)c̃(ω)U(dω) a.s. (8.5.18)

Consider now the process X(·) defined by the spectral representation

X(t) =
∫

R

eitω c̃(ω)U(dω) =
∫

R

eitω ZX(dω) a.s., (8.5.19)
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where ZX has orthogonal increments and satisfies E
(
|Z(dω)|2

)
= γX(ω) dω =

|c̃(ω)|2 dω. To ensure that
∫

R
X(t)φ(t) dt can be validly interpreted as a mean

square integral, it is enough to show that φ̃ ∈ L2(γX), as in the discussion
around (8.5.3). But φ ∈ L1(R) implies that |φ̃(ω)| is bounded for ω ∈ R, and
then the assumption that c̃ ∈ L2(R) implies that∫

R

|φ̃(ω)|2 |c̃(ω)|2 dω =
∫

R

|φ̃(ω)|2|γX(ω) dω <∞,

as required.
The terms on the right-hand side of (8.5.18) can now be replaced by their

corresponding time-domain versions. Thus, we have

A

∫
R

φ̃(ω)U(dω) =
∫

R

φ(t)V (dt),

absorbing the constant A into the definition of the orthogonal-increment pro-
cess V as in (8.5.10), while the discussion above implies that the last term in
(8.5.18) can be replaced by

∫
R
φ̃(t)X(t) dt, with X(t) defined as in (8.5.16).

This establishes the representation (8.5.14).
To establish the autoregressive form in (8.5.17), observe that

Y (t) ≡
∫

R

eitωd̃(ω)Z(dω) = A

∫
R

eitωd̃(ω)
(
1 + c̃(ω)

)
U(dω)

= A

∫
R

eitω c̃(ω)U(dω) = X(t),

the integrals being well defined and equal a.s. from the assumption that c̃ ∈
L2(R), from which it follows that d̃ ∈ L2(Γ). If ξ0 is a strict-sense random
measure, then the time-domain integral (8.5.17) is well defined for φ ∈ 
L1(R)
and can be identified a.s. with its frequency-domain version Y (t) above. If ξ0

is merely a wide-sense process, then (8.5.17) can be defined only as a mean
square limit, which will exist whenever d̃ ∈ L2(Γ). In either case, therefore,
X(t) = Y (t) a.s.

Equation (8.5.14) can be combined with equations (8.5.16) and (8.5.17) to
yield the abbreviated but suggestive forms set out below; they embody the
essential content of the moving average and autoregressive representations in
the present context.

Corollary 8.5.V. With the same assumptions and notation as in Proposition
8.5.IV,

ξ0(dt) = V (dt) +
∫ t−

−∞
c(t− u)V (du) dt a.s., (8.5.20)

ξ0(dt) = V (dt) +
∫ t−

−∞
d(t− u) ξ0(du) dt a.s. (8.5.21)
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There is a close analogy between (8.5.20) and the martingale decomposition
of the cumulative process outlined in the previous chapter: the first term in
(8.5.20) corresponds to the martingale term, or innovation, while the second
corresponds to the conditional intensity. The difference lies in the fact that
the second term in (8.5.20) is necessarily representable as a linear combination
of past values, whereas the conditional intensity, its analogue in the general
situation, is not normally a linear combination of this type.

Finally, we can use the results of the proposition to establish the forms of
the best linear predictors when the assumptions of Proposition 8.5.IV hold.
Consider specifically the problem of predicting forward the integral

Q ≡
∫

R

φ(s) ξ0(ds) a.s. (8.5.22)

from observations on ξ0(·) up to time t. The best linear predictor, in the
mean square sense, is just the projection of φ onto the Hilbert space L2(ξ0; t).
From equations (8.5.14) and (8.5.20), we see that it can be written as

Q̂t =
∫ t

−∞
φ(s) ξ0(ds) +

∫ ∞

t

φ(s)X̂t(s) ds a.s., (8.5.23)

where for s > t,

X̂t(s) =
∫ t

−∞
c(s− u)V (du) a.s. (8.5.24)

The truncated function

cst (u) =
{
c(u) (u > s− t),
0 (u ≤ s− t),

is in L2(R) when c is, and the same is therefore true of its Fourier transform.
Consequently, the random integrals in the definitions of X̂t(s) and Q̂t are well
defined by the same argument as used in proving Proposition 8.5.IV.

Equation (8.5.24) already gives an explicit form for the predictor, but it
is not convenient for direct use since it requires the computation of V (·). In
practice, the autoregressive representation of X̂t(s) is more useful. To find it,
observe that

X̂t(s) =
∫ t

−∞
cst (s− u)V (du) =

∫
R

c̃st (ω)U(dω) =
∫

R

c̃st (ω)[1− d̃(ω)]Z(dω)

=
∫ t

−∞

[
c(s− u)−

∫ t−u

0
c(s− u− v)d(v) dv

]
ξ0(du) a.s. (8.5.25)

The integral is well defined not only in the mean square sense but also in
the a.s. sense if d ∈ L1(R). In this case, the integrand in (8.5.25) can also be
written in the form

d(s− u) +
∫ s−u

t−u
c(s− u− v)d(v) dv,
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which is then the sum of two L1(R) functions, both of which can be integrated
against ξ0.

These arguments are enough to establish the validity of the autoregressive
form (8.5.25) as an alternative to (8.5.24). It is important to emphasize that
X̂t(s) is to be interpreted as the predictor of the intensity of the ξ0 process
at time s > t, or in abbreviated notation,

X̂t(s) ds = E[ξ0(ds) | Ht] = E[λ(s) | Ht], (8.5.26)

where both expectations are to be understood only in the sense of Hilbert-
space projections.

Thus, the assumptions of Proposition 8.5.IV imply that the intensity is
predicted forward as a mean square continuous function of the past. In con-
trast to the case where the process itself is mean square continuous, when
the predictors may involve differentiations, here they are always smoothing
operators. The discussion can be summarized as follows.

Proposition 8.5.VI. Under the conditions of Proposition 8.5.IV, the best
linear predictor of the functional Q in (8.5.22), given the history Ht of the
ξ0 process on (−∞, t], is as in (8.5.23), in which the mean square continuous
process X̂t(s) may be regarded as the best linear predictor of the ‘intensity’
ξ0(ds)/ds for s > t and has the moving average representation (8.5.24) and
the autoregressive representation

X̂t(s) =
∫ t

−∞
ht(s− u) ξ0(du),

where

ht(s− u) = c(s− u)−
∫ t−u

0
c(s− u− v)d(v) dv

= d(s− u) +
∫ s−u

t−u
c(s− u− w)d(w) dw. (8.5.27)

Returning to the original random measure ξ (as distinct from ξ0), we ob-
tain the following straightforward corollary, stated in the abbreviated form
analogous to (8.5.26).

Corollary 8.5.VII. The random measure ξ can be predicted forward with
predicted intensity at s > t given by

E[ξ(ds) | Ht] =
(
m+ X̂t(s)

)
ds,

where the conditional expectation is to be understood in the sense of a Hilbert-
space projection.

Example 8.5(d) A point process with rational spectral density [continued
from Example 8.5(c)]. Consider the case where

γ(ω) = A2(α2 + ω2)/(β2 + ω2) . (8.5.28)
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From the form of g̃(ω) as earlier, it follows that

c̃(ω) =
α− β
β − iω ,

c(t) = (α− β)e−βt,

d̃(ω) =
α− β
α− iω ,

d(t) = (α− β)e−αt (t ≥ 0).

Substituting into (8.5.27), we find

ht(s− u) = (α− β)e−β(s−u) − (α− β)2e−β(s−u)
∫ t−u

0
e−(α−β)v dv

= (α− β)e−β(s−t)e−α(t−u),

so that

X̂t(s) = (α− β)e−β(s−t)
∫ t

−∞
e−α(t−u) ξ0(du) a.s. (8.5.29)

Thus, the predictor here is a form of exponential smoothing of the past. How
well it performs relative to the full predictor, based on complete information
about the past, depends on the particular process that is under consideration.

The most instructive and tractable example is again the Hawkes process,
which, in order to reproduce the second-order properties above, should have
a complete conditional intensity of the special form as in Exercise 7.2.5,

λ∗(t) = λ+ ν

∫ t−

−∞
αe−α(t−u)N(du) a.s., ≡ λ+ ναY (t), say, (8.5.30)

which leads to (8.5.28) with A2 = λ/2π, β = α(1− ν) [see equation (8.2.10)].
The full predictor can be found by taking advantage of the special form of the
intensity, which implies that the quantity Y (t) as above and in Exercise 7.2.5
is Markovian. Defining m(t) = E[Y (t)] =

∫∞
0 y Ft(dy), we find by integrating

(7.2.12) that m(t) satisfies the ordinary differential equation

dm(t)
dt

= −βm(t) + λ

with solution

m(t) =
λ

β
+
(
m(0)− λ

β

)
e−βt .

To apply this result to the nonlinear prediction problem analogous to that
solved by X̂t(s) in the linear case, we should set m(0) = Y (t) and consider
m(s− t), which gives the solution

X̂∗
t (s) ≡ E[λ∗(s) | Ht] = λ+ ναE[Y (t+ s) | Y (t)] = λ+ ναm(s− t)

=
λ

1− ν + να

[
Y (t)− λ

β
e−β(s−t)

]
.
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Replacing Y (t) by its representation in terms of the past of the process as in
(8.5.30) leads back to (8.5.29).

Thus, for a Hawkes process with exponential infectivity function, the best
linear predictor of the future intensity equals the best nonlinear predictor of
the future intensity. It appears to be an open question whether this result
extends to other Hawkes processes or to other stationary point processes.

Linear and nonlinear predictors for an example of a renewal process with
rational spectral density are discussed in Exercise 8.5.2.

Example 8.5(e) Two-point Poisson cluster process [continued from Example
8.5(b)]. While this example does not satisfy the assumptions of the preceding
discussion, it is simple enough to handle directly. From the expression for
g̃(ω) given earlier, the moving average representation can be written in the
form

ξ0(dt) = (µ/2π)1/2{V (dt) + V (dt− h)}.

The reciprocal has the form

1/g̃(ω) = (2π/µ)1/2(1 + eiωh)−1,

which, if we proceed formally, can be regarded as being the sum of an infinite
series corresponding to the time-domain representation

V (dt) =
√

2π/µ
[
ξ0(dt)− ξ0(dt− h) + ξ0(dt− 2h)− · · ·

]
.

In fact, the sum is a.s. finite and has the effect of retaining in V only those
atoms in ξ0 that are not preceded by a further atom h time units previously;
that is, of retaining the atoms at cluster centres but rejecting their cluster
companions. From this, it is clear that the process V (·) is just a scaled version
of the zero-mean version of the original Poisson process of cluster centres, and
the moving average representation is simply a statement of how the clusters
are formed. It is now easy to form linear predictors: we have

ξ0(ds | Ht) =
{

0 (s− t > h),
(µ/2π)1/2 V (ds− h) (0 ≤ h ≤ s− t),

and on 0 ≤ h ≤ s− t we also have

ξ̂0(ds | Ht) =
∞∑
j=1

(−1)j ξ0(ds− jh).

The effect of the last formula is to scan the past to see if there is an atom
at s− h not preceded by a further atom at s− 2h: the predictor predicts an
atom at s when this is the case and nothing otherwise.
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Exercises and Complements to Section 8.5
8.5.1 Renewal processes with rational spectral density. Show that the Bartlett

spectrum for the renewal process considered in Exercise 4.2.4 with interval
density µ2xe−µx has the form

γ(ω) =
µ

4π
ω2 + 2µ2

ω2 + 4µ2 .

8.5.2 Linear and nonlinear prediction of a renewal process.
(a) Show that for any renewal process the best nonlinear predictor E[λ∗(t+s) |

Ht] for the intensity is the renewal density for the delayed renewal process
in which the initial lifetime has d.f. [F (Bt+s)−F (Bt)]/[1−F (Bt)], where
Bt is the backward recurrence time at time t.

(b) Find explicitly the best predictor for the process in Exercise 8.5.1.
(c) Find the canonical factorization of the spectrum of the renewal process

in Exercise 8.5.1, and find the best linear predictor B̂t(s), where Bt is
the backward recurrence time at t. When does it coincide with the best
nonlinear predictor in (b)?

(d) Investigate the expected information gain per event based on the use of
the linear and nonlinear predictors outlined above.

8.6. P.P.D. Measures

In this section, we briefly develop the properties of p.p.d. measures required for
the earlier sections of this chapter. We follow mainly the work of Vere-Jones
(1974) and Thornett (1979); related material, in a more abstract setting, is
in Berg and Frost (1975). No significant complications arise in developing the
theory for R

d rather than for the line, so we follow this practice, although
most of the examples are taken from the one-dimensional context.

Since the measures we deal with are not totally finite in general, we must
first define what is meant by a Fourier transform in this context. As in the
theory of generalized functions (see e.g. Schwarz, 1951), we make extensive
use of Parseval identities∫

Rd

ψ(x) ν(dx) =
∫

Rd

ψ̃(ω)µ(dω) (8.6.1)

to identify the measure ν as the Fourier transform of the measure µ in (8.6.1).
Here

ψ̃(ω) =
∫

Rd

eix·ωψ(x) dx

is the ordinary (d-dimensional) Fourier transform of ψ(·), but such functions
must be suitably restricted. A convenient domain for ψ is the space S of
real or complex functions of rapid decay; that is, of infinitely differentiable
functions that, together with their derivatives, satisfy inequalities of the form∣∣∣∣ ∂kψ(x)

∂xk11 · · · ∂x
kd

d

∣∣∣∣ ≤ C(k, r)
(1 + |x|)r
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for some constants C(k, r) <∞, all positive integers r, and all finite families
of nonnegative integers (k1, . . . , kd) with k1 + · · ·+ kd = k. The space S has
certain relevant properties, proofs of which are sketched in Exercise 8.6.1:
(i) S is invariant under the Fourier transformation taking ψ into ψ̃.

(ii) S is invariant under multiplication or convolution by real- or complex-
valued integrable functions g on R

d such that both g and g̃ are zero-free.
(iii) Integrals with respect to all functions ψ ∈ S uniquely determine any

boundedly finite measure on R
d.

The following definitions collect together some properties of boundedly
finite measures that are important in the sequel. We use the notation, for
complex-valued functions ψ and φ,

(ψ ∗ φ)(x) =
∫

Rd

ψ(y)φ(x− y) dy, ψ∗(x) = ψ(−x),

so that
(ψ ∗ ψ∗)(x) =

∫
Rd

ψ(y)ψ(y − x) dy.

Definition 8.6.I. A boundedly finite signed measure µ(·) on R
d is

(i) translation-bounded if for all h > 0 and x ∈ R
d there exists a finite

constant Kh such that, for every sphere Sh(x) with centre x ∈ R
d and

radius h, ∣∣µ(Sh(x)
)∣∣ ≤ Kh; (8.6.2)

(ii) positive-definite if for all bounded measurable functions ψ of bounded
support, ∫

Rd

(ψ ∗ ψ∗)(x)µ(dx) ≥ 0; (8.6.3)

(iii) transformable if there exists a boundedly finite measure ν on R
d such

that (8.6.1) holds for all ψ ∈ S;
(iv) a p.p.d. measure if it is nonnegative (i.e. a measure rather than a signed

measure) and positive-definite.

A few comments on these definitions are in order. The concept of trans-
lation boundedness appears naturally in this context and is discussed further
by Lin (1965), Argabright and de Lamadrid (1974), Thornett (1979), and
Robertson and Thornett (1984). If µ is nonnegative, then it is clear that if
(8.6.2) holds for some h > 0 it holds for all such h. The notion of positive-
definiteness in (8.6.3) is a direct extension of the same notion for continuous
functions; indeed, if µ is absolutely continuous, then it is positive-definite in
the sense of (8.6.3) if and only if its density is a positive-definite function in
the usual sense. Concerning the Parseval relation in (8.6.1), it is important
to note that if the measure µ is transformable, then ν is uniquely determined
by µ and conversely. Equation (8.6.1) generalises the relation

c(x) =
∫

Rd

eiω·xF (dω)
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for the covariance density in terms of the spectral measure F of a mean square
continuous process to which it reduces (with the appropriate identifications)
when the random measure and associated covariance measure are absolutely
continuous.

Our main interest is in the class of p.p.d. measures on R
d, denoted below

by P+. Some examples may help to indicate the scope and character of P+.

Example 8.6(a) Some examples of p.p.d. measures.
(1◦) A simple counterexample. The measure on R

d with unit mass at each of
the two points ±1 is not a p.p.d. measure because its Fourier transform 2 cosω
can take negative values and it thus fails to be positive-definite. On the other
hand, the convolution of this measure with itself (i.e. the measure with unit
mass at ±2 and mass of two units at 0) is a p.p.d. measure, and its Fourier
transform is the boundedly finite (but not totally bounded) measure with
density 4 cosω. This also shows that the convolution square root measure of
a p.p.d. measure need not be p.p.d.
(2◦) Absolutely continuous p.p.d. measures. Every nonnegative positive-defi-
nite function defines the density of an absolutely continuous p.p.d. measure.
(3◦) Counting measure. Let µ have unit mass at every 2πj for j = 0,±1, . . . .
Then, for ψ ∈ S, (8.6.1) reduces to the Poisson summation formula (see
Exercise 8.6.4 for details)

∞∑
n=−∞

ψ(n) =
∞∑

j=−∞
ψ̃(2πj);

that is, µ has as its Fourier transform the measure ν with unit mass at each
of the integers n = 0,±1, . . . . It also shows that ν, and thus µ as well, is
positive-definite (take for ψ a function of the form φ∗φ∗ so that the right-hand
side becomes

∑
|φ̃(2πj)|2 ≥ 0).

(4◦) Closure under product. Let µ1, . . . , µd be p.p.d. measures on R with
Fourier transforms µ̃1, . . . , µ̃d. Then, the product measure µ1 × · · · × µd is a
p.p.d. measure on R

d with Fourier transform µ̃1 × · · · × µ̃d.
A simple and elegant theory for measures in P+ and their Fourier trans-

forms can be developed by the standard device of approximating µ by a
smoothed version obtained by convoluting µ with a suitable smoothing func-
tion such as the symmetric probability densities

t(x) = (1− |x|)+
eλ(x) = 1

2λe−λ|x|
(triangular density),
(two-sided exponential density),

and their multivariate extensions

t(x) =
d∏
i=1

(1− |xi|)+ , (8.6.4a)

eλ(x) =
( 1

2λ
)d exp

(
− λ

d∑
i=1

|xi|
)
. (8.6.4b)
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Observe that
t(x) =

∫
Rd

IUd(x− y) IUd(−y) dy. (8.6.4a′)

We are now in a position to establish the basic properties of P+.

Proposition 8.6.II. (a) P+ is a closed positive cone in M#(Rd).
(b) Every p.p.d. measure is symmetric and translation-bounded.

Proof. In (a), we mean by ‘a positive cone’ a set closed under the formation
of positive linear combinations. Then (a) is just the statement that if a
sequence of boundedly finite measures in R

d converges vaguely to a limit,
and if each measure in the sequence is positive-definite, then so is the limit.
This follows directly from the definition of vague convergence and the defining
relation (8.6.3).

Now let µ be a p.p.d. measure on R
d, and convolve it with t(·) as in (8.6.4a)

so that the convolution is well defined. The resultant function

c(x) ≡
∫

Rd

t(x− y)µ(dy) (8.6.5)

is real-valued, continuous, and for all bounded measurable ψ of bounded sup-
port it satisfies, because of (8.6.4a′),∫

Rd

c(u)(ψ ∗ ψ∗)(u) du =
∫

Rd

(
(ψ ∗ IUd) ∗ (ψ ∗ IUd)∗)(y)µ(dy) ≥ 0;

note that (8.6.3) applies because ψ ∗ IUd is measurable and bounded with
bounded support whenever ψ is. In other words, the function c(·) is real-
valued and positive-definite and hence, from standard properties of such func-
tions, also symmetric and bounded. Since t(·) is symmetric, it is clear that
c(·) is symmetric if and only if µ is symmetric, which must therefore hold.
Finally, it follows from the positivity of µ and the inequality t(x) ≥ 2−d for
‖x‖ ≤ 1

4 that if K is a bound for c(·),

µ
(
S1/4(x)

)
≤ 2d

∫
S1/4(x)

c(y) dy ≤ 2dK <∞.

Inequality (8.6.2) is thus established for the case h = 1
4 , and since µ is non-

negative, its validity for any other value of h is now apparent.

The Fourier transform properties can be established by similar arguments,
though it is now more convenient to work with the double exponential function
eλ(·) because its Fourier transform

ẽλ(ω) =
d∏
i=1

λ2

λ2 + ω2
i
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has no real zeros. The existence of the convolution µ ∗ eλ follows from the
translation boundedness just established. The relation

dλ(x) =
∫

Rd

eλ(x− y)µ(dy)

again defines a continuous positive-definite function. By Bochner’s theorem
in R

d, it can therefore be represented as the Fourier transform

dλ(x) =
∫

Rd

eiω·xGλ(dω)

for some totally finite measure Gλ(·).
Now let ψ(ω) be an arbitrary element of S, and consider the function κ̃(ω)

defined by
κ̃(ω) = (1 + ω2)ψ(−ω)/(2π)d.

Then κ̃ ∈ S also, and hence κ̃ is the Fourier transform of some integrable
function κ satisfying

ψ̃(y) = (κ ∗ e1)(y).

From the Fourier representation of d1, we have∫
Rd

κ(x)d1(x) dx =
∫

Rd

κ̃(ω)G1(dω)

for all integrable κ and hence in particular for the function κ just constructed.
Substituting for κ, we obtain, for all ψ ∈ S,∫

Rd

ψ̃(y)µ(dy) =
∫

Rd

(κ ∗ e1)(y)µ(dy) =
∫

Rd

κ(x)d1(x) dx

=
∫

Rd

κ̃(ω)G1(dω) =
1

(2π)d

∫
Rd

ψ(ω)(1 + ω2)G1(−dω).

We now define the measure ν by

ν(dω) = (2π)−d(1 + ω2)G1(−dω)

and observe that ν is boundedly finite and satisfies the equation (8.6.1), which
represents ν as the Fourier transform of µ. Thus, we have shown that any
p.p.d. measure µ is transformable.

Recall that S is preserved under the mapping ψ → ψ̃. Then, interchanging
the roles of ψ and ψ̃ in (8.6.1) shows that every p.p.d. measure is itself a
transform and hence that ν is positive-definite as well as positive; that is, it
is itself a p.p.d. measure. Since the determining properties of S imply that
each of the two measures in (8.6.1) is uniquely determined by the other, we
have established the principal result of the following theorem.
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Theorem 8.6.III. Every p.p.d. measure µ(·) is transformable, and the Par-
seval equation (8.6.1) establishes a one-to-one mapping of P+ onto itself.
This mapping can also be represented by the inversion formulae: for bounded
ν-continuity sets A,

ν(A) = lim
λ→∞

∫
Rd

ĨA(ω)ẽλ(ω)µ(dω); (8.6.6)

for bounded µ-continuity sets B,

µ(B) = lim
λ→∞

− 1
(2π)d

∫
Rd

ĨB(−x)ẽλ(−x) ν(dx); (8.6.7)

ν({a}) = lim
T→∞

∫
Ud

T

e−iω·aµ(dω); (8.6.8)

µ({b}) = lim
T→∞

1
(2πT )d

∫
Ud

T

eix·bν(dx). (8.6.9)

For all Lebesgue integrable φ for which φ̃ is µ-integrable, there holds the
extended Parseval relation∫

Rd

φ(x+ y) ν(dy) =
∫

Rd

eiω·xφ̃(ω)µ(dω) (a.e. x). (8.6.10)

Proof. It remains to establish the formulae (8.6.6–10), all of which are
effectively corollaries of the basic identity (8.6.1). Suppose first that A is a
bounded continuity set for ν(·) and hence a fortiori for the smoothed version
ν ∗ eλ. Then, for all finite λ, it is a consequence of the Parseval theorem that

(ν ∗ eλ)(A) =
∫

Rd

Ĩλ(ω)ẽλ(ω)µ(dω).

Now letting λ → ∞, the left-hand side → ν(A) by standard properties of
weak convergence since it is clear that ν ∗ eλ → ν weakly on the closure Ā of
A. This proves (8.6.6), and a dual argument gives (8.6.7).

To establish (8.6.8), consider again the convolution with the triangular
density t(·). Changing the base of the triangle from (−1, 1) to (−h, h) ensures
that the Fourier transform t̃(ω) does not vanish at ω = a for any given a.
Now check via the Parseval identity that the totally finite spectral measure
corresponding to the continuous function c(x) in (8.6.5) can be identified with
t̃(ω)ν(dω). Then, standard properties of continuous positive-definite functions
imply

t̃(a)ν({a}) = lim
T→∞

− 1
(4πT )d

∫
Ud

2T

e−ia·xc(x) dx. (8.6.11)

Consider
DT ≡ t̃(a)

∫
Ud

2T

e−ia·xµ(dx)−
∫

Ud
2T

e−ia·xc(x) dx,
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which on using the definition of c(·) as the convolution t ∗ µ yields

DT =
∫

Rd

e−ia·xµ(dx)
{
t̃(a)IUd

2t
(x)−

∫ T−x1

−T−x1

· · ·
∫ T−xd

−T−xd

e−ia·yt(y) dy
}
.

The expression inside the braces vanishes both inside the hypercube with
vertices

(
± (T − h), . . . ,±(T − h)

)
since the second integral then reduces to

t̃(a) and outside the hypercube with vertices
(
± (T + h), . . . ,±(T + h)

)
since

both terms are then zero. Because µ is translation-bounded, there is an upper
bound, Kh say, on the mass it allots to any hypercube with edge of length
2h. The number of such hypercubes needed to cover the region where the
integrand is nonzero is certainly bounded by 2d(2 + T/h)d−1, within which
region the integrand is bounded by M , say. Thus,

|DT |
(4πT )d

≤ 2d
(4π)d

(
1
h

+
2
T

)d−1
MKh

T
→ 0 (T →∞).

Equation (8.6.8) now follows from (8.6.11), and (8.6.9) follows by a dual ar-
gument with the roles of µ and ν interchanged.

It is already evident by analogy with the argument used in constructing
ν(·) that the Parseval relation (8.6.1) holds not only for ψ ∈ S but also for
any function of the form (φ ∗ eλ)(x), where φ is integrable. In particular, any
function of the form

θ(x) =
∫

Rd

φ(y)ψ(x− y) dy = (φ ∗ ψ)(x)

has this form for ψ ∈ S and φ integrable. Hence, for all ψ ∈ S,∫
Rd

ψ(x) dx
∫

Rd

φ(x+ y) ν(dy) =
∫

Rd

φ̃(ω)ψ̃(ω)µ(dω).

If, furthermore, φ̃ is µ-integrable, we can rewrite the right-hand side of this
equation in the form ∫

Rd

ψ(x) dx
∫

Rd

eiω·xφ̃(ω)µ(dω).

Since equality holds for all ψ ∈ S, the coefficients of ψ(x) in the two integrals
must be a.e. equal, which gives (8.6.10).

Many variants on the inversion results given above are possible: the essen-
tial point is that µ and ν determine each other uniquely through the Parseval
relation (8.6.1). A number of further extensions of this relation can be de-
duced from (8.6.10), including the following important result.

Proposition 8.6.IV. For all p.p.d. measures µ with Fourier transform ν as
in (8.6.1), and for all bounded functions f of bounded support,∫

Rd

(f ∗ f∗)(x) ν(dx) =
∫

Rd

|f̃(ω)|2 µ(dω). (8.6.12)
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Proof. Examining (8.6.10), we see that the assumed integrability condition
implies that the right-hand side there is continuous in x and consequently
that the two sides are equal for any value of x at which the left-hand side
is also continuous (note that the a.e. condition cannot be dropped in general
because altering φ at a single point will alter the left-hand side whenever ν
has atoms while the right-hand side will remain unchanged). Thus, to check
(8.6.12), it is enough to establish the continuity of the left-hand side and the
integrability of |f̃(ω)|2 with respect to µ on the right-hand side. Appealing
to the dominated convergence theorem shows first that

∫
Rd f(u)f(x+u) du is

a continuous function of x and second, since this function vanishes outside a
bounded set within which ν(·) is finite, that the integral∫

Rd

(f ∗ f∗)(x+ y) ν(dy)

also defines a continuous function of x. To establish that |f̃(ω)|2 is µ-inte-
grable, we use Lemma 8.6.V given shortly (the lemma is also of interest in its
own right). Specifically, express the integral on the right-hand side of (8.6.12)
as a sum of integrals over regions Bk as in the lemma. For each term, we then
have ∫

Bk

|f̃(ω)|2µ(dω) ≤ bkµ(Bk) ≤ Kbk

for some finite constant K using the property of translation boundedness.
Finiteness of the integral follows on summing over k and using (8.6.13).

Lemma 8.6.V (Lin, 1965). Let A be a bounded set in R
d, h a positive

constant, and θ(x) a square integrable function with respect to Lebesgue
measure on A. For k = (k1, . . . , kd), let Bk be the half-open cube {kih < xi ≤
kih+ h; i = 1, . . . , d}, and set

bk = sup
ω∈Bk

|θ̃(ω)|2.

Then, for all such θ(·), there exists a finite constant K(h,A) independent of
θ(·) and such that ∑

k

bk ≤ K(h,A)
∫
A

|θ(x)|2 dx, (8.6.13)

where summation extends over all integers k1, . . . , kd = 0,±1, . . . .

Proof. For simplicity, we sketch the proof for d = 1, h = 1, A = [−1, 1],
leaving it to the reader to supply the details needed to extend the result to
the general case. Write

αk = 1
2

∫ 1

−1
eiπkxθ(x) dx
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for the kth Fourier coefficient of θ as a function on the interval (−1, 1). Then,
from standard properties of Fourier series, we have

∞∑
j=−∞

|αj |2 =
∫ 1

−1
|θ(x)|2 dx <∞. (8.6.14)

Now let ωk be any point in Bk = (k, k + 1], and consider the Taylor series
expansion of θ̃(ω) at ωk. Since A is bounded, θ̃ is an entire function, and
hence the Taylor series about the point k converges throughout Bk, and we
can write

∞∑
k=−∞

|θ̃(ωk)|2 =
∞∑

k=−∞

∣∣∣∣ ∞∑
n=0

(ωk − k)n

n!
θ̃(n)(k)

∣∣∣∣2

≤
∞∑

k=−∞

( ∞∑
n=0

|ωk − k|2n
n!

)( ∞∑
n=0

|θ̃(n)(k)|2
n!

)

from the Cauchy inequality. The first series is dominated by
∑∞
n=0 1/n! = e

for all choices of ωk; hence, by analogy with (8.6.14), we obtain

∞∑
k=−∞

|θ̃(ωk)|2 ≤ e
∞∑
n=0

1
n!

( ∞∑
k=−∞

|θ̃(n)(k)|2
)

= e
∞∑
n=0

1
n!

∫ 1

−1
|xnθ(x)|2 dx ≤ e2

∫ 1

−1
|θ(x)|2 dx.

In particular, choosing ωk in Bk to maximize |θ̃(ωk)|2 and so give bk, (8.6.13)
now follows.

Another integrability result is noted in Exercise 8.6.8.
A simple and characteristic property of a p.p.d. measure is that it remains

a p.p.d. measure after addition of an atom of positive mass at the origin.
Equally, passing over to the Fourier transforms, it remains a p.p.d. measure
after addition of an arbitrary positive multiple of Lebesgue measure. Now
suppose that, starting from a given p.p.d. measure µ, we repeatedly subtract
multiples of Lebesgue measure in alternation, first from the p.p.d. measure
itself and then from its Fourier transform, until one of these measures ceases to
be nonnegative. Evidently, certain maximum multiples of Lebesgue measure
will be defined by this process, leaving, after subtraction, a p.p.d. measure ν
with the additional property that no nonzero multiple of Lebesgue measure
can be subtracted from ν or its Fourier transform without destroying the
p.p.d. property. Let us call such a measure a minimal p.p.d. measure. This
leads us to the following elementary structure theorem.

Proposition 8.6.VI. Every p.p.d. measure µ on R
d can be uniquely repre-

sented as the sum of a minimal p.p.d. measure, a positive multiple of Lebesgue
measure on R

d, and an atom of positive mass at the origin.
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Very little is known about the structure of minimal p.p.d. measures, even
when d = 1. See Exercise 8.6.9.

Example 8.6(b). As a simple illustration of (8.6.12), let f(x) be the indicator
function of the hyper-rectangle (0, T1]× · · · × (0, Td]. It then follows that∫

Rd

d∏
i=1

(Ti − |xi|)+ ν(dx) =
∫

Rd

d∏
i=1

(
sin(ωiTi/2)

ωi/2

)2

µ(dω).

Exercises and Complements to Section 8.6
8.6.1 The space S.

(a) Show that if X = R and ψ: R �→ R has an integrable kth derivative, then
|ωkψ̃(ω)| → 0 as |ω| → ∞, and that, conversely, if

∫∞
−∞ |x|k|ψ(x)| dx < ∞,

then ψ̃(ω) is k times differentiable. Deduce that S is invariant under the
Fourier mapping taking ψ into ψ̃. Extend the result to R

d.
(b) Let g: R

d �→ R be an integrable function with Fourier transform g̃ such that
both g and g̃ are zero free on R

d. Show that both the mappings ψ �→ ψ ∗ g
and ψ̃ �→ ψ̃g are one-to-one mappings of S onto itself. In particular, deduce
that this result holds when ψ(·) has the double exponential form eλ(·) of
(8.6.4b).

(c) Show that if µ, ν are boundedly finite measures on R such that
∫

R
ψ dµ =∫

R
ψ dν for all ψ ∈ S, then µ = ν. [Hint: Consider ψ ∈ S of bounded

support and approximate indicator functions.] Extend to R
d.

8.6.2 Let {cn:n = 0,±1, . . .} denote a doubly infinite sequence of reals. Call {cn}
(i) transformable if cn =

∫ 2π

0
eiωnν(dω) for some measure ν on [0, 2π]; and

(ii) positive-definite if for all finite families {α1, . . . , αk} of complex numbers,
k∑
i=1

k∑
j=1

αiᾱjci−j ≥ 0.

Let P+(Z) denote the class of all p.p.d. sequences and P+(0, 2π] the class of
all p.p.d. measures on (0, 2π]. Show that every {cn} ∈ P+(Z) is bounded,
transformable, and symmetric [i.e. cn = c−n (all n)] and that a one-to-one
mapping between P+(Z) and P+(0, 2π] is defined when the Parseval relation

k∑
j=1

ajcj =
∫ 2π

0

ã(ω) ν(dω)

holds for all ã(ω) =
∑k

j=1 aje
iωj , with a1, . . . , ak any finite sequence of reals.

8.6.3 Show that not all translation-bounded sequences are transformable.
[Hint: Let X = R and exhibit a sequence that is bounded but for which
T−1∑T

j=−T cj does not converge to a limit as T → ∞. Use this to define an
atomic measure on R that is not transformable.]

8.6.4 Poisson summation formula. Show that if both ψ and ψ̃ are integrable on R,
then

∞∑
k=−∞

ψ̃(2πk + x) =
∞∑

j=−∞

ψ(j)e−ijx
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whenever the left-hand side defines a continuous function of x.
[Hint: Under the stated conditions, the left-hand side, a(x) say, is a bounded
continuous function of x. Denote by an = (2π)−1

∫ 2π

0
einxa(x) dx its nth

Fourier coefficient, and show by rearrangement that an = ψ(−n). Then, the
relation is just the representation of a(·) in terms of its Fourier series. Observe
that the conditions hold for ψ ∈ S and that the formula in Example 8.6(a)(3◦)
is the special case x = 0.]

8.6.5 Show that any p.p.d. measure on R integrates (1+ω2)−α for α > 1
2 and hence

conclude that any p.p.d. measure is a tempered measure in the language of
generalized functions.

8.6.6 (a) Let c(x) = |x|−1/2 for (|x| ≤ 1), c(x) = 0 elsewhere, and define g(ω) =
4 − ∫∞

−∞ eiωxc(x) dx. Show that the measure G with density g is nonneg-
ative and translation-bounded but cannot be made into a p.p.d. measure
by adding an atom at the origin.

(b) Show that

ν(A) =
∫
A

dx
2 − sin |x| (bounded A ∈ B)

defines a measure that is a spectral measure but not a transform (Thornett,
1979).

8.6.7 Show that for 1 < γ < 2 the following functions are densities of p.p.d. measures
in R

2, and find their spectral measures:
(a) c1(x, y) = {sin(γπ/2)Γ(γ + 1)/2π}2|xy|1−γ ;
(b) c2(x, y) = 22(γ−2)πγ−3(Γ(2 − γ))−1|x2 + y2|1−γ .
[Hint: Both spectral measures are absolutely continuous with densities
g1(ω1, ω2) = [ 12γ(γ − 1)]2|ω1ω2|γ−2, g2(ω1, ω2) = πγ−2/[Γ(γ − 1)|ω2

1 + ω2
2 |2],

respectively. Thornett (1979) has formulae for similar p.p.d. measures in R
d.]

8.6.8 Translation-boundedness characterization. A nonnegative Borel measure µ on
B(Rd) satisfies ∫

Rd

|ĨA(ω)|2 µ(dω) < ∞

for all bounded A ∈ B(Rd), if and only if the measure µ is translation-bounded.
[Hint: Establish a converse to Lemma 8.6.V of the form∫

|f̃(ω)|2 µ(dω) ≤ K2 sup
x∈A

|f(x)|2,

where f , with Fourier transform f̃ , is any bounded measurable function van-
ishing outside the bounded Borel set A and K is an absolute constant that
may depend only on µ. See Robertson and Thornett (1984) for further de-
tails. Other results and references for such measures, but on locally compact
Abelian groups, are given in Bloom (1984).]

8.6.9 Find the minimal p.p.d. measures corresponding to the Hawkes process with
Bartlett spectrum (8.1.10).



APPENDIX 1

A Review of Some Basic Concepts of
Topology and Measure Theory

In this appendix, we summarize, mainly without proof, some standard results
from topology and measure theory. The aims are to establish terminology
and notation, to set out results needed at various stages in the text in some
specific form for convenient reference, and to provide some brief perspectives
on the development of the theory. For proofs and further details, the reader
should refer, in particular, to Kingman and Taylor (1966, Chapters 1–6),
whose development and terminology we have followed rather closely.

A1.1. Set Theory
A set A of a space X is a collection of elements or points of X . When x is an
element of the set A, we write x ∈ A (x belongs to or is included in A). The
set of points of X not included in A is the complement of A, written Ac. If
A, B are two sets of points from X , their union, written A ∪ B, is the set of
points in either A or B or both; their symmetric difference, written A�B,
is the set of points in A or B but not both. If every element of B is also an
element of A, we say B is included in A (B ⊆ A) or A contains B (A ⊇ B).
In this case, the proper difference of A and B, written either A−B or A \B,
is the set of points of A but not B. More generally, we use A−B for A∩Bc,
so A−B = A�B only when A ⊃ B.

The operations ∩ and � on subsets of X are commutative, associative and
distributive. The class of all such subsets thus forms an algebra with respect
to these operations, where ∅, the empty set, plays the role of identity for �
and X the role of identity for ∩. The special relation A ∩ A = A implies
that the algebra is Boolean. More generally, any class of sets closed under the
operations of ∩ and � is called a ring, or an algebra if X itself is a member
of the class. A semiring is a class of sets A with the properties (i) A is closed
under intersections and (ii) every symmetric difference of sets in A can be

368



A1.2. Topologies 369

represented as a finite union of disjoint sets in A. The ring generated by an
arbitrary family of sets F is the smallest ring containing F or, equivalently,
the intersection of all rings containing F . Every element in the ring generated
by a semiring A can be represented as a union of disjoint sets of A. If R is
a finite ring, there exists a basis of disjoint elements of R such that every
element in R can be represented uniquely as a union of disjoint elements of
the basis.

The notions of union and intersection can be extended to arbitrary classes
of sets. If {An:n = 1, 2, . . .} is a sequence of sets, write An ↑ A = limAn
if An ⊆ An+1 (n = 1, 2, . . .) and A =

⋃∞
n=1An; similarly, if An ⊇ An+1,

write An ↓ A = limAn if A =
⋂∞
n=1An. A monotone class is a class of sets

closed under monotonically increasing sequences. A ring or algebra that is
closed under countable unions is called a σ-ring or σ-algebra, respectively.
The σ-ring generated by a class of sets C, written σ(C), is the smallest σ-
ring containing C. A σ-ring is countably generated if it can be generated by a
countable class of C. The following result, linking σ-rings to monotone classes,
is useful in identifying the σ-ring generated by certain classes of sets.

Proposition A1.1.I (Monotone Class Theorem). If R is a ring and C is a
monotone class containing R, then C contains σ(R).

A closely related result uses the concept of a Dynkin system D meaning
(i) X ∈ D;

(ii) D is closed under proper differences; and
(iii) D is closed under monotonically increasing limits.

Proposition A1.1.II (Dynkin System Theorem). If S is a class of sets
closed under finite intersections, and D is a Dynkin system containing S,
then D contains σ(S).

A1.2. Topologies

A topology U on a space X is a class of subsets of X that is closed under
arbitrary unions and finite intersections and that includes the empty set ∅ and
the whole space X ; the members of U are open sets, while their complements
are closed sets. The pair (X ,U) is a topological space. The closure of an
arbitrary set A from X , written Ā, is the smallest closed set (equivalently,
the intersection of all closed sets) containing A. The interior of A, written
A◦, is the largest open set (equivalently, the union of all open sets) contained
within A. The boundary of A, written ∂A, is the difference Ā \ A◦. The
following elementary properties of boundaries are needed in the discussion of
weak convergence of measures.

Proposition A1.2.I. (a) ∂(A ∪B) ⊆ ∂A ∪ ∂B;
(b) ∂(A ∩B) ⊆ ∂A ∪ ∂B;
(c) ∂Ac = ∂A.
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A neighbourhood of the point x ∈ X with respect to the topology U (or,
more briefly, a U-neighbourhood of x) is an open set from U containing x. U
is a Hausdorff or T2-topology if the open sets separate points; that is, if for
x �= y, x and y possess disjoint neighbourhoods. A family of sets F forms a
basis for the topology U if every U ∈ U can be represented as a union of sets
in F and F ⊆ U . U is then said to be generated by F . U is second countable
if it has a countable basis.

A sufficient condition for a family of sets to form a basis for some topology
is that, if F1 ∈ F , F2 ∈ F and x ∈ F1∩F2, then there exists F3 ∈ F such that
x ∈ F3 ⊆ F1 ∩F2. The topology generated by F is then uniquely defined and
consists of all unions of sets in F . Two bases F and G, say, are equivalent if
they generate the same topology. A necessary and sufficient condition for F
and G to be equivalent is that for each F ∈ F and x ∈ F , there exists G ∈ G
with x ∈ G ⊆ F , and similarly for each G ∈ G and y ∈ G, there exists F ∈ F
such that y ∈ F ⊆ G.

Given a topology U on X , a notion of convergence of sequences (or more
generally nets, but we do not need the latter concept) can be introduced by
saying xn → x in the topology U if, given any U-neighbourhood of x, Ux, there
exists an integer N (depending on the neighbourhood in general) such that
xn ∈ Ux for n ≥ N . Conversely, nearly all the important types of convergence
can be described in terms of a suitable topology. In this book, the overwhelm-
ing emphasis is on metric topologies, where the open sets are defined in terms
of a metric or distance function ρ(·) that satisfies the conditions, for arbitrary
x, y, z ∈ X ,
(i) ρ(x, y) = ρ(y, x);

(ii) ρ(x, y) ≥ 0 and ρ(x, y) = 0 if and only if x = y; and
(iii) (triangle inequality) ρ(x, y) + ρ(y, z) ≥ ρ(x, z).
With respect to a given distance function ρ, the open sphere Sε(x) is the set
{y: ρ(x, y) < ε}, being defined for any ε > 0. For any set A, define its diameter
by

diamA = 2 inf
{
r:Sr(x) ⊇ A for some x

}
.

The metric topology generated by ρ is the smallest topology containing the
open spheres; it is necessarily Hausdorff. A set is open in this topology if and
only if every point in the set can be enclosed by an open sphere lying wholly
within the set. A sequence of points {xn} converges to x in this topology if
and only if ρ(xn, x)→ 0. A limit point y of a set A is a limit of a sequence of
points xn ∈ A with xn �= y; y need not necessarily be in A. The closure of A
in the metric topology is the union of A and its limit points. A space X with
topology U is metrizable if a distance function ρ can be found such that U is
equivalent to the metric topology generated by ρ. Two metrics on the same
space X are equivalent if they each generate the same topology on X .

A sequence of points {xn:n ≥ 1} in a metric space is a Cauchy sequence if
ρ(xn, xm)→ 0 as n, m→∞. The space is complete if every Cauchy sequence
has a limit; i.e. if for every Cauchy sequence {xn} there exists x ∈ X such
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that ρ(xn, x)→ 0. A set D is dense in X if, for every ε > 0, every point in X
can be approximated by points in D; i.e. given x ∈ X , there exists d ∈ D such
that ρ(x, d) < ε. The space X is separable if there exists a countable dense
set, also called a separability set. If X is a separable metric space, the spheres
with rational radii and centres on a countable dense set form a countable base
for the topology.

Given two topological spaces (X1,U1) and (X2,U2), a mapping f(·) from
(X1,U1) to (X2,U2) is continuous if the inverse image f−1(U) of every open set
U ∈ U2 is an open set in U1. If both spaces are metric spaces, the mapping
is continuous if and only if for every x ∈ X1 and every ε > 0, there exists
δ > 0 such that ρ2(f(x′), f(x)) < ε whenever ρ1(x′, x) < δ, where ρi is
the metric in Xi for i = 1, 2; we can express this more loosely as f(x′) →
f(x) whenever x′ → x. A homeomorphism is a one-to-one continuous-both-
ways mapping between two topological spaces. A famous theorem of Urysohn
asserts that any complete separable metric space (c.s.m.s.) can be mapped
homeomorphically into a countable product of unit intervals. A Polish space
is a space that can be mapped homeomorphically into an open subset of a
c.s.m.s. The theory developed in Appendix 2 can be carried through for an
arbitrary Polish space with only minor changes, but we do not seek this greater
generality.

A set K in a topological space (X ,U) is compact if every covering of K by
a family of open sets contains a finite subcovering; i.e. K ⊆

⋃
α Uα, Uα ∈ U ,

implies the existence of N < ∞ and α1, . . . , αN such that K ⊆
⋃N
i=1 Uαi .

It is relatively compact if its closure K is compact. In a separable space,
every open covering contains a countable subcovering, and consequently it is
sufficient to check the compactness property for sequences of open sets rather
than general families. More generally, for a c.s.m.s., the following important
characterizations of compact sets are equivalent.

Proposition A1.2.II (Metric Compactness Theorem). Let X be a c.s.m.s.
Then, the following properties of a subset K of X are equivalent and each is
equivalent to the compactness of K.
(i) (Heine–Borel property) Every countable open covering of K contains a

finite subcovering.
(ii) (Bolzano–Weierstrass property) Every infinite sequence of points in K

contains a convergent subsequence with its limit in K.
(iii) (Total boundedness and closure) K is closed, and for every ε > 0, K can

be covered by a finite number of spheres of radius ε.
(iv) Every sequence {Fn} of closed subsets of K with nonempty finite inter-

sections (i.e.
⋂N
n=1 Fn �= ∅ for N < ∞, the finite intersection property)

has nonempty total intersection (i.e.
⋂∞
n=1 Fn �= ∅).

The space X itself is compact if the compactness criterion applies with X in
place of K. It is locally compact if every point of X has a neighbourhood with
compact closure. A space with a locally compact second countable topology
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is always metrizable. In a c.s.m.s., local compactness implies σ-compactness:
the whole space can be represented as a countable union of compact sets
(take the compact closures of the neighbourhoods of any countable dense set).
Any finite-dimensional Euclidean space is σ-compact, but the same does not
apply to infinite-dimensional spaces such as C[0, 1] or the infinite-dimensional
Hilbert space �2.

A useful corollary of Proposition A1.2.II is that any closed subset F of
a compact set in a complete metric space is again compact, for by (ii) any
infinite sequence of points of F has a limit point in K, and by closure the
limit point is also in F ; hence, F is compact.

A1.3. Finitely and Countably Additive Set Functions
Let A be a class of sets in X , and ξ(·) a real- or complex-valued function
defined on A. ξ(·) is finitely additive on A if for finite families {A1, . . . , AN}
of disjoint sets from A, with their union also in A, there holds

ξ

( N⋃
i=1

Ai

)
=

N∑
i=1

ξ(Ai).

If a similar result holds for sequences of sets {Ai: i = 1, 2, . . .}, then ξ is
countably additive (equivalently, σ-additive) on A. A countably additive set
function on A is a measure if it is nonnegative; a signed measure if it is real-
valued but not necessarily nonnegative; and a complex measure if it is not
necessarily real-valued.

A determining class for a particular type of set function is a class of sets
with the property that if two set functions of the given type agree on the
determining class, then they coincide. In this case, we can say that the set
function is determined by its values on the determining class in question. The
following proposition gives two simple results on determining classes. The
first is a consequence of the representation of any element in a ring of sets
as a disjoint union of the sets in any generating semiring; the second can be
proved using a monotone class argument and the continuity lemma A1.3.II
immediately following.

Proposition A1.3.I. (a) A finitely additive, real- or complex-valued set
function defined on a ring A is determined by its values on any semiring
generating A.

(b) A countably additive real- or complex-valued set function defined on a
σ-ring S is determined by its values on any ring generating S.

Proposition A1.3.II (Continuity Lemma). Let µ(·) be a finite real- or
complex-valued, finitely additive set function defined on a ring A. Then,
µ is countably additive on A if and only if for every decreasing sequence
{An:n = 1, 2, . . .} of sets with An ↓ ∅,

µ(An)→ 0.
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So far, we have assumed that the set functions take finite values on all the
sets for which they are defined. It is frequently convenient to allow a non-
negative set function to take the value +∞; this leads to few ambiguities and
simplifies many statements. We then say that a finitely additive set function
ξ(·) defined on an algebra or σ-algebra A is totally finite if, for all unions of
disjoint sets A1, . . . , AN in A, there exists M <∞ such that

N∑
i=1

∣∣ξ(Ai)∣∣ ≤M.

In particular, a nonnegative, additive set function µ is totally finite if and
only if µ(X ) <∞. A finitely additive set function is σ-finite if there exists a
sequence of sets {An:n = 1, 2, . . .} ∈ A such that X ⊆

⋃∞
n=1An and for each

n the restriction of ξ to An, defined by the equation

ξ̂(A) = ξ(A ∩An) (A ∈ A),

is totally finite, a situation we describe more briefly by saying that ξ is totally
finite on each An. The continuity lemma extends to σ-finite set functions
with the proviso that we consider only sequences for which |µ(An)| < ∞ for
some n < ∞. (This simple condition, extending the validity of Proposition
A1.3.II to σ-finite set functions, fails in the general case, however, and it is
then better to refer to continuity from below.)

We state next the basic extension theorem used to establish the existence
of measures on σ-rings. Note that it follows from Proposition A1.3.I that
when such an extension exists, it must be unique.

Theorem A1.3.III (Extension Theorem). A finitely additive, nonnegative
set function defined on a ring R can be extended to a measure on σ(R) if and
only if it is countably additive on R.

As an example of the use of the theorem, we cite the well-known result
that a right-continuous monotonically increasing function F (·) on R can be
used to define a measure on the Borel sets of R (the sets in the smallest σ-ring
containing the intervals) through the following sequence of steps.

(i) Define a nonnegative set function on the semiring of half-open intervals
(a, b] by setting µF (a, b] = F (b)− F (a).

(ii) Extend µF by additivity to all sets in the ring generated by such intervals
(this ring consists, in fact, of all finite disjoint unions of such half-open
intervals).

(iii) Establish countable additivity on this ring by appealing to compactness
properties of finite closed intervals.

(iv) Use the extension theorem to assert the existence of a measure extending
the definition of µF to the σ-ring generated by the half-open intervals—
that is, the Borel sets.

The intrusion of the topological notion of compactness into this otherwise
measure-theoretic sequence is a reminder that in most applications there is a
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close link between open and measurable sets. Generalizing the corresponding
concept for the real line, the Borel sets in a topological space are the sets in
the smallest σ-ring (necessarily a σ-algebra) BX containing the open sets. A
Borel measure is any measure defined on the Borel sets. The properties of
such measures when X is a c.s.m.s. are explored in Appendix 2.

Returning to the general discussion, we note that no simple generalization
of the extension theorem is known for signed measures. However, there is
an important result, that shows that in some respects the study of signed
measures can always be reduced to the study of measures.

Theorem A1.3.IV (Jordan–Hahn Decomposition). Let ξ be a signed mea-
sure defined on a σ-algebra S. Then, ξ can be written as the difference

ξ = ξ+ − ξ−

of two measures ξ+, ξ− on S, and X can be written as the union of two
disjoint sets U+, U− in S such that, for all E ∈ S,

ξ+(E) = ξ(E ∩ U+) and ξ−(E) = −ξ(E ∩ U−),

and hence in particular, ξ+(U−) = ξ−(U+) = 0.

The measures ξ+ and ξ− appearing in this theorem are called upper and
lower variations of ξ, respectively. The total variation of ξ is their sum

Vξ(A) = ξ+(A) + ξ−(A).

It is clear from Theorem A1.3.IV that

Vξ(A) = sup
IP(A)

n(IP)∑
i=1

|ξ(Ai)|,

where the supremum is taken over all finite partitions IP of A into disjoint
measurable sets. Thus, ξ is totally bounded if and only if Vξ(X ) <∞. In this
case, Vξ(A) acts as a norm on the space of totally bounded signed measures ξ
on S; it is referred to as the variation norm and sometimes written Vξ(X ) =
‖ξ‖.

A1.4. Measurable Functions and Integrals
A measurable space is a pair (X ,F), where X is the space and F a σ-ring
of sets defined on it. A mapping f from a measurable space (X ,F) into a
measurable space (Y,G) is G-measurable (or measurable for short) if, for all
A ∈ G, f−1(A) ∈ F . Note that the inverse images in X of sets in G form a
σ-ring H = f−1(G), say, and the requirement for measurability is that H ⊆ F .

By specializing to the case where Y is the real line R with G the σ-algebra
of Borel sets generated by the intervals, BR, the criterion for measurability
simplifies as follows.

Proposition A1.4.I. A real-valued function f : (X ,F) �→ (R,BR) is Borel
measurable if and only if the set {x: f(x) ≤ c} is a set in F for every real c.
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The family of real-valued (Borel) measurable functions on a measurable
space (X ,F) has many striking properties. It is closed under the operations
of addition, subtraction, multiplication, and (with due attention to zeros) di-
vision. Moreover, any monotone limit of measurable functions is measurable.
If X is a topological space and F the Borel σ-field on X , then every continuous
function on X is measurable.

The next proposition provides an important approximation result for mea-
surable functions. Here a simple function is a finite linear combination of
indicator functions of measurable sets; that is, a function of the form

s(x) =
∑N
k=1 ckIAk

(x),

where c1, . . . , cN are real and A1, . . . , AN are measurable sets.

Proposition A1.4.II. A nonnegative function f : (X ,F) �→ (R+,BR+) is
measurable if and only if it can be represented as the limit of a monoton-
ically increasing sequence of simple functions.

Now let µ be a measure on F . We call the triple (X ,F , µ) a finite or σ-
finite measure space according to whether µ has the corresponding property;
in the special case of a probability space, when µ has total mass unity, the
triple is more usually written (Ω, E ,P), where the sets of the σ-algebra E are
interpreted as events, a measurable function on (Ω, E) is a random variable,
and P is a probability measure.

We turn to the problem of defining an integral (or in the probability case
an expectation) with respect to the measure µ. If s =

∑N
k=1 ckIAk

is a
nonnegative simple function, set∫

X
s(x)µ(dx) =

∫
X
sdµ =

N∑
k=1

ckµ(Ak),

where we allow +∞ as a possible value of the integral. Next, for any non-
negative measurable function f and any sequence of simple functions {sn}
approximating f from below, set∫

X
f dµ = lim

n→∞

∫
X
sn dµ

and prove that the limit is independent of the particular sequence of simple
functions used. Finally, for any measurable function f , write

f+(x) =
(
f(x)

)+ = max
(
f(x), 0

)
,

f−(x) = f+(x)− f(x),

and if
∫
f+ dµ and

∫
f− dµ are both finite (equivalently,

∫
X |f |dµ is finite),

say that f is integrable and then define, for any integrable function f ,∫
X
f dµ =

∫
X
f+ dµ−

∫
X
f− dµ.

The resulting abstract Lebesgue integral is well defined, additive, linear,
order-preserving, and enjoys strikingly elegant continuity properties. These
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last are set out in the theorem below, where we say fn → f µ-almost every-
where (µ-a.e., or a.e. µ) if the (necessarily measurable) set {x: fn(x) �→ f(x)}
has µ-measure zero. In the probability case, we refer to almost sure (a.s.)
rather than a.e. convergence.

Theorem A1.4.III (Lebesgue Convergence Theorems). The following re-
sults hold for a sequence of measurable functions {fn:n = 1, 2, . . .} defined on
the measure space (X ,F , µ) :
(a) (Fatou’s Lemma) If fn ≥ 0,∫

X
lim inf
n→∞

fn(x)µ(dx) ≤ lim inf
n→∞

∫
X
fn(x)µ(dx).

(b) (Monotone Convergence Theorem) If fn ≥ 0 and fn ↑ f µ-a.e., then f is
measurable and

lim
n→∞

∫
X
fn dµ =

∫
X
f dµ

in the sense that either both sides are finite, and then equal, or both are
infinite.

(c) (Dominated Convergence Theorem) If |fn(x)| ≤ g(x) where g(·) is inte-
grable, and fn → f µ-a.e., then

lim
n→∞

∫
X
fn dµ =

∫
X
f dµ.

If f is an integrable function, the indefinite integral of f over any measur-
able subset can be defined by

ξf (A) def=
∫
A

f dµ def=
∫

X
IAf dµ,

where IA is the indicator function of A. It is clear that ξf is totally finite and
finitely additive on S. Moreover, it follows from the dominated convergence
theorem that if An ∈ S and An ↓ ∅, then IAnf → 0 and hence ξf (An) → 0.
Thus, ξf is also countably additive; that is, a signed measure on S. This
raises the question of which signed measures can be represented as indefinite
integrals with respect to a given µ. The essential feature is that the ξ-measure
of a set should tend to zero with the µ-measure. More specifically, ξ is abso-
lutely continuous with respect to µ whenever µ(A) = 0 implies ξ(A) = 0; we
then have the following theorem.

Theorem A1.4.IV (Radon–Nikodyn Theorem). Let (X ,F , µ) be a σ-finite
measure space and ξ a totally finite measure or signed measure on F . Then,
there exists a measurable integrable function f such that

ξ(A) =
∫

A
f(x)µ(dx) (all A ∈ F) (A1.4.1)

if and only if ξ is absolutely continuous with respect to µ; moreover, f is
a.e. uniquely determined by (A1.4.1), in the sense that any two functions
satisfying (A1.4.1), for all A ∈ F must be equal µ-a.e.
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The function f appearing in (A1.4.1) is usually referred to as a Radon–
Nikodym derivative of ξ with respect to µ, written dξ/dµ. Lemma A1.6.III
below shows one way in which the Radon–Nikodym derivative can be ex-
pressed as a limiting ratio.

There is an obvious extension of Theorem A1.4.IV to the case where ξ is
σ-finite; in this extension, (A1.4.1) holds for subsets A of any member of the
denumerable family of measurable sets on which ξ is totally finite.

Finally, we consider the relation between a fixed σ-finite measure µ and an
arbitrary σ-finite signed measure ξ. ξ is said to be singular with respect to µ
if there is a set E in F such that µ(E) = 0 and for all A ∈ F , ξ(A) = ξ(E∩A)
so that also µ(Ec) = 0 and µ(A) = µ(A ∩ Ec). We then have the following
theorem.

Theorem A1.4.V (Lebesgue Decomposition Theorem). Let (X ,F , µ) be a
σ-finite measure space and ξ(·) a finite or σ-finite signed measure on F . Then,
there exists a unique decomposition of ξ,

ξ = ξs + ξac,

into components that are, respectively, singular and absolutely continuous
with respect to µ.

A1.5. Product Spaces
If X , Y are two spaces, the Cartesian product X × Y is the set of ordered
pairs {(x, y):x ∈ X , y ∈ Y}. If X and Y are either topological or measure
spaces, there is a natural way of combining the original structures to produce
a structure in the product space. Consider first the topological case. If U , V
are neighbourhoods of the points x ∈ X , y ∈ Y with respect to topologies U ,
V, define a neighbourhood of the pair (x, y) as the product set U × V . The
class of product sets of this kind is closed under finite intersections because

(U × V ) ∩ (A×B) = (U ∩A)× (V ∩B).

It can therefore be taken as the basis of a topology in X × Y; it is called
the product topology and denoted X ⊗ Y [we follow e.g. Brémaud (1981) in
using a distinctive product sign as a reminder that the product entity here
is generated by the elements of the factors]. Most properties enjoyed by the
component (or coordinate) topologies are passed on to the product topology.
In particular, if X , Y are both c.s.m.s.s, then X × Y is also a c.s.m.s. with
respect to any one of a number of equivalent metrics, of which perhaps the
simplest is

ρ((x, y), (u, v)) = max(ρX (x, u), ρY(y, v)).

More generally, if {Xt: t ∈ T } is a family of spaces, the Cartesian product

X =×
t∈T

(Xt)

may be defined as the set of all functions x: T �→
⋃
t Xt such that x(t) ∈ Xt.
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A cylinder set in this space is a set in which restrictions are placed on a finite
subset of the coordinates, on x(t1), . . . , x(tN ), say, the values of the other
coordinates being unrestricted in their appropriate spaces. A family of basic
open sets in X can be defined by choosing open sets {Ut ⊆ Xti , i = 1, . . . , N}
and requiring x(ti) ∈ Ui, i = 1, . . . , N . The topology generated by the class of
cylinder sets of this form is called the product topology in X . A remarkable
property of this topology is that if the coordinate spaces Xt are individually
compact in their respective topologies, then X is compact in the product
topology. On the other hand, if the individual Xt are metric spaces, there
are again many ways in which X can be made into a metric space [e.g. by
using the supremum of the distances ρt(x(t), y(t)) ], but the topologies they
generate are not in general equivalent among themselves nor to the product
topology defined earlier.

Turning now to the measure context, let (X ,F , µ) and (Y,G, ν) be two
measure spaces. The product σ-ring F ⊗ G is the σ-ring generated by the
semiring of measurable rectangles A × B with A ∈ F , B ∈ G. The product
measure µ × ν is the extension to the σ-ring of the countably additive set
function defined on such rectangles by

(µ× ν)(A×B) = µ(A) ν(B)

and extended by additivity to the ring of all finite disjoint unions of such
rectangles. If µ, ν are both finite, then so is µ × ν; similarly, if µ, ν are σ-
finite, so is µ× ν. The product measurable space is the space (X ×Y,F ⊗G),
and the product measure space is the space (X × Y,F ⊗ G, µ × ν). All the
definitions extend easily to the products of finite families of measure spaces. In
the probability context, they form the natural framework for the discussion
of independence. In the context of integration theory, the most important
results pertain to the evaluation of double integrals, the question we take up
next.

Let H = F ⊗ G and π = µ× ν. If C is H-measurable, its sections

Cx = {y: (x, y) ∈ C}, Cy = {x: (x, y) ∈ C}

are, respectively, G-measurable for each fixed x and F-measurable for each
fixed y. (The converse to this result, that a set whose sections are measurable
is H-measurable, is false, however.) Similarly, if f(x, y) is H-measurable, then
regarded as a function of y, it is G-measurable for each fixed x, and regarded
as a function of x, it is F-measurable for each fixed y. Introducing integrals
with respect to µ, ν, write

s(x) =
{∫

Y f(x, y) ν(dy) if the integrand is ν-integrable,
+∞ otherwise;

t(y) =
{∫

X f(x, y)µ(dx) if the integrand is µ-integrable,
+∞ otherwise.

We then have the following theorem.
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A1.5.I (Fubini’s Theorem). Let (X ,F , µ) and (Y,G, ν) be σ-finite measure
spaces, and let (Z,H, π) denote the product measure space.
(a) If f is H-measurable and π-integrable, then s(x) is F-measurable and

µ-integrable, t(y) is G-measurable and ν-integrable, and∫
Z
f dπ =

∫
X
sdµ =

∫
Y
tdν.

(b) If f is H-measurable and f ≥ 0, it is necessary and sufficient for f to be
π-integrable that either s be µ-integrable or t be ν-integrable.

Not all the important measures on a product space are product measures;
in the probability context, in particular, it is necessary to study general bivari-
ate probability measures and their relations to the marginal and conditional
measures they induce. Thus, if π is a probability measure on (X ×Y,F ⊗G),
we define the marginal probability measures πX and πY to be the projections
of π onto (X ,F) and (Y,G), respectively; i.e. the measures defined by

πX (A) = π(A× Y) and πY(B) = π(X ×B).

We next investigate the possibility of writing a measure on the product space
as an integral (or a mixture of conditional probabilities), say

π(A×B) =
∫
A

Q(B | x)πX (dx), (A1.5.1)

where Q(B | x) may be regarded as the conditional probability of observing
the event B given the occurrence of x. Such a family is also known as a
disintegration of π.

Proposition A1.5.II. Given a family {Q(· | x):x ∈ X} of probability mea-
sures on (Y,G) and a probability measure πX on (X ,F), the necessary and
sufficient condition that (A1.5.1) should define a probability measure on the
product space (Z,H) is that, as a function of x, Q(B | x) be F-measurable for
each fixed B ∈ G. When this condition is satisfied, for every H-measurable,
nonnegative function f(·, ·),∫

Z
f dπ =

∫
X
πX (dx)

∫
Y
f(x, y)Q(dy | x). (A1.5.2)

Indeed, the integral in (A1.5.1) is not defined unless Q(B | ·) is F-measur-
able. When it is, the right-hand side of (A1.5.2) can be extended to a finitely
additive set function on the ring of finite unions of disjoint rectangle sets.
Countable additivity and the extension to a measure for which (A1.5.2) holds
then follow along standard lines using monotone approximation arguments.
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The projection of π onto the space (Y,G), i.e. the measure defined by

πY(B) =
∫

X
Q(B | x)πX (dx),

is known as the mixture of Q(· | x) with respect to πX .
The converse problem, of establishing the existence of a family of measures

satisfying (A1.5.1) from a given measure and its marginal, is a special case of
the problem of regular conditional probabilities (see e.g. Ash, 1972, Section
6.6). For any fixed B ∈ G, π(· × B) may be regarded as a measure on
(X ,F), that is clearly absolutely continuous with respect to the marginal πX .
Hence, there exists a Radon–Nikodym derivative, QR(B | x) say, that is F-
measurable, satisfies (A1.5.1), and should therefore be a candidate for the
disintegration of π. The difficulty is that we can guarantee the behaviour of
QR only for fixed sets B, and it is not clear whether, for x fixed and B varying,
the family QR(B | x) will have the additivity and continuity properties of a
measure. If {A1, . . . , AN} is a fixed family of disjoint sets in G or if {Bn:n ≥ 1}
is a fixed sequence in G with Bn ↓ ∅, then it is not difficult to show that

QR

(
N⋃
i=1

Ai

∣∣∣x) =
N∑
i=1

QR(Ai | x) πX -a.e.,

QR(Bn | x)→ 0 (n→∞) πX -a.e.,

respectively, but because there are uncountably many such relations to be
checked, it is not obvious that the exceptional sets of measure zero can be
combined into a single such set. The problem, in fact, is formally identical
to establishing the existence of random measures and is developed further in
Chapter 9. The following result is a partial converse to Proposition A1.5.II.

Proposition A1.5.III (Existence of Regular Conditional Probabilities). Let
(Y,G) be a c.s.m.s. with its associated σ-algebra of Borel sets, (X ,F) an
arbitrary measurable space, and π a probability measure on the product space
(Z,H). Then, with πX (A) = π(A×Y) for all A ∈ F , there exists a family of
kernels Q(B | x) such that

(i) Q(· | x) is a probability measure on G for each fixed x ∈ X ;
(ii) Q(B | ·) is an F-measurable function on X for each fixed B ∈ G; and

(iii) π(A×B) =
∫
A
Q(B | x)πX (dx) for all A ∈ F and B ∈ B.

We consider finally the product of a general family of measurable spaces,
{(XT ,Ft): t ∈ T }, where T is an arbitrary (finite, countable, or uncountable)
indexing set. Once again, the cylinder sets play a basic role. A measurable
cylinder set in X =×t∈T (Xt) is a set of the form

C(t1, . . . , tN ; B1, . . . , BN ) = {x(t):x(ti) ∈ Bi, i = 1, . . . , N},
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where Bi ∈ Fti is measurable for each i = 1, . . . , N . Such sets form a semiring,
their finite disjoint unions form a ring, and the generated σ-ring we denote by

F∞ =
⊗
t∈T
Ft.

This construction can be used to define a product measure on F∞, but
greater interest centres on the extension problem: given a system of mea-
sures π(σ) defined on finite subfamilies F(σ) = Ft1 ⊗ Ft2 ⊗ · · · ⊗ FtN , where
(σ) = {t1, . . . , tN} is a finite selection of indices from T , when can they be
extended to a measure on F∞? It follows from the extension theorem A1.3.III
that the necessary and sufficient condition for this to be possible is that the
given measures must give rise to a countably additive set function on the ring
generated by the measurable cylinder sets. As with the previous result, count-
able additivity cannot be established without some additional assumptions;
again it is convenient to put these in topological form by requiring each of
the Xt to be a c.s.m.s. Countable additivity then follows by a variant of the
usual compactness argument, and the only remaining requirement is that the
given measures should satisfy the obviously necessary consistency conditions
stated in the theorem below.

Theorem A1.5.IV (Kolmogorov Extension Theorem). Let T be an arbi-
trary index set, and for t ∈ T suppose (Xt,Ft) is a c.s.m.s. with its as-
sociated Borel σ-algebra. Suppose further that for each finite subfamily
(σ) = {t1, . . . , tN} of indices from T , there is given a probability measure
π(σ) on F(σ) = Ft1 ⊗ · · · ⊗ FtN . In order that there exist a measure π on F∞
such that for all (σ), π(σ) is the projection of π onto F(σ), it is necessary and
sufficient that for all (σ), (σ1), (σ2),
(i) π(σ) depends only on the choice of indices in (σ), not on the order in

which they are written down; and
(ii) if (σ1) ⊆ (σ2), then π(σ1) is the projection of π(σ2) onto F(σ1).

Written out more explicitly in terms of distribution functions, condition (i)
becomes (in an obvious notation) the condition of invariance under simulta-
neous permutations: if p1, . . . , pN is a permutation of the integers 1, . . . , N ,
then

F
(N)
t1,...,tN (x1, . . . , xN ) = F

(N)
tp1 ,...,tpN

(xp1 , . . . , xpN
).

Similarly, condition (ii) becomes the condition of consistency of marginal dis-
tributions, namely that

F
(N+k)
t1,...,tN ,s1,...,sk

(x1, . . . , xN ,∞, . . . ,∞) = F
(N)
t1,...,tN (x1, . . . , xN ).

The measure π induced on F∞ by the fidi distributions is called their pro-
jective limit. Clearly, if stochastic processes have the same fidi distributions,
they must also have the same projective limit. Such processes may be de-
scribed as being equivalent or versions of one another.

See Parthasarathy (1967, Sections 5.1–5) for discussion of Theorem A1.5.IV
in a slightly more general form and for proof and further details.
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A1.6. Dissecting Systems and Atomic Measures
The notion of a dissecting system in Definition A1.6.I depends only on topo-
logical ideas of separation and distinguishing one point from another by means
of distinct sets, though we use it mainly in the context of a metric space where
its development is simpler.

If (X ,U) is a topological space, the smallest σ-algebra containing the open
sets is called the Borel σ-algebra. If f : X �→ R is any real-valued continuous
function, then the set {x: f(x) < c} is open in U and hence measurable. It
follows that f is measurable. Thus, every continuous function is measurable
with respect to the Borel σ-algebra.

Definition A1.6.I (Dissecting System). The sequence T = {Tn} of finite
partitions Tn = {Ani: i = 1, . . . , kn} (n = 1, 2, . . .) consisting of Borel sets in
the space X is a dissecting system for X when
(i) (partition properties) Ani ∩Anj = ∅ for i �= j and An1 ∪ · · · ∪Ankn = X ;

(ii) (nesting property) An−1,i ∩Anj = Anj or ∅; and
(iii) (point-separating property) given distinct x, y ∈ X , there exists an inte-

ger n = n(x, y) such that x ∈ Ani implies y /∈ Ani.
Given a dissecting system T for X , properties (i) and (ii) of Definition

A1.6.I imply that there is a well-defined nested sequence {Tn(x)} ⊂ T such
that

∞⋂
n=1

Tn(x) = {x}, so µ(Tn(x))→ µ{x} (n→∞)

because µ is a measure and {Tn(x)} is a monotone sequence. Call x ∈ X an
atom of µ if µ({x}) ≡ µ{x} > 0. It follows that x is an atom of µ if and only
if µ(Tn(x)) > ε (all n) for some ε > 0; indeed, any ε in 0 < ε ≤ µ{x} will do.
We use δx(·) to denote Dirac measure at x, being defined on Borel sets A by

δx(A) =
{

1 if x ∈ A,
0 otherwise.

More generally, an atom of a measure µ on a measurable space (X ,F) is any
nonempty set F ∈ F such that if G ∈ F and G ⊆ F , then either G = ∅ or
G = F . However, when X is a separable metric space, it is a consequence
of Proposition A2.1.IV below that the only possible atoms of a measure µ on
(X ,F) are singleton sets.

A measure with only atoms is purely atomic; a diffuse measure has no
atoms.

Given ε > 0, we can identify all atoms of µ of mass µ{x} ≥ ε, and then
using a sequence {εj} with εj ↓ 0 as j →∞, all atoms of µ can be identified.
Because µ is σ-finite, it can have at most countably many atoms, so identifying
them as {xj : j = 1, 2, . . .}, say, and writing bj = µ{xj}, the measure

µa(·) ≡
∞∑
j=1

bjδxj (·),
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which clearly consists only of atoms, is the atomic component of the measure
µ. The measure

µd(·) ≡ µ(·)− µa(·) = µ(·)−
∞∑
j=1

bjδxj (·)

has no atoms and is the diffuse component of µ. Thus, any measure µ as
above has a unique decomposition into atomic and diffuse components.

Lemma A1.6.II. Let µ be a nonatomic measure and {Tn} a dissecting sys-
tem for a set A with µ(A) <∞. Then εn ≡ supi µ(Ani)→ 0 as n→∞.

Proof. Suppose not. Then there exists δ > 0 and, for each n, some set
An,in , say, with An,in ∈ Tn and µ(An,in) > δ. Because Tn is a dissecting
system, the nesting implies that there exists An−1,i′

n−1
∈ Tn−1 and contains

An,in , so µ(An−1,i′
n−1

) > δ. Consequently, we can assume there exists a nested
sequence of sets An,in for which µ(An,in) > δ, and hence

δ ≤ lim
n
µ(An,in) = µ(lim

n
An,in),

equality holding here because µ is a measure and {An,in} is monotone. But,
because Tn is a dissecting system, limnAn,in is either empty or a singleton
set, {x′} say. Thus, the right-hand side is either µ(∅) = 0 or µ({x}) = 0
because µ is nonatomic (i.e. δ ≤ 0), which is a contradiction.

Dissecting systems can be used to construct approximations to Radon–
Nikodym derivatives as follows (e.g. Chung, 1974, Chapter 9.5, Example VIII).

Lemma A1.6.III (Approximation of Radon–Nikodym Derivative). Let T =
{Tn} =

{
{Ani: i = 1, . . . , kn}

}
be a nested family of measurable partitions of

the measure space (Ω, E , µ), generating E and let ν be a measure absolutely
continuous with respect to µ, with Radon–Nikodym derivative dν/dµ. Define

λn(ω) =
kn∑
i=1

IAni(ω)
ν(Ani)
µ(Ani)

(ω ∈ Ω).

Then, as n→∞, λn →
dν
dµ

, µ-a.e. and in L1(µ) norm.

As a final result involving dissecting systems, given two probability mea-
sures P and P0 on (Ω, E), define the relative entropy of the restriction of P
and P0 to a partition T = {Ai} of (Ω, E) by

H(P ;P0) =
∑
i

P (Ai) log
P (Ai)
P0(Ai)

.

Additivity of measures, convexity of x log x on x > 0, and the inequality
(a1 + a2)/(b1 + b2) ≤ a1/b1 + a2/b2, valid for nonnegative ar and positive br,
r = 1, 2, establishes the result below.

Lemma A1.6.IV. Let T1, T2 be measurable partitions of (Ω, E) with T1 ⊆ T2
and P, P0 two probability measures on (Ω, E). Then, the relative entropies of
the restrictions of P, P0 to Tr satisfy H1(P ;P0) ≤ H2(P ;P0).
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Measures on Metric Spaces

A2.1. Borel Sets and the Support of Measures

If (X ,U) is a topological space, the smallest σ-algebra containing the open
sets is called the Borel σ-algebra. If f :X �→ R is any real-valued continuous
function, then the set {x: f(x) < c} is open in U and hence measurable. It
follows that f is measurable. Thus, every continuous function is measurable
with respect to the Borel σ-algebra.

It is necessary to clarify the relation between the Borel sets and various
other candidates for useful σ-algebras that suggest themselves, such as
(a) the Baire sets, belonging to the smallest σ-field with respect to which the

continuous functions are measurable;
(b) the Borelian sets, generated by the compact sets in X ; and
(c) if X is a metric space, the σ-algebra generated by the open spheres.
We show that, with a minor reservation concerning (b), all three concepts
coincide when X is a c.s.m.s. More precisely, we have the following result.

Proposition A2.1.I. Let X be a metric space and U the topology induced
by the metric. Then
(i) the Baire sets and the Borel sets coincide;

(ii) if X is separable, then the Borel σ-algebra is the smallest σ-algebra con-
taining the open spheres;

(iii) a Borel set is Borelian if and only if it is σ-compact; that is, if it can be
covered by a countable union of compact sets. In particular, the Borel sets
and the Borelian sets coincide if and only if the whole space is σ-compact.

384
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Proof. Part (i) depends on Lemma A2.1.II below, of interest in its own
right; (ii) depends on the fact that when X is separable, every open set can
be represented as a countable union of open spheres; (iii) follows from the fact
that all closed subsets of a compact set are compact and hence Borelian.

Lemma A2.1.II. Let F be a closed set in the metric space X , U an open
set containing F , and IF (·) the indicator function of F . Then, there exists a
sequence of continuous functions {fn(x)} such that

(i) 0 ≤ fn(x) ≤ 1 (x ∈ X );
(ii) fn(x) = 0 outside U ;

(iii) fn(x) ↓ IF (x) as n→∞.

Proof. Let fn(x) = ρ(x, U c)/[ρ(x, U c) + 2nρ(x, F )], where for any set C

ρ(x,C) = inf
y∈C

ρ(x, y).

Then, the sequence {fn(x)} has the required properties.

It is clear that in a separable metric space the Borel sets are countably
generated. Lemma A2.1.III exhibits a simple example of a countable semiring
of open sets generating the Borel sets.

Lemma A2.1.III. Let X be a c.s.m.s., D a countable dense set in X , and
S0 the class of all finite intersections of open spheres Sr(d) with centres d ∈ D
and rational radii. Then
(i) S0 and the ring A0 generated by S0 are countable; and

(ii) S0 generates the Borel σ-algebra in X .

It is also a property of the Borel sets in a separable metric space, and
of considerable importance in the analysis of sample-path properties of point
processes and random measures, that they include a dissecting system defined
in Definition A1.6.I.

Proposition A2.1.IV. Every separable metric space X contains a dissecting
system.

Proof. Let {d1, d2, . . .} = D be a separability set for X (i.e. D is a countable
dense set in X ). Take any pair of distinct points x, y ∈ X ; their distance apart
equals 2δ ≡ ρ(x, y) > 0. We can then find dm, dn in D such that ρ(dm, x) < δ,
ρ(dn, y) < δ, so the spheres Sδ(dm), Sδ(dn), which are Borel sets, certainly
separate x and y. We have essentially to embed such separating spheres into
a sequence of sets covering the whole space.

For the next part of the proof, it is convenient to identify one particular
element in each Tn (or it may possibly be a null set for all n sufficiently large)
as An0; this entails no loss of generality.

Define the initial partition {A1i} by A11 = S1(d1), A10 = X \A11. Observe
that X is covered by the countably infinite sequence {S1(dn)}, so the sequence
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of sets {A′
n0} defined by A′

n0 = X \
⋃n
r=1 S1(dr) converges to the null set. For

n = 2, 3, . . . and i = 1, . . . , n, define

Bni = S1/2n−i(di), Bn0 =

(
n⋃
i=1

Bni

)c
,

so that {Bni: i = 0, . . . , n} covers X . By setting Cn0 = Bn0, Cn1 = Bn1, and
Cni = Bni \

(
Bn1 ∪ · · · ∪ Bn,i−1

)
, it is clear that {Cni: i = 0, 1, . . . , n} is a

partition of X . Let the family {Ani} consist of all nonempty intersections of
the form An−1,j ∩Cnk, setting in particular An0 = An−1,0∩Cn0 = A′

n0. Then{
{Ani}:n = 1, 2, . . .

}
clearly consists of nested partitions of X by Borel sets,

and only the separation property has to be established.
Take distinct points x, y ∈ X , and write δ = ρ(x, y) as before. Fix the

integer r ≥ 0 by 2−r ≤ min(1, δ) < 2−r+1, and locate a separability point dm
such that ρ(dm, x) < 2−r. Then x ∈ S1/2r (dm) = Bm+r,m, and consequently
x ∈ Cm+r,j for some j = 1, . . . ,m. But by the triangle inequality, for any
z ∈ Cm+r,j ,

ρ(x, z) < 2 and 2−(m+r−j) < 2δ = ρ(x, y),

so the partition {Cm+r,i}, and hence also {Am+r,j}, separates x and y.

Trivially, if T is a dissecting system for X , the nonempty sets of T ∩A (in
an obvious notation) constitute a dissecting system for any A ∈ BX . If A is
also compact, the construction of a dissecting system for A is simplified by
applying the Heine–Borel theorem to extract a finite covering of A from the
countable covering

{S2−n(dr): r = 1, 2, . . .}.
Definition A2.1.V. The ring of sets generated by finitely many intersections
and unions of elements of a dissecting system is a dissecting ring.

A2.2. Regular and Tight Measures

In this section, we examine the extent to which values of a finitely or countably
generated set function defined on some class of sets can be approximated by
their values on either closed or compact sets.

Definition A2.2.I. (i) A finite or countably additive, nonnegative set func-
tion µ defined on the Borel sets is regular if, given any Borel set A and ε > 0,
there exist open and closed sets G and F , respectively, such that F ⊆ A ⊆ G
and

µ(G−A) < ε and µ(AF ) < ε.

(ii) It is compact regular if, given any Borel set A and ε > 0, there exists
a compact set C such that C ⊆ A and µ(A− C) < ε.

We first establish the following.
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Proposition A2.2.II. If X is a metric space, then all totally finite measures
on BX are regular.

Proof. Let µ be a totally finite, additive, nonnegative set function defined on
BX . Call any A ∈ BX µ-regular if µ(A) can be approximated by the values
of µ on open and closed sets in the manner of Definition A2.2.I. The class
of µ-regular sets is obviously closed under complementation. It then follows
from the inclusion relations⋃

α

Gα −
⋃
α

Fα ⊆
⋃
α

(Gα − Fα) (A2.2.1a)

and ⋂
α

Gα −
⋂
α

Fα ⊆
⋃
α

(⋂
α

Gα − Fα
)
⊆
⋃
α

(Gα − Fα) (A2.2.1b)

that the class is an algebra if µ is finitely additive and a σ-algebra if µ is count-
ably additive. In the latter case, the countable union

⋃
α Fα in (A2.2.1a) may

not be closed, but we can approximate µ
(⋃

α Fα
)

by µ
(⋃N

i=1 Fαi

)
to obtain

a set that is closed and has the required properties; similarly, in (A2.2.1b) we
can approximate µ

(⋂
αGα

)
by µ

(⋂N
i=1Aαi

)
. Moreover, if µ is σ-additive,

the class also contains all closed sets, for if F is closed, the halo sets

F ε =
⋃
x∈F

Sε(x) = {x: ρ(x, F ) < ε} (A2.2.2)

form, for a sequence of values of ε tending to zero, a family of open sets with
the property F ε ↓ F ; hence, it follows from the continuity lemma A1.3.II
that µ(F ε) → µ(F ). In summary, if µ is countably additive, the µ-regular
sets form a σ-algebra containing the closed sets, and therefore the class must
coincide with the Borel sets themselves.

Note that this proof does not require either completeness or separability.
Compact regularity is a corollary of this result and the notion of a tight

measure.

Definition A2.2.III (Tightness). A finitely or countably additive set func-
tion µ is tight if, given ε > 0, there exists a compact set K such that µ(X −K)
is defined and

µ(X −K) < ε.

Lemma A2.2.IV. If X is a complete metric space, a Borel measure is com-
pact regular if and only if it is tight.

Proof. Given any Borel set A, it follows from Proposition A2.2.II that there
exists a closed set C ⊆ A with µ(A−C) < 1

2ε. If µ is tight, choose K so that
µ(X −K) < 1

2ε. Then, the set C ∩K is a closed subset of the compact set K
and hence is itself compact; it also satisfies

µ(A− C ∩K) ≤ µ(A− C) + µ(A−K) < ε,



388 APPENDIX 2. Measures on Metric Spaces

which establishes the compact regularity of µ. If, conversely, µ is compact
regular, tightness follows on taking X = K.

Proposition A2.2.V. If X is a c.s.m.s., every Borel measure µ is tight and
hence compact regular.

Proof. Let D be a separability set for X ; then for fixed n,
⋃
d∈D S1/n(d) = X ,

and so by the continuity lemma A1.3.II, there is a finite set d1, . . . , dk(n) such
that

µ

(
X −

k(n)⋃
i=1

S1/n(di)
)
<

ε

2n
.

Now consider K =
⋂
n

(⋃k(n)
i=1 S1/n(di)

)
. It is not difficult to see that K is

closed and totally bounded, and hence compact, by Proposition A1.2.II and
that µ(X −K) < ε. Hence, µ is tight.

The results above establish compact regularity as a necessary condition for
a finitely additive set function to be countably additive. The next proposition
asserts its sufficiency. The method of proof provides a pattern that is used
with minor variations at several important points in the further development
of the theory.

Proposition A2.2.VI. Let A be a ring of sets from the c.s.m.s. X and µ a
finitely additive, nonnegative set function defined and finite on A. A sufficient
condition for µ to be countably additive on A is that, for every A ∈ A and
ε > 0, there exists a compact set C ⊆ A such that µ(A− C) < ε.

Proof. Let {An} be a decreasing sequence of sets in A with An ↓ ∅; to
establish countable additivity for µ, it is enough to show that µ(An) → 0
for every such sequence. Suppose to the contrary that µ(An) ≥ α > 0. By
assumption, there exists for each n a compact set Cn for which Cn ⊆ An and
µ(An − Cn) < α/2n+1. By (A2.2.1),

An −
⋂
k

Ck ⊆
⋃
k

(Ak − Ck).

Since A is a ring, every finite union
⋃n
k=1(Ak − Ck) is an element of A, so

from the finite additivity of µ,

µ

(
An −

n⋂
k=1

Ck

)
≤

n∑
k=1

α

2n+1 < 1
2α.

Thus, the intersection
⋂n
k=1 Ck is nonempty for each n, and it follows from

the finite intersection part of Proposition A1.2.II that
⋂n
k=1 Ck is nonempty.

This gives us the required contradiction to the assumption An ↓ ∅.
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Corollary A2.2.VII. A finite, finitely additive, nonnegative set function
defined on the Borel sets of X is countably additive if and only if it is compact
regular.

We can now prove an extension of Proposition A2.2.VI that plays an im-
portant role in developing the existence theorems of Chapter 9. It is based on
the notion of a self-approximating ring and is a generalization of the concept
of a covering ring given in Kallenberg (1975).

Definition A2.2.VIII (Self-Approximating Ring). A ring A of sets of the
c.s.m.s. X is a self-approximating ring if, for every A ∈ A and ε > 0, there
exists a sequence of closed sets {Fk(A; ε)} such that
(i) Fk(A; ε) ∈ A (k = 1, 2, . . .);

(ii) each set Fk(A; ε) is contained within a sphere of radius ε; and
(iii)

⋃∞
k=1 Fk(A; ε) = A.

Kallenberg uses the context where X is locally compact, in which case it is
possible to require the covering to be finite so that the lemma below effectively
reduces to Proposition A2.2.VI. The general version is based on an argument
in Harris (1968). The point is that it allows checking for countable additivity
to be reduced to a denumerable set of conditions.

Lemma A2.2.IX. Let A be a self-approximating ring of subsets of the
c.s.m.s. X and µ a finitely additive, nonnegative set function defined on A.
In order that µ have an extension as a measure on σ(A), it is necessary and
sufficient that for each A ∈ A, using the notation of Definition A2.2.VIII,

lim
m→∞

µ

(
m⋃
i=1

Fi(A; ε)

)
= µ(A). (A2.2.3)

Proof. Necessity follows from the continuity lemma. We establish sufficiency
by contradiction: suppose that µ is finitely additive and satisfies (A2.2.3) but
that µ cannot be extended to a measure on σ(A). From the continuity lemma,
it again follows that there exists α > 0 and a sequence of sets An ∈ A, with
An ↓ ∅, such that

µ(An) ≥ α. (A2.2.4)

For each k, use (A2.2.3) to choose a set Fk =
⋃mk

i=1 Fi(A; k−1) that is closed,
can be covered by a finite number of k−1 spheres, and satisfies

µ(Ak − Fk) ≤ α/2n+1.

From (A2.2.1), we have A −
⋂k
j=1 Fj ⊆

⋃k
j=1(Aj − Fj), which, with the

additivity of µ, implies that

µ

(
k⋂
j=1

Fj

)
≥ 1

2α > 0.
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Thus, the sets Fj have the finite intersection property.
To show that their complete intersection is nonempty, choose any xk ∈⋂k
j=1 Fj . Since F1 can be covered by a finite number of 1-spheres, there exists

a subsequence {x′
k} that is wholly contained within a sphere of radius 1.

Turning to F2, we can select a further subsequence x′′
k , which for k ≥ 2 lies

wholly within a sphere of radius 1
2 . Proceeding in this way by induction,

we finally obtain by a diagonal selection argument a subsequence {xkj} such
that for j ≥ j0 all terms are contained within a sphere of radius 1/j0. This
is enough to show that {xkj} is a Cauchy sequence that, since X is complete,
has a limit point x̄, say. For each k, the xj are in

⋂k
n=1 Fn for all sufficiently

large j. Since the sets are closed, this implies that x̄ ∈ Fk for every k. But
this implies also that x̄ ∈ Ak and hence x̄ ∈

⋂∞
k=1Ak, which contradicts the

assumption that An ↓ ∅. The contradiction shows that (A2.2.4) cannot hold
and so completes the proof of the lemma.

Let us observe finally that self-approximating rings do exist. A standard
example, which is denumerable and generating as well as self-approximating,
is the ring C generated by the closed spheres with rational radii and centres
on a countable dense set. To see this, consider the class D of all sets that
can be approximated by finite unions of closed sets in C in the sense required
by condition (iii) of Definition A2.2.VIII. This class contains all open sets
because any open set G can be written as a denumerable union of closed
spheres, with their centres at points of the countable dense set lying within
G, and rational radii bounded by the nonzero distance from the given point
of the countable dense set to the boundary of G. D also contains all closed
spheres in C; for example, suppose ε is given, choose any positive rational
δ < ε, and take the closed spheres with centres at points of the countable
dense set lying within the given sphere and having radii δ. These are all
elements of C, and therefore so are their intersections with the given closed
sphere. These intersections form a countable family of closed sets satisfying
(iii) of Definition A2.2.VIII for the given closed sphere. It is obvious that D
is closed under finite unions and that, from the relation( ∞⋃

j=1

Fj

)
∩
( ∞⋃
k=1

F ′
k

)
=

∞⋃
j=1

∞⋃
k=1

(Fj ∩ F ′
k),

D is also closed under finite intersections. Since D contains all closed spheres
and their complements that are open, D contains C. Thus, every set in C
can be approximated by closed spheres in C, so C is self-approximating as
required.

A2.3. Weak Convergence of Measures

We make reference to the following notions of convergence of a sequence of
measures on a metric space (see Section A1.3 for the definition of ‖ · ‖).
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Definition A2.3.I. Let {µn:n ≥ 1} and µ be totally finite measures in the
metric space X .
(i) µn → µ weakly if

∫
f dµn →

∫
f dµ for all bounded continuous functions

f on X .
(ii) µn → µ vaguely if

∫
f dµn →

∫
f dµ for all bounded continuous functions

f on X vanishing outside a compact set.
(iii) µn → µ strongly (or in variation norm) if ‖µn − µ‖ → 0.

The last definition corresponds to strong convergence in the Banach space
of all totally finite signed measures on X , for which the total variation metric
constitutes a genuine norm. The first definition does not correspond exactly
to weak convergence in the Banach-space sense, but it reduces to weak star
(weak*) convergence when X is compact (say, the unit interval) and the space
of signed measures on X can be identified with the adjoint space to the space
of all bounded continuous functions on X . Vague convergence is particu-
larly useful in the discussion of locally compact spaces; in our discussion, a
somewhat analogous role is played by the notion of weak hash convergence
(w#-convergence; see around Proposition A2.6.II below); it is equivalent to
vague convergence when the space is locally compact.

Undoubtedly, the central concept for our purposes is the concept of weak
convergence. Not only does it lead to a convenient and internally consistent
topologization of the space of realizations of a random measure, but it also
provides an appropriate framework for discussing the convergence of random
measures conceived as probability distributions on this space of realizations.
In this section, we give a brief treatment of some basic properties of weak
convergence, following closely the discussion in Billingsley (1968) to which we
refer for further details.

Theorem A2.3.II. Let X be a metric space and {µn:n ≥ 1} and µ measures
on BX . Then, the following statements are equivalent.
(i) µn → µ weakly.

(ii) µn(X )→ µ(X ) and lim supn→∞ µn(F ) ≤ µ(F ) for all closed F ∈ BX .
(iii) µn(X )→ µ(X ) and lim infn→∞ µn(G) ≥ µ(G) for all open G ∈ BX .
(iv) µn(A) → µ(A) for all Borel sets A with µ(∂A) = 0 (i.e. all µ-continuity

sets).

Proof. We show that (i) ⇒ (ii) ⇔ (iii) ⇒ (iv) ⇒ (i).
Given a closed set F , choose any fixed ν > 0 and construct a [0, 1]-valued

continuous function f that equals 1 on F and vanishes outside F ν [see (A2.2.2)
and Lemma A2.1.II]. We have for each n ≥ 1

µn(F ) ≤
∫
f dµn ≤ µn(F ν),

so if (i) holds,

lim sup
n→∞

µn(F ) ≤
∫
f dµ ≤ µ(F ν).
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But F ν ↓ F as ν ↓ 0, and by the continuity Lemma A1.3.II we can choose ν
so that, given any ε > 0, µ(F ν) ≤ µ(F ) + ε. Since ε is arbitrary, the second
statement in (ii) follows, while the first is trivial if we take f = 1.

Taking complements shows that (ii) and (iii) are equivalent.
When A is a µ-continuity set, µ(A◦) = µ(Ā), so supposing that (iii) holds

and hence (ii) also, we have on applying (ii) to Ā and (iii) to A◦ that

lim supµn(A) ≤ lim supµn(Ā) ≤ µ(Ā) = µ(A◦)
≤ lim inf µn(A◦) ≤ lim inf µn(A).

Thus, equality holds throughout and µn(A)→ µ(A) so (iv) holds.
Finally, suppose that (iv) holds. Let f be any bounded continuous function

on X , and let the bounded interval [α′, α′′] be such that α′ < f(x) < α′′ for all
x ∈ X . Call α ∈ [α′, α′′] a regular value of f if µ{x: f(x) = α} = 0. At most
a countable number of values can be irregular, while for any α, β that are
regular values, {x: α < f(x) ≤ β} is a µ-continuity set. From the boundedness
of f on X , given any ε > 0, we can partition [α′, α′′] by a finite set of points
α0 = α′, . . . , αN = α′′ with αi−1 < αi ≤ αi−1 + ε for i = 1, . . . , N , and from
the countability of the set of irregular points (if any), we can moreover assume
that these αi are all regular points of f . Defining Ai = {x:αi−1 < f(x) ≤ αi}
for i = 1, . . . , N and then

fL(x) =
N∑
i=1

αi−1IAi
(x), fU (x) =

N∑
i=1

αiIAi
(x),

each Ai is a µ-continuity set, fL(x) ≤ f(x) ≤ fU (x), and by (iv),

∫
fL dµ =

N∑
i=1

αi−1µ(Ai) = lim
n→∞

N∑
i=1

αi−1µn(Ai) = lim
n→∞

∫
fL dµn

≤ lim
n→∞

∫
fU dµn =

∫
fU dµ,

the extreme terms here differing by at most εµ(X ). Since ε is arbitrary and∫
fL dµn ≤

∫
f dµn ≤

∫
fU dµn, it follows that we must have

∫
f dµn →∫

f dµ for all bounded continuous f ; that is, µn → µ weakly.

Since the functions used in the proof that (i) implies (ii) are uniformly
continuous, we can extract from the proof the following useful condition for
weak convergence.

Corollary A2.3.III. µn → µ weakly if and only if
∫
f dµn →

∫
f dµ for all

bounded and uniformly continuous functions f :X �→ R.

Billingsley calls a class C of sets with the property that

µn(C)→ µ(C) (all C ∈ C) implies µn → µ weakly (A2.3.1)
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a convergence-determining class. In this terminology, (iv) of Theorem A2.3.II
asserts that the µ-continuity sets form a convergence-determining class. Any
convergence-determining class is necessarily a determining class, but the con-
verse need not be true. In particular circumstances, it may be of considerable
importance to find a convergence-determining class that is smaller than the
classes in Theorem A2.3.II. While such classes often have to be constructed
to take advantage of particular features of the metric space in question, the
general result below is also of value. In it, a covering semiring is a semiring
with the property that every open set can be represented as a finite or count-
able union of sets from the semiring. If X is separable, an important example
of such a semiring is obtained by first taking the open spheres Srj

(dk) with
centres at the points {dk} of a countable dense set and radii {rj} forming
a countable dense set in (0, 1), then forming finite intersections, and finally
taking proper differences.

Proposition A2.3.IV. Any covering semiring, together with the whole
space X , forms a convergence-determining class.

Proof. Let G be an open set so that by assumption we have

G =
∞⋃
i=1

Ci for some Ci ∈ S,

where S is a generating semiring. Since the limit µ in (A2.3.1) is a measure,
given ε > 0, we can choose a finite integer K such that

µ

(
G−

K⋃
i=1

Ci

)
≤ 1

2ε, i.e. µ(G) ≤ µ
(

K⋃
i=1

Ci

)
+ 1

2ε.

Further, since C is a semiring,
⋃K
i=1 Ci can be represented as a finite union of

disjoint sets in C. From (A2.3.1), it therefore follows that there exists N such
that, for n ≥ N ,

µ

(
K⋃
i=1

Ci

)
≤ µn

(
K⋃
i=1

Ci

)
+ 1

2ε.

Hence,

µ(G) ≤ lim inf
n→∞

µn

(
K⋃
i=1

Ci

)
+ ε ≤ lim inf

n→∞
µn(G) + ε.

Since ε is arbitrary, (iii) of Theorem A2.3.II is satisfied, and therefore µn → µ
weakly.

We investigate next the preservation of weak convergence under mappings
from one metric space into another. Let X , Y be two metric spaces with asso-
ciated Borel σ-algebras BX , BY , and f a measurable mapping from (X ,BX )
into (Y,BY) [recall that f is continuous at x if ρY

(
f(x′), f(x)

)
→ 0 whenever

ρX (x′, x)→ 0].
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Proposition A2.3.V. Let (X ,BX ), (Y,BY) be metric spaces and f a mea-
surable mapping of (X ,BX ) into (Y,BY). Suppose that µn → µ weakly on X
and µ(Df ) = 0; then µnf−1 → µf−1 weakly.

Proof. Let B be any Borel set in BY and x any point in the closure of
f−1(B). For any sequence of points xn ∈ f−1(B) such that xn → x, either
x ∈ Df or f(xn) → f(x), in which case x ∈ f−1(B̄). Arguing similarly for
the complement,

∂{f−1(B)} ⊆ f−1(∂B) ∪Df . (A2.3.2)

Now suppose that µn → µ weakly on BX , and consider the image measures
µnf

−1, µf−1 on BY . Let B be any continuity set for µf−1. It follows from
(A2.3.2) and the assumption of the proposition that f−1(B) is a continuity
set for µ. Hence, for all such B, (µnf−1)(B) = µn(f−1(B)) → µ(f−1(B)) =
(µf−1)(B); that is, µnf−1 → µf−1 weakly.

A2.4. Compactness Criteria for Weak Convergence

In this section, we call a setM of totally finite Borel measures on X relatively
compact for weak convergence if every sequence of measures in M contains
a weakly convergent subsequence. It is shown in Section A2.5 that weak
convergence is equivalent to convergence with respect to a certain metric and
that if X is a c.s.m.s., the space of all totally finite Borel measures on X is
itself a c.s.m.s. with respect to this metric. We can then appeal to Proposition
A1.2.II and conclude that a set of measures is compact (or relatively compact)
if and only if it satisfies any of the criteria (i)–(iv) of that proposition.

This section establishes the following criterion for compactness.

Theorem A2.4.I (Prohorov’s Theorem). Let X be a c.s.m.s. Necessary and
sufficient conditions for a set M of totally finite Borel measures on X to be
relatively compact for weak convergence are
(i) the total masses µ(X ) are uniformly bounded for µ ∈M; and

(ii) M is uniformly tight—namely, given ε > 0, there exists a compact K
such that, for all µ ∈M,

µ(X −K) < ε. (A2.4.1)

Proof. We first establish that the uniform tightness condition is necessary,
putting it in the following alternative form.

Lemma A2.4.II. A set M of measures is uniformly tight if and only if, for
all ε > 0 and δ > 0, there exists a finite family of δ-spheres (i.e. of radius δ)
S1, . . . , SN such that

µ
(
X −

⋃N
k=1 Sk

)
≤ ε (all µ ∈M). (A2.4.2)
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Proof of Lemma. If the condition holds, we can find, for every k = 1, 2, . . . ,
a finite union Ak of spheres of radius 1/k such that µ(X −Ak) ≤ ε/2k for all
µ ∈ M. Then, the set K =

⋂∞
k=1Ak is totally bounded and hence compact,

and for every µ ∈M,

µ(X −K) ≤
∞∑
k=1

µ(X −Ak) < ε.

Thus, M is uniformly tight. Conversely, if M is uniformly tight and, given
ε, we choose a compact K to satisfy (A2.4.1), then for any δ > 0, K can be
covered by a finite set of δ-spheres, so (A2.4.2) holds.

Returning now to the main theorem, suppose if possible thatM is relatively
compact but (A2.4.2) fails for some ε > 0 and δ > 0. Since we assume X is
separable, we can write X =

⋃∞
k=1 Sk, where each Sk is a δ-sphere. On the

other hand, for every finite n, we can find a measure µn ∈M such that

µn

(
X −

⋃∞
k=1 Sk

)
≥ ε. (A2.4.3a)

If in fact M is relatively compact, there exists a subsequence {µnj
} that

converges weakly to some limit µ∗. From (A2.4.3a), we obtain via (ii) of
Theorem A2.3.II that, for all N > 0,

µ∗
(
X −

⋃N
k=1 Sk

)
≥ lim supnj→∞ µnj

(
X −

⋃N
k=1 Sk

)
≥ ε.

This contradicts the requirement that, because X−
⋃N
k=1 Sk ↓ ∅, we must have

µ∗(X − ⋃Nk=1 Sk
)
→ 0. Thus, the uniform tightness condition is necessary.

As it is clear that no sequence {µn} with µn(X ) → ∞ can have a weakly
convergent subsequence, condition (i) is necessary also.

Turning to the converse, we again give a proof based on separability, al-
though in fact the result is true without this restriction. We start by con-
structing a countable ring R from the open spheres with rational radii and
centres in a countable dense set by taking first finite intersections and then
proper differences, thus forming a semiring, and finally taking all finite disjoint
unions of such differences.

Now suppose that {µn:n ≥ 1} is any sequence of measures from M. We
have to show that {µn} contains a weakly convergent subsequence. For any
A ∈ R, condition (i) implies that {µn(A)} is a bounded sequence of real
numbers and therefore contains a convergent subsequence. Using a diagonal
selection argument, we can proceed to ext ract subsequences {µnj} for which
the µn(A) approach a finite limit for each of the countable number of sets
A ∈ R. Let us write µ∗(A) for the limit and for brevity of notation set
µnj

= µ′
j . Thus, we have

µ′
j(A)→ µ∗(A) (all A ∈ R). (A2.4.3b)
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This might seem enough to set up a proof, for it is easy to see that µ∗

inherits finite additivity from the µ′
j , and one might anticipate that the uni-

form tightness condition could be used to establish countable additivity. The
difficulty is that we have no guarantee that the sets A ∈ R are continuity
sets for µ∗, so (A2.4.3b) cannot be relied on to give the correct value to the
limit measure. To get over this difficulty, we have to develop a more elaborate
argument incorporating the notion of a continuity set.

For this purpose, we introduce the class C of Borel sets, which are µ∗-regular
in the following sense: given C ∈ C, we can find a sequence {An} of sets in
R and an associated sequence of open sets Gn such that An ⊇ Gn ⊇ C and
similarly a sequence of sets Bn ∈ R and closed sets Fn with C ⊇ Fn ⊇ Bn,
the two sequences {An}, {Bn} having the property

lim inf µ∗(An) = lim supµ∗(Bn) = µ(C), say. (A2.4.4)

We establish the following properties of the class C.
(1◦) C is a ring: Let C, C ′ be any two sets in C, and consider, for example,

the difference C − C ′. If {An}, {Gn}, {Bn}, {Fn} and {A′
n}, {G′

n}, {B′
n},

{F ′
n} are the sequences for C and C ′, respectively, then An−B′

n ⊇ Gn−F ′
n ⊇

C − C ′ ⊇ Fn −G′
n ⊇ Bn −A′

n, with Gn − F ′
n open, Fn −G′

n closed, and the
outer sets elements of R since R is a ring. From the inclusion

(An −B′
n)− (Bn −A′

n) ⊆ (An −Bn) ∪ (A′
n −B′

n),

we find that µ∗(An−B′
n) and µ∗(Bn−A′

n) have common limit values, which
we take to be the value of µ(C − C ′). Thus, C is closed under differences,
and similar arguments show that C is closed also under finite unions and
intersections.

(2◦) C is a covering ring: Let d be any element in the countable dense set
used to construct R, and for rational values of r define

h(r) = µ∗(Sr(d)
)
.

Then h(r) is monotonically increasing, bounded above, and can be uniquely
extended to a monotonically increasing function defined for all positive values
of r and continuous at all except a countable set of values of r. It is clear that
if r is any continuity point of h(r), the corresponding sphere Sr(d) belongs to
C. Hence, for each d, we can find a sequence of spheres Sεn(d) ∈ C with radii
εn → 0. Since any open set in X can be represented as a countable union of
these spheres, C must be a covering class.

(3◦) For every C ∈ C, µ′
j(C)→ µ(C): Indeed, with the usual notation, we

have
µ∗(An) = lim

j→∞
µ′
j(An) ≥ lim sup

j→∞
µ′
j(C) ≥ lim inf

j→∞
µ′
j(C)

≥ lim
j→∞

µ′
j(Bn) = µ∗(Bn).
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Since the two extreme members can be made as close as we please to µ(C),
the two inner members must coincide and equal µ(C).

(4◦) µ is finitely additive on C: This follows from (3◦) and the finite addi-
tivity of µ′

j .

(5◦) If M is uniformly tight, then µ is countably additive on C: Suppose
that {Ck} is a sequence of sets from C, with Ck ↓ ∅ but µ(Ck) ≥ α > 0. From
the definition of C, we can find for each Ck a set Bk ∈ R and a closed set Fk
such that Ck ⊇ Fk ⊇ Bk and µ∗(Bk) > µ(Ck)− α/2k+1. Then

lim inf
j→∞

µ′
j(Fk) ≥ lim

j→∞
µ′
j(Bk) = µ∗(Bk) ≥ α− α/2k+1,

and µ(Ck)− lim inf
j→∞

µ′
j

(
k⋂

n=1

Fn

)
equals

lim sup
j→∞

µ′
j

(
Ck −

k⋂
n=1

Fn

)
≤

k∑
n=1

lim sup
j→∞

µ′
j(Cn − Fn)

≤
k∑

n=1

[
µ(Cn)− lim inf

j→∞
µ′
j(Fn)

]
≤ 1

2α;

hence,

lim inf
j→∞

µ′
j

(
k⋂

n=1

Fn

)
≥ 1

2α (all k).

If now M is uniformly tight, there exists a compact set K such that
µ(X −K) < 1

4α for all µ ∈M. In particular, therefore,

µ′
j

(
k⋂

n=1

Fn

)
−µ′

j

(
k⋂

n=1

(Fn∩K)

)
<
α

4
, so lim inf

j→∞
µ′
j

(
k⋂

n=1

(Fn∩K)

)
≥ α

4
.

But this is enough to show that, for each k, the sets
(⋂k

n=1 Fn
)
∩ K are

nonempty, and since (if X is complete) each is a closed subset of the com-
pact set K, it follows from Theorem A1.2.II that their total intersection is
nonempty. Since their total intersection is contained in

⋂∞
n=1 Cn, this set is

also nonempty, contradicting the assumption that Cn ↓ ∅.
We can now complete the proof of the theorem without difficulty. From the

countable additivity of µ on C, it follows that there is a unique extension of µ
to a measure on BX . Since C is a covering class and µ′

j(C)→ µ(C) for C ∈ C,
it follows from Proposition A2.3.III that µ′

j → µ weakly or, in other words,
that the original sequence µn contains a weakly convergent subsequence, as
required.
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A2.5. Metric Properties of the SpaceMX

Denote by MX the space of all totally finite measures on BX , and consider
the following candidate (the Prohorov distance) for a metric on MX , where
F ε is a halo set as in (A2.2.2):

d(µ, ν) = inf{ε: ε ≥ 0, and for all closed F ⊆ X ,
µ(F ) ≤ ν(F ε) + ε and ν(F ) ≤ µ(F ε) + ε}.

(A2.5.1)

If d(µ, ν) = 0, then µ(F ) = ν(F ) for all closed F , so µ(·) and ν(·) coincide. If
d(λ, µ) = δ and d(µ, ν) = ε, then

λ(F ) ≤ µ(F δ) + δ ≤ µ(F δ) + δ

≤ ν
(
(F δ)ε

)
+ δ + ε ≤ ν(F δ+ε) + δ + ε,

with similar inequalities holding when λ and ν are interchanged. Thus, the
triangle inequality holds for d, showing that d is indeed a metric.

The main objects of this section are to show that the topology generated by
this metric coincides with the topology of weak convergence and to establish
various properties of MX as a metric space in its own right. We start with
an extension of Theorem A2.3.II.

Proposition A2.5.I. Let X be a c.s.m.s. and MX the space of all totally
finite measures on BX . Then, each of the following families of sets in MX is
a basis, and the topologies generated by these three bases coincide:

(i) the sets {ν: d(ν, µ) < ε} for all ε > 0 and µ ∈MX ;
(ii) the sets {ν: ν(Fi) < µ(Fi) + ε for i = 1, . . . , k, |ν(X )−µ(X )| < ε} for all

ε > 0, finite families of closed sets F1, . . . , Fk, and µ ∈MX ;
(iii) the sets {ν: ν(Gi) > µ(Gi) − ε for i = 1, . . . , k, |ν(X ) − µ(X )| < ε} for

all ε > 0, finite families of open sets G1, . . . , Gk, and µ ∈MX .

Proof. Each of the three families represents a family of neighbourhoods of a
measure µ ∈MX . To show that each family forms a basis, we need to verify
that, if G, H are neighbourhoods of µ, ν in the given family, and η ∈ G ∩H,
then we can find a member J of the family such that η ∈ J ⊆ G ∩H.

Suppose, for example, that G,H are neighbourhoods of µ, ν in the family
(ii) [(ii)-neighbourhoods for short], corresponding to closed sets F1, . . . , Fn,
F ′

1, . . . , F
′
m, respectively, and with respective bounds ε, ε′, and that η is any

measure in the intersection G ∩H. Then we must find closed sets Ci and a
bound δ, defining a (ii)-neighbourhood J of η such that, for any ρ ∈ J ,

ρ(Fi) < µ(Fi) + ε (i = 1, . . . , n),
ρ(F ′

j) < µ(F ′
j) + ε′ (j = 1, . . . ,m),

and |ρ(X − µ(X )| < ε.
For this purpose, we may take Ci = Fi , i = 1, . . . , n; Ci+j = F ′

j , j =
1, . . . ,m, and δ = min{δ1, . . . , δn; δ′

1, . . . , δ
′
m; 1

2ε,
1
2ε

′], where
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δi = µ(Fi) + ε− η(Fi) (i = 1, . . . , n),
δ′
j = µ(F ′

j) + ε′ − η(F ′
j) (j = 1, . . . ,m).

For ρ ∈ J thus defined, we have, for i = 1, . . . , n,

ρ(Fi) < η(Fi) + δ = η(Fi) + µ(Fi) + ε1 − η(Fi) = µ(Fi) + ε1,

while |ρ(X )− µ(X )| < ε1. Thus J ⊆ G, and similarly J ⊆ H.
The proof for family (iii) follows similar lines, while that for family (i) is

standard.
To check that the three topologies are equivalent, we show that for any

µ ∈ MX , any (iii)-neighbourhood of µ contains a (ii)-neighbourhood, which
in turn contains a (i)-neighbourhood, and that this in turn contains a (iii)-
neighbourhood.

Suppose there is given then a (iii)-neighbourhood of µ, as defined in (iii) of
the proposition, and construct a (ii)-neighbourhood by setting Fi = Gci , i =
1, . . . , n, and taking 1

2ε in place of ε. Then, for any ν in this neighbourhood,

ν(Gi) = ν(X )− ν(Gci ) > µ(X )− 1
2ε− µ(Gci )− 1

2ε = µ(Gi)− ε.

Since the condition on |µ(X )− νX )| carries across directly, this is enough to
show that ν lies within the given (iii)-neighbourhood of µ.

Given next a (ii)-neighbourhood, defined as in the proposition, we can find
a δ with 0 < δ < 1

2ε for which, for i = 1, . . . , n, µ(F δi ) < µ(Fi) + 1
2ε. Consider

the sphere in MX with centre µ and radius δ, using the weak-convergence
metric d. For any ν in this sphere,

ν(Fi) < µ(F δi ) + δ < µ(Fi) + 1
2ε+ 1

2ε = µ(Fi) + ε,

while taking F = X in the defining relation for d gives ν(X )− 1
2ε < µ(X ) <

ν(X + 1
2ε; thus ν also lies within the given (ii)-neighbourhood.

Finally, suppose there is given a (i)-neighbourhood of µ, Sµ say, defined by
the relations, holding for all closed F and given ε > 0,

{ν: ν(F ) < µ(F ε) + ε; µ(F ) < ν(F ε) + ε}.

We have to construct a (iii)-neighbourhood of µ that lies within Sµ. To this
end, we first use the separability of X to cover X with a countable union of
spheres S1, S2, . . . , each of radius 1

3ε or less, and each a continuity set for
µ. Then, choose N large enough so that RN = X − ∪N1 Si, which is also a
continuity set for µ, satisfies µ(RN ) < 1

3ε.
We now define a (iii)-neighbourhood of µ by taking the finite family of sets

A consisting of all finite unions of the Si, i = 1, . . . , N , all finite unions of the
closures of their complements Sci , and RN , and setting

Gµ = {ν : ν(A) < µ(A) + 1
3ε, A ∈ A, |ν(X )− µ(X )| < 1

3ε}.

Given an arbitrary closed F in X , denote by F ∗ the union of all elements
of A that intersect F , so that F ∗ ∈ A and F ∗ ⊆ F ∗ ⊆ F ε. Then, for ν ∈ Gµ,
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ν(F ) ≤ ν(F ∗) + ν(RN ) < µ(F ∗) + 1
3ε+ ν(RN )

< µ(F ∗) + 1
3ε+ µ(RN ) + 1

3ε < µ(F ε) + ε.

Further, µ(F ) ≤ µ(F ∗) + µ(RN ) < µ(F ∗) + 1
3ε = µ(X )− µ[(F ∗)c] + 1

3ε. But
µ(X ) < ν(X ) + 1

3ε, and µ[(F ∗)c] ≥ ν[(F ∗)c]− 1
3ε, so that on substituting

µ(F ) < ν(X )− ν[(F ∗)c] + ε = ν(F ∗) + ε < ν(F ε) + ε.

These inequalities show that ν ∈ Sµ and hence Gµ ⊆ Sµ.

The weak convergence of µn to µ is equivalent by Theorem A2.3.II to
µn → µ in each of the topologies (ii) and (iii) and hence by the proposition
to d(µn, µ)→ 0. The converse holds, so we have the following.

Corollary A2.5.II. For µn and µ ∈ MX , µn → µ weakly if and only if
d(µn, µ)→ 0.

If A is a continuity set for µ, then we have also µn(A)→ µ(A). However, it
does not appear that there is a basis, analogous to (ii) and (iii) of Proposition
A2.5.I, corresponding to this form of the convergence.

Having established the fact that the weak topology is a metric topology, it
makes sense to ask whether MX is separable or complete with this topology.

Proposition A2.5.III. If X is a c.s.m.s. and MX is given the topology of
weak convergence, then MX is also a c.s.m.s.

Proof. We first establish completeness by using the compactness criteria of
the preceding section. Let {µn} be a Cauchy sequence in MX ; we show that
it is uniformly tight. Let positive ε and δ be given, and choose positive η <
min( 1

3ε,
1
2δ). From the Cauchy property, there is anN for which d(µn, µN ) < η

for n ≥ N . Since µN itself is tight, X can be covered by a sequence of spheres
S1, S2, . . . of radius η and there is a finite K for which

µN (X )− µN
(⋃K

i=1 Si

)
< η.

For n > N , since d(µn, µN ) < η,

µn(X )− µN (X ) < η and µN

(⋃K
i=1 Si

)
< µn

((⋃K
i=1 Si

)η)+ η,

so

µn(X )− µn
((⋃K

i=1 Si
)η)

< µn(X )− µn
(⋃K

i=1 Si
)

≤ |µn(X )− µN (X )|+
∣∣µN (X )− µN

(⋃K
i=1 Si

)∣∣+ η ≤ 3η < ε.

It follows that for every ε and δ we can find a finite family of δ spheres whose
union has µn measure within ε of µn(X ), uniformly in n. Hence, the sequence
{µn} is uniformly tight by Lemma A2.4.II and relatively compact by Theorem
A2.4.I [since it is clear that the quantities µn(X ) are bounded when {µn} is
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a Cauchy sequence]. Thus, there exists a limit measure such that µn → µ
weakly, which implies by Corollary A2.5.II that d(µn, µ)→ 0.

Separability is easier to establish, as a suitable dense set is already at hand
in the form of the measures with finite support (i.e. those that are purely
atomic with only a finite set of atoms). Restricting the atoms to the points
of a separability set D for X and their masses to rational numbers, we obtain
a countable family of measures, D′ say, which we now show to be dense in
MX by proving that any sphere S′

ε(µ) ⊆MX contains an element of D′. To
this end, first choose a compact set K such that µ(X \ K) < 1

2ε, which is
possible because µ is tight. Now cover K with a finite family of disjoint sets
A1, . . . , An, each with nonempty interior and of radius ε or less. [One way of
constructing such a covering is as follows. First, cover K with a finite family
of open spheres S1, . . . , Sm, say, each of radius ε. Take A1 = S̄1, A2 = S̄2∩Ac1,
A3 = S̄3 ∩ (A1 ∪ A2)c, and so on, retaining only the nonempty sets in this
construction. Then S2 ∩Ac1 is open and either empty, in which case S2 ⊆ A1
so S̄2 ⊆ Ā1 and A2 is empty, or has nonempty interior. It is evident that each
Ai has radius ε or less and that they are disjoint.] For each i, since Ai has
nonempty interior, we can choose an element xi of the separability set for X
with xi ∈ Ai, give xi rational mass µi such that

µ(Ai) ≥ µi ≥ µ(Ai)− ε/(2N),

and let µ′ denote a purely atomic measure with atoms at xi of mass µi. Then,
for an arbitrary closed set F , with

∑′ denoting
∑
i:xi∈F ,

µ′(F ) =
∑′

µi ≤
∑′

µ(Ai) < µ(F ε) + ε,

where we have used the fact that
⋃
i:xi∈F Ai ⊆ F ε because Ai has radius at

most ε. Furthermore,

µ(F ) < µ(K ∩ F ) + 1
2ε ≤

∑′′
µ(F ∩Ai) + 1

2ε,

where
∑′′ denotes

∑
i:Ai∩F �=∅, so

µ(F ) ≤
∑′′

µ′(Ai) + 1
2ε+ 1

2ε < µ(F ε) + ε.

Consequently, d(µ, µ′) < ε, or equivalently, µ′ ∈ S′
ε(µ), as required.

Denote the Borel σ-algebra on MX by B(MX ) so that from the results
just established it is the smallest σ-algebra containing any of the three bases
listed in Proposition A2.5.I. We use this fact to characterize B(MX ).

Proposition A2.5.IV. Let S be a semiring generating the Borel sets BX of
X . Then B(MX ) is the smallest σ-algebra of subsets of MX with respect to
which the mappings ΦA:MX �→ R defined by

ΦA(µ) = µ(A)

are measurable for A ∈ S. In particular, B(MX ) is the smallest σ-algebra
with respect to which the ΦA are measurable for all A ∈ BX .
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Proof. Start by considering the class C of subsets A of X for which ΦA
is B(MX )-measurable. Since ΦA∪B = ΦA + ΦB for disjoint A and B, and
the sum of two measurable functions is measurable, C is closed under finite
disjoint unions. Similarly, since ΦA\B = ΦA−ΦB for A ⊇ B, C is closed under
proper differences and hence in particular under complementation. Finally,
since a monotone sequence of measurable functions has a measurable limit,
and ΦAn ↑ ΦA whenever An ↑ A, it follows that C is a monotone class.

Let F be any closed set in X and y any positive number. Choose µ ∈MX
such that µ(F ) < y and set ε = y − µ(F ). We can then write

{ν: ΦF (ν) < y} = {ν: ν(F ) < y} = {ν: ν(F ) < µ(F ) + ε},

showing that this set of measures is an element of the basis (ii) of Proposition
A2.5.I and hence an open set in MX and therefore an element of B(MX ).
Thus, C contains all closed sets, and therefore also C contains all open sets.
From these properties of C, it now follows that C contains the ring of all finite
disjoint unions of differences of open sets in X , and since C is a monotone class,
it must contain all sets in BX . This shows that ΦA is B(MX )-measurable for
all Borel sets A and hence a fortiori for all sets in any semiring S generating
the Borel sets.

It remains to show that B(MX ) is the smallest σ-algebra inMX with this
property. Let S be given, and let R be any σ-ring with respect to which ΦA
is measurable for all A ∈ S. By arguing as above, it follows that ΦA is also
R-measurable for all A in the σ-ring generated by S, which by assumption is
BX . Now suppose we are given ε > 0, a measure µ ∈MX , and a finite family
F1, . . . , Fn of closed sets. Then, the set

{ν: ν(Fi) < µ(Fi) + ε for i = 1, . . . , n and |ν(X )− µ(X )| < ε}

is an intersection of sets of R and hence is an element of R. But this shows
that R contains a basis for the open sets of MX . Since MX is separable,
every open set can be represented as a countable union of basic sets, and thus
all open sets are in R. Thus, R contains B(MX ), completing the proof.

A2.6. Boundedly Finite Measures and the SpaceM#
X

For applications to random measures, we need to consider not only totally fi-
nite measures on BX but also σ-finite measures with the strong local finiteness
condition contained in the following definition.

Definition A2.6.I. A Borel measure µ on the c.s.m.s. X is boundedly finite
if µ(A) <∞ for every bounded Borel set A.

We write M#
X for the space of boundedly finite Borel measures on X and

generally use the # notation for concepts taken over from finite to boundedly
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finite measures. The object of this section is to extend to M#
X the results

previously obtained forMX : while most of these extensions are routine, they
are given here for the sake of completeness.

Consider first the extension of the concept of weak convergence. Taking a
fixed origin x0 ∈ X , let Sr = Sr(x0) for 0 < r <∞ and introduce a distance
function d# on M#

X by setting

d#(µ, ν) =
∫ ∞

0
e−r dr(µ(r), ν(r))

1 + dr(µ(r), ν(r))
dr, (A2.6.1)

where µ(r), ν(r) are the totally finite restrictions of µ, ν to Sr and dr is the
Prohorov distance between the restrictions. Examining (A2.5.1) where this
distance is defined, we see that the infimum cannot decrease as r increases
when the number of closed sets to be scrutinized increases, so as a function of
r, dr is monotonic and thus a measurable function. Since the ratio dr/(1+dr)
≤ 1, the integral in (A2.6.1) is defined and finite for all µ, ν. The triangle
inequality is preserved under the mapping x �→ x/(1 + x), while d#(µ, ν) = 0
if and only if µ and ν coincide on a sequence of spheres expanding to the
whole of X , in which case they are identical.

We call the metric topology generated by d# the w#-topology (‘weak hash’
topology) and write µk →w# µ for convergence with respect to this topology.
Some equivalent conditions for w#-convergence are as in the next result.

Proposition A2.6.II. Let {µk: k = 1, 2, . . .} and µ be measures in M#
X ;

then the following conditions are equivalent.
(i) µk →w# µ.

(ii)
∫

X f(x)µk(dx) →
∫

X f(x)µ(dx) for all bounded continuous functions
f(·) on X vanishing outside a bounded set.

(iii) There exists a sequence of spheres S(n) ↑ X such that if µ(n)
k , µ(n) denote

the restrictions of the measures µk, µ to subsets of S(n), then µ(n)
k → µ(n)

weakly as k →∞ for n = 1, 2, . . . .
(iv) µk(A)→ µ(A) for all bounded A ∈ BX for which µ(∂A) = 0.

Proof. We show that (i) ⇒ (iii) ⇒ (ii) ⇒ (iv) ⇒ (i). Write the integral in
(A2.6.1) for the measures µn and µ as

d#(µk, µ) =
∫ ∞

0
e−rgk(r) dr

so that for each k, gk(r) increases with r and is bounded above by 1. Thus,
there exists a subsequence {kn} and a limit function g(·) such that gkn(r)→
g(r) at all continuity points of g [this is just a version of the compactness
criterion for vague convergence on R: r egard each gk(r) as the distribution
function of a probability measure so that there exists a vaguely convergent
subsequence; see Corollary A2.6.V or any standard proof of the Helly–Bray
results]. By dominated convergence,

∫∞
0 e−rg(r) dr = 0 and hence, since g(·)
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is monotonic, g(r) = 0 for all finite r > 0. This being true for all convergent
subsequences, it follows that gk(r)→ 0 for such r and thus, for these r,

dr(µ
(r)
k , µ(r))→ 0 (k →∞).

In particular, this is true for an increasing sequence of values rn, corresponding
to spheres {Srn

} ≡ {Sn}, say, on which therefore µ(rn)
k → µ(rn) weakly. Thus,

(i) implies (iii).
Suppose next that (iii) holds and that f is bounded, continuous, and van-

ishes outside some bounded set. Then, the support of f is contained in some
Sr, and hence

∫
f dµ(r)

k →
∫
f dµ(r), which is equivalent to (ii).

When (ii) holds, the argument used to establish (iv) of Theorem A2.3.II
shows that µk(C)→ µ(C) whenever C is a bounded Borel set with µ(∂C) = 0.

Finally, if (iv) holds and Sr is any sphere that is a continuity set for µ,
then by the same theorem µ

(r)
k → µ(r) weakly in Sr. But since µ(Sr) increases

monotonically in r, Sr is a continuity set for almost all r, so the convergence
to zero of d#(µk, µ) follows from the dominated convergence theorem.

Note that we cannot find a universal sequence of spheres, {Sn} say, for
which (i) and (ii) are equivalent because the requirement of weak convergence
on Sn that µk(Sn)→ µ(Sn) cannot be guaranteed unless µ(∂Sn) = 0.

While the distance fiunction d# of Definition A2.6.I depends on the centre
x0 of the family {Sr} of spheres used there, the w#-topology does not depend
on the choice of x0. To see this, let {S′

n} be any sequence of spheres expanding
to X so that to any S′

n we can first find n′ for which S′
n ⊆ Srn′ and then find

n′′ for which Srn′ ⊆ S′
n′′ . Now weak convergence within a given sphere is

subsumed by weak convergence in a larger sphere containing it, from which
the asserted equivalence follows.

It should also be noted that for locally compact X , w#-convergence coin-
cides with vague convergence.

The next theorem extends to w#-convergence the results in Propositions
A2.5.III and A2.5.IV.

Theorem A2.6.III. (i) M#
X with the w#-topology is a c.s.m.s.

(ii) The Borel σ-algebra B(M#
X ) is the smallest σ-algebra with respect to

which the mappings ΦA:M#
X �→ R given by

ΦA(µ) = µ(A)

are measurable for all sets A in a semiring S of bounded Borel sets gen-
erating BX and in particular for all bounded Borel sets A.

Proof. To prove separability, recall first that the measures with rational
masses on finite support in a separability set D for X form a separability set
D′ for the totally finite measures on each Sn under the weak topology. Given
ε > 0, choose R so that

∫∞
R

e−r dr < 1
2ε. For any µ ∈M#

X , choose an atomic
measure µR from the separability set for SR such that µR has support in SR
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and dR(µR, µ(R)) < 1
2ε. Clearly, for r < R, we also have

dr(µ
(r)
R , µ(r)) < 1

2ε.

Substitution in the expression for d# shows that d#(µR, µ) < ε, establishing
that the union of separability sets is a separability set for measures in M#

X .
To show completeness, let {µk} be a Cauchy sequence for d#. Then, each

sequence of restrictions {µ(r)
k } forms a Cauchy sequence for dr and so has a

limit νr by Proposition A2.5.III. The sequence {νr} of measures so obtained
is clearly consistent in the sense that νr(A) = νs(A) for s ≤ r and Borel sets
A of Sr. Then, the set function

µ(A) = νr(A)

is uniquely defined on Borel sets A of Sr and is nonnegative and countably
additive on the restriction of MX to each Sr. We now extend the definition
of µ to all Borel sets by setting

µ(A) = lim
r→∞

νr(A ∩ Sr),

the sequence on the right being monotonically increasing and hence having a
limit (finite or infinite) for all A. It is then easily checked that µ(·) is finitely
additive and continuous from below and therefore countably additive and so
a boundedly finite Borel measure. Finally, it follows from (ii) of Proposition
A2.6.II that µk →w# µ.

To establish part (ii) of the theorem, examine the proof of Proposition
A2.5.IV. Let C′ be the class of sets A for which ΦA is a B(M#

X )-measurable
mapping into [0,∞). Again, C′ is a monotone class containing all bounded
open and closed sets on X and hence BX as well as any ring or semiring
generating BX . Also, if S is a semiring of bounded sets generating BX and
ΦA is R-measurable for A ∈ S and some σ-ring R of sets on M#

X , then ΦA
is R-measurable for A ∈ BX . The proposition now implies that R(r), the
σ-algebra formed by projecting the measures in sets of R onto Sr, contains
B(MSr

). Equivalently, R contains the inverse image of B(MSr
) under this

projection. The definition of B(M#
X ) implies that it is the smallest σ-algebra

containing each of these inverse images. Hence, R contains B(M#
X ).

The final extension is of the compactness criterion of Theorem A2.4.I.

Proposition A2.6.IV. A family of measures {µk} inM#
X is relatively com-

pact in the w#-topology on M#
X if and only if their restrictions {µ(n)

α } to a
sequence of closed spheres Sn ↑ X are relatively compact in the weak topology
on MSn

, in which case the restrictions {µFα} to any closed bounded F are
relatively compact in the weak topology on MF .

Proof. Suppose first that {µα} is relatively compact in the w#-topology on
M#

X and that F is a closed bounded subset of X . Given any sequence of the
µFα , there exists by assumption a w#-convergent subsequence, µαk

→w# µ say.
From Proposition A2.6.II, arguing as in the proof of A2.3.II, it follows that for
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all bounded closed sets C, lim supk→∞ µαk
(C) ≤ µ(C). Hence, in particular,

the values of µαk
(F ) are bounded above. Moreover, the restrictions {µFαk

} are
uniformly tight, this property being inherited from their uniform tightness
on a closed bounded sphere containing F . Therefore, the restrictions are
relatively compact as measures on F , and there exists a further subsequence
converging weakly on F to some limit measure, µ# say, on F . This is enough
to show that the µFα themselves are relatively compact.

Conversely, suppose that there exists a family of spheres Sn, closed or
otherwise, such that {µ(n)

α } are relatively compact for each n. By diagonal
selection, we may choose a subsequence αk such that µ(n)

αk → µ(n) weakly for
every n and therefore that, if f is any bounded continuous function vanishing
outside a bounded set, then

∫
f dµ(n)

αk →
∫
f dµ(n). It is then easy to see

that the µ(n)
α form a consistent family (i.e. µ(n)

α coincides with µ(m)
α on Sm for

n ≥ m) and so define a unique element µ of M#
X such that µαk

→w# µ.

The criterion for weak convergence on each Sn can be spelled out in detail
from Prohorov’s Theorem A2.4.I. A particularly neat result holds in the case
where X is locally (and hence countably) compact when the following termi-
nology is standard. A Radon measure in a locally compact space is a mea-
sure taking finite values on compact sets. A sequence {µk} of such measures
converges vaguely to µ if

∫
f dµk →

∫
f dµ for each continuous f vanishing

outside a compact set. Now any locally compact space with a countable base
is metrizable, but the space is not necessarily complete in the metric so ob-
tained. If, however, the space is both locally compact and a c.s.m.s., it can be
represented as the union of a sequence of compact sets Kn with Kn ⊆ K◦

n+1,
and then by changing to an equivalent metric if necessary, we can ensure that
the spheres Sn are compact as well as closed (see e.g. Hocking and Young,
1961, Proposition 2.61); we assume this is so. Then, a Borel measure is a
Radon measure if and only if it is boundedly finite, and vague convergence
coincides with w#-convergence. The discussion around (A2.6.1) shows that
the vague topology is metrizable and suggests one form for a suitable metric.
Finally, Proposition A2.6.IV takes the following form.

Corollary A2.6.V. If X is a locally compact c.s.m.s., then the family {µα}
of Radon measures on BX is relatively compact in the vague topology if and
only if the values {µα(A)} are bounded for each bounded Borel set A.

Proof. Assume the metric is so chosen that closed bounded sets are compact.
Then, if the µα(·) are relatively compact on each Sn, it follows from condition
(i) of Theorem A2.4.I that the µα(Sn) are bounded and hence that the µα(A)
are bounded for any bounded Borel set A.

Conversely, suppose the boundedness condition holds. Then, in particular,
it holds for Sn, which is compact so the tightness condition (ii) of Theorem
A2.4.I is satisfied trivially. Thus, the {µα} are relatively compact on each Sn
and so by Proposition A2.6.IV are relatively compact in the w#- (i.e. vague)
topology.
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A2.7. Measures on Topological Groups

A group G is a set on which is defined a binary relation G × G �→ G with the
following properties.

(i) (Associative law) For all g1, g2, g3 ∈ G, (g1g2)g3 = g1(g2g3).
(ii) There exists an identity element e (necessarily unique) such that for all

g ∈ G, ge = eg = g.
(iii) For every g ∈ G, there exists a unique inverse g−1 such that g−1g =

gg−1 = e.
The group is Abelian if it also has the property
(iv) (Commutative law) For all g1, g2 ∈ G, g1g2 = g2g1.

A homomorphism between groups is a mapping T that preserves the group
operations in the sense that (T g1)(T g2) = T (g1g2) and (T g1)−1 = T g−1. If
the mapping is also one-to-one, it is an isomorphism. An automorphism is an
isomorphism of the group onto itself.

A subgroupH of G is a subset of G that is closed under the group operations
and so forms a group in its own right. If H is nontrivial (i.e. neither {e} nor
the whole of G), its action on G splits G into equivalence classes, where g1 ≡ g2
if there exists h ∈ H such that g2 = g1h. These classes form the left cosets
of G relative to H; they may also be described as the (left) quotient space
G/H of G with respect to H. Similarly, H splits G into right cosets, which in
general will not be the same as the left cosets. If G is Abelian, however, or
more generally if H is a normal (or invariant) subgroup, which means that
for every g ∈ G, h ∈ H, g−1hg ∈ H, the right and left cosets coincide and the
products of two elements, one from each of any two given cosets, fall into a
uniquely defined third coset. With this definition of multiplication, the cosets
then form a group in their own right, namely the quotient group. The natural
map taking an element from G into the coset to which it belongs is then a
homomorphism of G into G/H, of which H is the kernel; that is, the inverse
image of the identity in the image space G/H.

The direct product of two groups G and H, written G ×H, consists of the
Cartesian products of G and H with the group operation

(g1, h1)(g2, h2) = (g1g2, h1h2),

identity (eG , eH), and inverse (g, h)−1 = (g−1, h−1). In particular, if G is a
group and H a normal subgroup, then G is isomorphic to the direct product
H× G/H.
G is a topological group if it has a topology U with respect to which the

mapping (g1, g2) �→ g1g
−1
2 from G × G (with the product topology) into G is

continuous. This condition makes the operations of left (and right) multipli-
cation by a fixed element of G, and of inversion, continuous. A theory with
wide applications results if the topology U is taken to be locally compact and
second countable. It is then metrizable but not necessarily complete in the
resulting metric. In keeping with our previous discussion, however, we fre-
quently assume that G is a complete separable metric group (c.s.m.g.) as well
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as being locally compact. If, as may always be done by a change of metric,
the closed bounded sets of G are compact, we refer to G as a σ-group.

Definition A2.7.I. A σ-group is a locally compact, complete separable met-
ric group with the metric so chosen that closed bounded sets are compact.

In this context, boundedly finite measures are Radon measures, and the
concepts of weak and vague convergence coincide. A boundedly finite measure
µ on the σ-group is left-invariant if (writing gA = {gx:x ∈ A})

µ(gA) = µ(A) (g ∈ G, A ∈ BG), (A2.7.1)

or equivalently, ∫
G
f(g−1x)µ(dx) =

∫
G
f(x)µ(dx) (A2.7.2)

for all f ∈ BC(G), the class of continuous functions vanishing outside a
bounded (in this case compact) set. Right-invariance is defined similarly.
A fundamental theorem for locally compact groups asserts that up to scale
factors they admit unique left- and right-invariant measures, called Haar mea-
sures. If the group is Abelian, the left and right Haar measures coincide, as
they do also when the group is compact, in which case the Haar measure is
totally finite and is uniquely specified when normalized to have total mass
unity. On the real line, or more generally on R

d, the Haar measure is just
Lebesgue measure �(·), and the uniqueness referred to above is effectively a
restatement of results on the Cauchy functional equation.

If G is a topological group and H a subgroup, the quotient topology on
G/H is the largest topology on G/H making the natural map from G into
G/H continuous. It is then also an open map (i.e. takes open sets into open
sets). If it is closed, then the quotient topology for G/H inherits properties
from the topology for G: it is Hausdorff, or compact, or locally compact if
and only if G has the same property.

These concepts extend to the more general context where X is a c.s.m.s.
and H defines a group of one-to-one bounded continuous maps Th of X into
itself such that

Th1(Th2(x)) = Th1h2(x).

Again we assume that H is a σ-group and that the {Th} act continuously on
X , meaning that the mapping (h, x) �→ Th(x) is continuous from H×X into
X . The action of H splits X into equivalence classes, where x1 ≡ x2 if there
exists h ∈ H such that x2 = Th(x1). It acts transitively on X if for every
x1, x2 ∈ X there exists an h such that Th maps x1 into x2. In this case,
the equivalence relation is trivial: there exists only one equivalence class, the
whole space X . In general, the equivalence classes define a quotient space Q,
which may be given the quotient topology; with this topology, the natural
map taking x into the equivalence class containing it is again both continuous
and open. If the original topology on H is not adjusted to the group action,
however, the quotient topology may not be adequate for a detailed discussion
of invariant measures.
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Example A2.7(a). Consider R
1 under the action of scale changes: x �→ αx

(0 < α < ∞). Here H may be identified with the positive half-line (0,∞)
with multiplication as the group action. There are three equivalence classes,
(−∞, 0), {0}, and (0,∞), which we may identify with the three-point space
Q = {−1, 0, 1}. The quotient topology is trivial (only ∅ and the whole of Q),
whereas the natural topology for further discussion is the discrete topology
on Q, making each of the three points both open and closed in Q. With this
topology, the natural map is open but not continuous. It does have, however,
a continuous (albeit trivial) restriction to each of the three equivalence classes
and therefore defines a Borel mapping of X into Q.

An important problem is to determine the structure of boundedly finite
measures on X that are invariant under the group of mappings {Th}. In many
cases, some or all of the equivalence classes of X under H can be identified
with replicas of H so that we may expect the restriction of the invariant
measures to such cosets to be proportional to Haar measure. When such an
identification is possible, the following simple lemma can be used; it allows us
to deal with most of the situations arising from concrete examples of invariant
measures [see e.g. Bourbaki (1963) for further background].

Lemma A2.7.II (Factorization Lemma). Let X = H × Y, where H is a
σ-group and Y is a c.s.m.s., and suppose that µ ∈M#

X is invariant under left
multiplication by elements of H in the sense that, for A ∈ BX and B ∈ BY ,

µ(hA×B) = µ(A×B). (A2.7.3)

Then µ = �×κ, where � is a multiple of left Haar measure on H and κ ∈M#
Y

is uniquely determined up to a scalar multiple.

Proof. Consider the set function µB(·) defined on BH for fixed B ∈ BY by
µB(A) = µ(A×B).

Then µB inherits from µ the properties of countable additivity and bounded
finiteness and so defines an element of M#

H. But then, from (A2.7.3),
µB(hA) = µ(hA×B) = µ(A×B) = µB(A),

implying that µB is invariant under left multiplication by elements of H. It
therefore reduces to a multiple of left Haar measure on H,

µB(A) = κ(B) = �(A), say.
Now the family of constants κ(B) may be regarded as a set function on BY ,
and, as for µB , this function is both countably additive and boundedly finite.
Consequently, κ(·) ∈M#

Y , and it follows that
µ(A×B) = µB(A) = �(A)κ(B).

In other words, µ reduces to the required product form on product sets, and
since these generate BX , µ and the product measure �× κ coincide.

To apply this result to specific examples, it is often necessary to find a
suitable product representation for the space on which the transformations
act. The situation is formalized in the following statement.
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Proposition A2.7.III. Let X be a c.s.m.s. acted on measurably by a group
of transformations {Th:h ∈ H}, where H is a σ-group. Suppose, furthermore,
that there exists a mapping ψ:H × Y �→ X , where Y is a c.s.m.s. and ψ is
one-to-one, both ways measurable, takes bounded sets into bounded sets, and
preserves the transformations {Th} in the sense that

Th′ψ(h, y) = ψ(h′h, y) (h′ ∈ H). (A2.7.4)

Let µ be a measure on M#
X that is invariant under the transformation Th.

Then there exists a unique invariant measure κ ∈ M#
Y such that, for BX -

measurable nonnegative functions f ,∫
X
f(x)µ(dx) =

∫
Y
κ(dy)

∫
H
f
(
ψ(h, y)

)
�(dh). (A2.7.5)

Proof. Let µ̃ be the image of µ induced on H× Y by the mapping ψ; that
is, µ̃(A×B) = µ

(
ψ(A×B)

)
. Then,

µ̃(hA×B) = µ
(
ψ(hA×B)

)
= µ
(
Thψ(A×B)

)
= µ
(
ψ(A×B)

)
= µ̃(A×B)

so that µ̃ is invariant under the action of h ∈ H on the first argument. More-
over, if A and B are bounded sets in H and Y, respectively, then by assump-
tion ψ(A × B) is bounded in X so that µ̃ is boundedly finite whenever µ is
boundedly finite. Lemma A2.7.II can now be applied and yields the result
that

µ̃(A×B) = �(A)κ(B)

for some unique boundedly finite measure κ inM#
Y . This relation establishes

the truth of (A2.7.5) for indicator functions Iψ(A×B)(x) for A ∈ BH and
B ∈ B(M#

Y ). Using the usual approximation arguments, the result extends
to simple functions f and thence to limits of these. It therefore holds for all
nonnegative f such that f ◦ ψ is measurable on H × Y. But this is true for
any f that is BX -measurable and so proves (A2.7.5).

Example A2.7(b). Let µ be a measure on R
2 that is invariant under ro-

tations about the origin. These may be written Tθ for θ ∈ S, S denoting
the circumference of the unit disk with addition modulo 2π. The equivalence
classes consist of circles of varying radii centred on the origin, together with
the isolated point {0}. The mapping (r, θ) �→ (r cos θ, r sin θ) takes the prod-
uct space S × R+ into R

2 \ {0} and is a representation of the required kind
for R

2 \ {0}. We therefore write µ as the sum of a point mass at the origin
and a measure on R

2 \ {0} that is invariant under rotations and can therefore
be represented as the image of the uniform distribution around the circle and
a measure κ on the positive half-line. Integration with respect to µ takes the
form [see (A2.7.5)]∫

R2
f(x)µ(dx) = f(0)µ({0}) +

∫ ∞

0+
κ(dr)

∫ 2π

0
f(r cos θ, r sin θ)

dθ
2π

.
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A2.8. Fourier Transforms

In this section, we collect together a few basic facts from classical Fourier
transform theory. For brevity, most results are stated for Fourier transforms
of functions on R ≡ R

1; the corresponding results for R
d can be obtained

by no more than changes in the domain of integration and appropriate book-
keeping with multiples of 2π. Both the R

d theory and the theory of Fourier
series, which can be regarded as Fourier transforms of functions defined on
the unit circle, are subsumed under the concluding comments concerned with
Fourier transforms of functions defined on locally compact Abelian groups.
We refer to texts such as Titchmarsh (1937) for more specific material on
these topics.

For any real- or complex-valued measurable (Lebesgue) integrable function
f(·), its Fourier transform f̃(·) is defined by

f̃(ω) =
∫ ∞

−∞
eiωxf(x) dx (ω ∈ R). (A2.8.1)

If f is real and symmetric, then so is f̃ . In any case, f̃ is bounded and
continuous, while the Riemann–Lebesgue lemma asserts that f(ω) → 0 as
|ω| → ∞. Furthermore, if f̃ is integrable, then the inverse relation

f(ω) =
1

2π

∫ ∞

−∞
eixω f̃(ω) dω (A2.8.2)

holds. The theory is not symmetric with respect to f and f̃ : for a more
detailed account of the representation of a function by its inverse Fourier
transform, see, for example, Titchmarsh (1937).

A symmetrical theory results if we consider (real- or complex-valued) func-
tions that are square integrable. We have the Plancherel identities for square
integrable functions f and g,∫ ∞

−∞
f(x)g(x) dx =

1
2π

∫ ∞

−∞
f̃(ω)g̃(ω) dω, (A2.8.3)

and, with g = f , ∫ ∞

−∞

∣∣f(x)
∣∣2 dx =

1
2π

∫ ∞

−∞

∣∣f̃(ω)
∣∣2 dω. (A2.8.4)

Here the Fourier transform cannot be obtained directly from (A2.8.1) but can
be represented as a mean square limit

f̃(ω) = l.i.m.
T→∞

∫ T

−T
eiωxf(x) dx, (A2.8.5)
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the existence of the finite integral following readily from the Schwarz inequal-
ity. Since the limit is defined only up to an equivalence, the theory is strictly
between equivalence classes of functions—that is, elements of the Hilbert space
L2(R)—rather than a theory between individual functions.

An important version for probability theory is concerned with the Fourier
transforms of totally finite measures (or signed measures). If G is such a
measure, its Fourier–Stieltjes transform g̃ is the bounded uniformly continuous
function

g̃(ω) =
∫ ∞

−∞
eiωxG(dx). (A2.8.6)

If G is a probability measure, g̃(ω) is its characteristic function and g̃ is
then a positive-definite function: for arbitrary finite families of real numbers
ω1, . . . , ωr and complex numbers α1, . . . , αr,

r∑
i=1

r∑
j=1

αiᾱj g̃(ωi − ωj) ≥ 0. (A2.8.7)

Conversely, Bochner’s theorem asserts that any function continuous at ω = 0
and satisfying (A2.8.7) can be represented as the Fourier transform of a totally
finite measure G on R with G(R) = g̃(0). If we take any real or complex
integrable function f with any totally finite signed measure G and apply
Fubini’s theorem to the double integral∫ ∞

−∞

∫ ∞

−∞
eiωxf(ω)G(dx) dω,

which is certainly well defined, we obtain Parseval’s identity :∫ ∞

−∞
f̃(x)G(dx) =

∫ ∞

−∞
f(ω)g̃(ω) dω. (A2.8.8)

This identity is of basic importance because it shows that G is uniquely de-
termined by g̃. Various more specific inversion theorems can be obtained by
taking suitable choices of f followed by a passage to the limit: this approach
is outlined in Feller (1966, Section XV.3), for example. In particular, the
following two forms are traditional.

(i) For continuity intervals (a, b) of G,

G((a, b)) = lim
T→∞

∫ T

−T

e−iωa − e−iωb

iω
g̃(ω) dω.

(ii) For an atom a of G,

G({a}) = lim
T→∞

1
2T

∫ T

−T
e−iωag̃(ω) dω.
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Much of the preceding theory can be extended without difficulty from R

to the case of a locally compact Abelian topological group G. The characters
of such a group are the continuous homomorphisms of the group into the
complex numbers of modulus 1. If χ1, χ2 are characters, then so are χ1χ2
and χ−1

1 . Thus, the characters form a group in their own right, G̃ say, the dual
group for G. There is a natural topology on G̃, namely the smallest making
the evaluation mapping eg(χ) ≡ χ(g) continuous for each g ∈ G, and with this
topology G̃ also is a locally compact Abelian topological group. If G = R, the
characters are of the form eiωx (ω ∈ R), and G̃ can be identified with another
version of R. If G = Z, the group of integers, G̃ is the circle group, and vice
versa. In any case, the original group reappears as the dual of the dual group
G̃, and if G is compact, G̃ is discrete and conversely.

Now let H and H̃ denote Haar measure on G and G̃, respectively. If f : G �→
R is measurable and H-integrable, its Fourier transform f̃ is the function
defined on G̃ by

f̃(χ) =
∫

G
χ(g)f(g)H(dg). (A2.8.9)

If also f̃ is H̃-integrable, then the inverse relation

f(g) =
∫

G̃
χ(g)f̃(χ) H̃(dχ) (A2.8.10)

holds, provided that H̃ is normed appropriately [otherwise, a normalizing
constant such as 1/(2π) in (A2.8.2) is needed]. Assuming that such a norming
has been adopted, the appropriate analogues of (A2.8.4–8) remain true. In
particular, we note the generalized Plancherel identity∫

G

∣∣f(g)
∣∣2H(dg) =

∫
G̃

∣∣f̃(χ)
∣∣2 H̃(dχ). (A2.8.11)



APPENDIX 3

Conditional Expectations, Stopping Times,
and Martingales

This appendix contains mainly background material for Chapter 14. For
further discussion and most proofs, we refer the reader to Ash (1972), Chung
(1974), Brémaud (1981), and to various references cited in the text.

A3.1. Conditional Expectations

Let (Ω, E ,P) be a probability space (see Section A1.4), X a random variable
(r.v.) with E|X| =

∫
Ω |X| P(dω) < ∞, and G a sub-σ-algebra of events from

E . The conditional expectation of X with respect to G, written E(X | G) or
EX|G(ω), is the G-measurable function (i.e. a random variable) defined up to
values on a set of G of P-measure zero as the Radon–Nikodym derivative

E(X | G) = EX|G(ω) = ξ
(G)
X (dω)/P(G)(dω),

where ξX(A) =
∫
A
X(ω)P(dω) is the indefinite integral of X and the super-

script (G) indicates that the set functions are to be restricted to G.
The G-measurability of E(X | G) implies that∫

U

X(ω)P(dω) =
∫
U

EX|G(ω)P(dω) (all U ∈ G), (A3.1.1)

an equation, usually taken as the defining relation, that determines the condi-
tional expectation uniquely. Extending (A3.1.1) from G-measurable indicator
functions IU (ω) to more general G-measurable functions Y , we have, whenever
E(|X|) and E(|XY |) exist,

E(XY ) =
∫

Ω
Y (ω)X(ω)P(dω) =

∫
Ω
Y (ω)EX|G(ω)P(dω) = E[Y E(X | G)].

(A3.1.2)

414
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Now replacing Y by Y IU for U ∈ G and using (A3.1.1), there follows the
factorization property of conditional expectations that for G-measurable r.v.s
Y for which both E(|X|) and E(|XY |) exist,

E(XY | G) = Y E(X | G) a.s. (A3.1.3)

Conditional expectations inherit many standard properties of ordinary ex-
pectations:

Linearity: E
( k∑
j=1

αjXj

∣∣∣G) =
k∑
j=1

αjE(Xj | G); (A3.1.4)

Monotonicity: X ≤ Y a.s. implies E(X | G) ≤ E(Y | G) a.s.; (A3.1.5)
Monotone convergence: Xn ≥ 0 and Xn ↑ Y a.s. imply that

E(Xn | G) ↑ E(Y | G) a.s.; (A3.1.6)
Jensen’s inequality: For convex measurable functions f : R �→ R for which
E[|f(X)|] <∞,

f(E[X | G]) ≤ E[f(X) | G] a.s. (A3.1.7)[
in (A3.1.7), convexity means that f

( 1
2 (x+ y)

)
≤ 1

2 [f(x) + f(y)]
]
.

If G1 and G2 are two sub-σ-algebras with G1 ⊆ G2 ⊆ E and E(|X|) <∞ as
before, the repeated conditioning theorem holds:

E[E(X | G1) | G2] = E[E(X | G2) | G1] = E(X | G1), (A3.1.8)

yielding as the special case when G = {∅,Ω}

E[E(X | G)] = E(X). (A3.1.9)

Two σ-algebras G and H are independent if, for all A ∈ G and B ∈ H,
P(A ∩ B) = P(A)P(B). Given such G and H, if X is G-measurable and we
seek E(X | H), we may expect it to reduce to yield

E(X | H) = E(X). (A3.1.10)

This is a special case of the principle of redundant conditioning: if the r.v.
X is independent of H [i.e. σ(X) and H are independent σ-algebras] and G is
independent of H, then

E(X | G ∨ H) = E(X | G), (A3.1.11)

reducing to (A3.1.10) for trivial G.
Let X be a c.s.m.s. and X an X -valued r.v. on (Ω, E ,P). Given a sub-σ-

algebra G of E , the conditional distribution of X given G is defined by analogy
with (A3.1.1) by

P(X ∈ A | G) = E(IA(X) | G) (A ∈ BX ). (A3.1.12)



416 APPENDIX 3. Conditional Expectations, Stopping Times, Martingales

As in Section A1.5, the question of the existence of regular conditional distri-
butions arises. In our present context, we seek a kernel function

Q(A,ω) (A ∈ B(X ), ω ∈ Ω)

such that for fixed A, Q(A, ·) is a G-measurable function of ω [and we identify
this with (A3.1.12)], while for fixed ω, we want Q(·, ω) to be a probability
measure on B(X ). Introduce the set function π(·) defined initially for product
sets A× U for A ∈ B(X ) and U ∈ G by

π(A× U) =
∫
U

IA(X(ω))P(dω). (A3.1.13)

Since π(·) is countably additive on such sets, it can be extended to a measure,
clearly a probability, on (X × Ω,B(X ) ⊗ G). Then Proposition A1.5.III can
be applied and yields the following formal statement in which we identify the
kernel function Q(·, ·) sought above with P(X ∈ A | G).

Proposition A3.1.I. Let X be a c.s.m.s., (Ω, E ,P) a probability space, and
X an X -valued r.v. defined on (Ω, E ,P). If G is a sub-σ-algebra of E , then
there exists a regular version of the conditional distribution PX∈·|G(ω) such
that
(i) PX∈·|G(ω) is a probability measure on B(X ) for each fixed ω;

(ii) PX∈A|G(·) is a G-measurable function of ω for fixed A ∈ B(X ); and
(iii) for each U ∈ G and A ∈ B(X ),∫

U

PX∈A|G(ω)P(dω) =
∫
U

IA(X(ω))P(dω). (A3.1.14)

Observe that if G = E , then the conditional distribution PX∈·|G(ω) is the
degenerate distribution concentrated on the pointX(ω). In general, the condi-
tional distribution represents a blurred image of this degenerate distribution,
the blurring arising as a result of the incomplete information concerning X
carried by the sub-σ-algebra G.

The following question is of the nature of a converse to the proposition.
Given (X ,B(X )), (Ω, E ,P) and a regular kernel Q(A,ω), can we find a refine-
ment E ′ ⊇ E and an E ′-measurable X -valued r.v. X such that Q(A,ω) coin-
cides with PX∈A|G(ω)? If we confine ourselves to the original space, this may
not necessarily be possible, but by extending Ω we can accomplish our aim.
Take the probability space (Ω′, E ′,P ′) given by Ω′ = X × Ω, E ′ = B(X ) ⊗ E
and P ′ = π as constructed via (A3.1.13) (identifying G there with E here),
and consider the r.v. X:X × Ω �→ X for which X(ω′) = X(x, ω) = x. With
the mapping T : Ω′ �→ Ω for which T (ω′) = T (x, ω) = ω, so that T−1(E) is a
sub-σ-algebra of E ′, we then have

P ′
X∈A|T−1(E)(ω

′) = Q(A, T (ω′)) = Q(A,ω) (A ∈ B(X )). (A3.1.15)
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Often the conditioning σ-algebra G is itself generated by some real- or (more
generally) c.s.m.s.-valued r.v. Y . Then E(X | G) is called the conditional
expectation of X given Y and P(X ∈ A | G) the conditional distribution of
X given Y , together with the suggestive notation E(X | Y ) or EX|Y (ω) and
P(X ∈ A | G) or PX∈A|G(ω). Equation (A3.1.13) then implies, for any Borel-
measurable function h(·) such that the unconditional expectations exist,

E[Xh(Y ) | Y ] = h(Y ) E(X | Y ). (A3.1.16)

The terminology suggests that, although E(X | Y ) is defined as an r.v., its
value should depend on ω only through Y (ω). Thus, if Y takes its values
in a c.s.m.s. Y, we should look for a real-valued B(Y)-measurable function
hX|Y (y) such that

EX|Y (ω) = hX|Y
(
Y (ω)

)
a.s. (A3.1.17)

That such a function exists is the assertion of the Doob representation theorem
(e.g. Doob, 1953). It can be established by applying the argument around
(A3.1.1) to the measures induced on B(Y) by the equations

PY (B) = P(Y −1(B)) (B ∈ B(Y)),

ξX(B) =
∫
Y −1(B)

X(ω)P(dω),

and, noting that ξX � PY on B(Y), by applying the Radon–Nikodym theo-
rem. Since the product of a finite or denumerably infinite number of c.s.m.s.s
can itself be regarded as a c.s.m.s., we state the theorem in the following
general form.

Proposition A3.1.II. Let (Ω, E ,P) be a probability space, X an integrable
real-valued r.v. on Ω, and G a sub-σ-algebra of E generated by a count-
able family of r.v.s Y = {Y1, Y2, . . .} taking their values in the c.s.m.s.s
Y1,Y2, . . . respectively. Then, there exists a Borel-measurable function
hX|Y (·):Y1 × Y2 × · · · �→ R such that

EX|G(ω) = hX|Y (Y1(ω), Y2(ω), . . .) P-a.s. (A3.1.18)

The proposition concerning regular conditional distributions can be trans-
formed in a similar way, yielding a kernel PX∈A|Y (y1, y2, . . .), which is a prob-
ability distribution in A for each vector (y1, y2, . . .), a Borel-measurable func-
tion of the family (y1, y2, . . .) for each A, and satisfies

PX∈A|G(ω) = PX∈A|Y (Y1(ω), Y2(ω), . . .) P-a.s.

When densities exist with respect to some underlying measure µ such as
Lebesgue measure on R

d, the conditional distributions have the form

PX∈A|Y (y1, y2, . . .) =

∫
A
fX,Y (x, y1, y2, . . .)µ(dx)∫

X fX,Y (x, y1, y2, . . .)µ(dx)
,

where fX,Y (·) is the joint density for X,Y1, Y2, . . . in the product space
X × Y1 × Y2 × · · ·, and a similar representation holds for the conditional
expectation hX|Y (·).
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A3.2. Convergence Concepts

Most of the different notions of convergence and uniform integrability men-
tioned below are standard. Stable convergence is less familiar and is discussed
in more detail.

A sequence of r.v.s {Xn:n = 1, 2, . . .} on a common probability space
(Ω, E ,P) converges in probability to a limit r.v. X, also defined on (Ω, E ,P),
if for all ε > 0,

P{|Xn −X| > ε} → 0 (n→∞). (A3.2.1)

The sequence converges almost surely to X if

1 = P{ω:Xn(ω)→ X(ω) (n→∞)}

= P
( ∞⋂
r=1

∞⋃
n=1

⋂
m≥n

{
ω:
∣∣Xm(ω)−X(ω)

∣∣ < 1
r

})

= P
( ∞⋂
r=1

∞⋃
n=1

⋂
m≥n

{
ω:
∣∣Xm(ω)−Xn(ω)

∣∣ < 1
r

})
. (A3.2.2)

Both these concepts readily generalize to the case where the r.v.s X and Xn

are X -valued for some c.s.m.s. X by simply replacing the Euclidean distance
|X − Y | by the metric ρ(X,Y ) for X, Y ∈ X . The a.s. convergence in
(A3.2.2) implies convergence in probability; convergence in probability implies
the existence of a subsequence {Xnk

} that converges a.s. to the same limit.
Returning to the real-valued case, for any given real p ≥ 1, {Xn} converges

in the mean of order p (or in pth mean, or in Lp norm) if the pth moments
exist and

‖Xn −X‖p ≡ [E(|Xn −X|p)]1/p → 0 (n→∞), (A3.2.3)

the norm here denoting the norm in the Banach space Lp(Ω, E ,P) of equiva-
lence classes of r.v.s with finite pth moments. Mean square convergence—i.e.
convergence in L2 norm—has its own notation l.i.m. (Doob, 1953, p. 8) as
in Section 8.4. For p = ∞, the space L∞(Ω, E ,P) consists of P-essentially
bounded r.v.s X; that is, r.v.s X for which |X| ≤ M a.s. for some M < ∞;
then

‖X‖∞ = ess sup |X(ω)| = inf{M : |X(ω)| ≤M a.s.}. (A3.2.4)

If Xn → X in pth mean, then E(Xp
n)→ E(Xp) (n→∞).

Chebyshev’s inequality, in the form for an Lp r.v. X,

P{|X − a| > ε} ≤ ε−pE(|X − a|p) (ε > 0, real a), (A3.2.5)

shows that convergence in Lp norm implies convergence in probability. The
converse requires the additional condition of uniform integrability.

Definition A3.2.I. A family of real-valued r.v.s {Xt: t ∈ T } defined on the
common probability space (Ω, E ,P) is uniformly integrable if, given ε > 0,
there exists M <∞ such that
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∫
|Xt|>M

|Xt(ω)| P(dω) < ε (all t ∈ T ). (A3.2.6)

Proposition A3.2.II. Let the r.v.s {Xn:n = 1, 2, . . .} and X be defined on a
common probability space (Ω, E ,P) and be such that Xn → X in probability.
Then, a necessary and sufficient condition for the means to exist and for
Xn → X in L1 norm is that the sequence {Xn} be uniformly integrable.

Applied to the sequence {Xp
n} and noting the inequality E(|Xn −X|p) ≤

2p−1[E(|Xn|p) + E(|X|p)] (1 ≤ p <∞), the proposition extends in an obvious
way to convergence in Lp norm for 1 ≤ p <∞.

A weaker concept than convergence in Lp norm [i.e. strong convergence in
the Banach space Lp(Ω, E ,P)] is that of weak Lp convergence, namely, that
if Xn and X ∈ Lp, then E(XnY ) → E(XY ) (n → ∞) for all Y ∈ Lq, where
p−1 + q−1 = 1.

Let Xn be X -valued for a c.s.m.s. X with metric ρ. Xn converges in distri-
bution if P{Xn ∈ A} → P{X ∈ A} for all A ∈ B(X ) for which P{X ∈ ∂A}
= 0. This type of convergence is not so much a constraint on the r.v.s as a
constraint on the distributions they induce on B(X ): indeed, it is precisely
weak convergence of their induced distributions. If Xn → X in probability
(or, a fortiori, if Xn → X a.s. or in Lp norm), then from the inequalities

P{Xn ∈ A} − P{X ∈ A} ≤ P
(
{Xn ∈ A} ∩ {X ∈ A}

)
≤ P

(
{Xn ∈ A} ∩ {X ∈ (Aε)c}

)
+ P{X ∈ Aε} − P{X ∈ A}

≤ P{ρ(Xn, X) > ε}+ P{X ∈ Aε} − P{X ∈ A},

it follows that Xn → X in distribution, also written Xn →d X. No general
converse statement is possible except when X is degenerate; that is, X = a
a.s. for some a ∈ X . For this exceptional case, Xn →d a means that for any
positive ε, P{ρ(Xn, a) < ε} = P{Xn ∈ Sε(a)} → 1 (n → ∞), and this is the
same as Xn → a in probability.

A hybrid concept, in the sense that it depends partly on the r.v.s Xn

themselves and partly on their distributions, is that of stable convergence.

Definition A3.2.III. If {Xn:n = 1, 2, . . .} and X are X -valued r.v.s on
(Ω, E ,P) and F is a sub-σ-algebra of E , then Xn → X (F-stably) in distribu-
tion if for all U ∈ F and all A ∈ B(X ) with P{X ∈ ∂A} = 0,

P({Xn ∈ A} ∩ U)→ P({X ∈ A} ∩ U) (n→∞). (A3.2.7)

The hybrid nature of stable convergence is well illustrated by the facts
that when F = {∅,Ω}, F-stable convergence is convergence in distribution,
whereas when F ⊇ σ(X), we have a.s. convergence in probability because
the regular version PX∈A|F (ω) of the conditional distribution appearing in
P({X ∈ A}∩U) =

∫
U
PX∈A|F (ω)P(dω) can be taken as being {0, 1}-valued,

and when such degenerate distributions for the limit r.v. occur, the concepts
of convergence in distribution and in probability coincide, as already noted.
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In general, stable convergence always implies weak convergence, and it may
be regarded as a form of weak convergence of the conditional distributions
P(Xn ∈ A | F). Just as weak convergence can be expressed in equivalent
ways, so too can stable convergence as follows (see Aldous and Eagleson,
1978).

Proposition A3.2.IV. Let {Xn}, X and F be as in Definition A3.2.III.
Then, the conditions (i)–(iv) below are equivalent.
(i) Xn → X (F-stably); that is, (A3.2.7) holds.

(ii) For all F-measurable P-essentially bounded r.v.s Z and all bounded con-
tinuous h:X �→ R,

E[Zh(Xn)]→ E[Zh(X)] (n→∞). (A3.2.8)

(iii) For all real-valued F-measurable r.v.s Y , the pairs (Xn, Y ) converge
jointly in distribution to the pair (X,Y ).

(iv) For all bounded continuous functions g: X × R �→ R and all real-valued
F-measurable r.v.s Y ,

g(Xn, Y )→ g(X,Y ) (F-stably). (A3.2.9)

If X = R
d, then any of (i)–(iv) is equivalent to condition (v).

(v) For all real vectors t ∈ R
d and all P-essentially bounded F-measurable

r.v.s Z,

E[Z exp(it′Xn)]→ E[Z exp(it′X)] (n→∞). (A3.2.10)

Proof. Equation (A3.2.7) is the special case of (A3.2.8) with Z = IU (ω)
and h(x) = IA(x) for U ∈ F and A ∈ B(X ), except that such h(·) is not
in general continuous: as in the continuity theorem for weak convergence,
(A3.2.8) can be extended to the case where h is bounded and Borel measurable
and P{X ∈ ∂h} = 0, where ∂h is the set of discontinuities of h. When
X = R

d, (A3.2.10) extends the well-known result that joint convergence of
characteristic functions is equivalent to weak convergence of distributions.
Note that all of (A3.2.7), (A3.2.8), and (A3.2.10) are contracted versions of
the full statement of weak convergence in L1 of the conditional distributions;
namely, that

E(Z E[h(Xn) | F ])→ E(Z E[h(X) | F ]) (n→∞) (A3.2.11)

for arbitrary (not necessarily F-measurable) r.v.s Z. However, (A3.2.11) can
immediately be reduced to the simpler contracted forms by using the repeated
conditioning theorem, which shows first that it is enough to consider the
case that Z is F-measurable and second that when Z is F-measurable, the
conditioning on F can be dropped.

If Y is real-valued and F-measurable and in (A3.2.7) we set U = Y −1(B)
for B ∈ B(R), we obtain

P{(Xn, Y ) ∈ A×B} → P{(X,Y ) ∈ A×B},
from which (iii) follows. Conversely, taking Y = IU in (iii) yields (A3.2.7).
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Finally, for any two real-valued F-measurable r.v.s Y, Z, repeated applica-
tion of (iii) shows that (Xn, Y, Z) converges weakly in distribution to the triple
(X,Y, Z). Applying the continuous mapping theorem (Proposition A2.2.VII)
yields the result that the pairs (g(Xn, Y ), Z) converge weakly in distribution
to (g(X,Y ), Z), which is equivalent to the stable convergence of g(Xn, Y )
to g(X,Y ) by (iii). Since stable convergence implies weak convergence, (iv)
implies (iii).

When the limit r.v. is independent of the conditioning σ-algebra F , we
have a special case of some importance: (A3.2.7) and (A3.2.10) then reduce
to the forms

P(Xn ∈ A | U)→ P{X ∈ A} (P(U) > 0) (A3.2.12)

and
E[Z exp(it′Xn)]→ E(Z) E[exp(it′X)], (A3.2.13)

respectively. In this case, the Xn are said to converge F-mixing to X.
In applications, it is often the case that the left-hand sides of relations

such as (A3.2.7) converge as n → ∞, but it is not immediately clear that
the limit can be associated with the conditional distribution of a well-defined
r.v. X. Indeed, in general there is no guarantee that such a limit r.v. will
exist, but we can instead extend the probability space in such a way that on
the extended space a new sequence of r.v.s can be defined with effectively the
same conditional distributions as for the original r.v.s and for which there is
F-stable convergence in the limit to a proper conditional distribution.

Lemma A3.2.V. Suppose that for each U ∈ F and for A in some covering
ring generating B(X ), the sequences

{
P({Xn ∈ A} ∩ U)

}
converge. Then,

there exists a probability space (Ω′, E ′,P ′), a measurable mapping T : (Ω′, E ′)
�→ (Ω, E), and an r.v. X ′ defined on (Ω′, E ′) such that if F ′ = T−1F and
X ′
n(ω′) = Xn(Tω′), then X ′

n → X ′ (F ′-stably).

Proof. Set Ω′ = X × Ω, and let E ′ be the smallest σ-algebra of subsets of
Ω′ containing both B(X ) ⊗ F and also X × E . Defining T by T (x, ω) = ω,
we see that T is measurable. Also, for each A ∈ B(X ) and U ∈ F , the limit
π(A × U) = limn→∞ P({Xn ∈ A} ∩ U) exists by assumption and defines a
countably additive set function on such product sets. Similarly, we can set
π(X × B) = limn→∞ P({Xn ∈ X} ∩ B) = P(B) for B ∈ E . Thus, π can be
extended to a countably additive set function, P ′ say, on E ′. Observe that
F ′ = T−1F consists of all sets X × U for U ∈ F . Define also X ′(x, ω) = x.
Then, for U ′ = X × U ∈ F ′,

P ′({X ′
n ∈ A} ∩ U ′) = P({Xn ∈ A} ∩ U)→ P ′(A× U) = P ′({X ′ ∈ A} ∩ U ′)

so that X ′
n converges to X ′ F-stably.

Each of the conditions (i)–(v) of Proposition A3.2.IV consists of a family
of sequences, involving r.v.s Xn converging in some sense, and the family of
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the limits is identified with a family involving a limit r.v. X. It is left to the
reader to verify via Lemma A3.2.V that if we are given only the convergence
parts of any of these conditions, then the conditions are still equivalent, and
it is possible to extend the probability space and construct a new sequence
of r.v.s X ′

n with the same joint probability distributions as the original Xn

together with a limit r.v. X ′ such that X ′
n → X ′, F-stably, and so on.

In a similar vein, there exists the following selection theorem for stable
convergence.

Proposition A3.2.VI. Let {Xn} be a sequence of X -valued r.v.s on
(Ω, E ,P) and F a sub-σ-algebra of E . If
(i) either F is countably generated or F ⊇ σ(X1, X2, . . .), and

(ii) the distributions of the {Xn} converge weakly on B(X ),
then there exists an extended probability space (Ω′, E ′,P ′), elements T , F ′,
X ′
n defined as in Lemma A3.2.V, a sequence {nk}, and a limit r.v. X ′ such

that {X ′
nk
} converges to X ′, F-stably, as k →∞.

Proof. Suppose first that F is countably generated, and denote by R some
countable ring generating F . For each U ∈ R, the measures on B(X ) defined
by

Qn(A;U) = P({Xn ∈ A} ∩ U)

are uniformly tight because they are strictly dominated by the uniformly tight
measures P({Xn ∈ A}). Thus, they contain a weakly convergent subsequence.
Using a diagonal selection argument, the subsequence can be so chosen that
convergence holds simultaneously for all U ∈ R. Therefore, we can assume
that the sequence {Qnk

(A;U)} converges as k → ∞ to some limit Q(A;U)
for all A that are continuity sets of this limit measure and for all U ∈ R.

Given ε > 0 and B ∈ F , there exist Uε, Vε ∈ R such that Uε ⊆ B ⊆ Vε and
P(Uε) ≥ P(Vε)− ε. Then, the two extreme terms in the chain of inequalities

lim
k→∞

Qnk
(A;Uε) ≤ lim

k→∞
inf
j>k
P({Xnj

∈ A} ∩B)

≤ lim
k→∞

sup
j>k
P({Xnj ∈ A} ∩B) ≤ lim

k→∞
Qnk

(A;Vε)

differ by at most ε, so the sequence
{
P({Xnk

∈ A}∩B)
}

also converges. The
construction of an extended probability space (Ω′, E ′,P ′) and a limit r.v. X ′

now follows as in the lemma, establishing the proposition in the case where
F is countably generated.

To treat the case where F ⊇ σ(X1, X2, . . .), consider first the case where
F = F0 ≡ σ(X1, X2, . . .). This is countably generated because X is separable
and only a countable family of r.v.s is involved. Applying the selection argu-
ment and extension of the probability space, we can conclude from (A3.2.10)
that

E[Zh(X ′
nk

)]→ E[Zh(X ′)] (any F ′
0-measurable Z). (A3.2.14)
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Now let Z ′ be any F ′-measurable r.v. (where F ⊃ F0). Because h(X ′
nk

) is
F ′

0-measurable, we can write

E[Z ′h(X ′
nk

)] = E[ E(Z ′ | F ′
0)h(X ′

nk
)],

and the convergence follows from (A3.2.14) by the F ′
0-measurability of

E(Z ′ | F ′
0). Thus, for any such Z ′, E[Z ′h(X ′

nk
)] → E[Z ′h(X ′)], implying

that X ′
nk
→ X ′ (F ′

0-stably).

A systematic account of the topology of stable convergence when F = E
but no limit r.v. is assumed is given by Jacod and Memin (1984).

A3.3. Processes and Stopping Times

This section is primarily intended as background material for Chapter 14,
where the focus is on certain real-valued stochastic processes denoted {Xt(ω)}
= {X(t, ω)} = {X(t)} on the positive time axis, t ∈ (0,∞) ≡ R+. Other time
domains—finite intervals, or R, or (subsets of) the integers Z = {0,± 1, . . .}
—can be considered: it is left to the reader to supply appropriate modifica-
tions to the theory as needed. Our aim here is to give just so much of the
measure-theoretic framework as we hope will make our text intelligible. For
a detailed discussion of this framework, texts such as Dellacherie (1972), Del-
lacherie and Meyer (1978) or Elliott (1982) should be consulted. Condensed
accounts of selected results such as given here are also given in Brémaud
(1981), Kallianpur (1980), and Liptser and Shiryayev (1977).

While a stochastic process X(t, ω) may be regarded as an indexed family
of random variables on a common probability space (Ω, E ,P), with index
set here taken to be R+, it is more appropriate for our purposes, as in the
general theory, to regard it as a function on the product space R+ × Ω. The
stochastic process X: R+×Ω �→ B(R+)⊗E is measurable when this mapping
is measurable; that is, for all A ∈ B(R),

{(t, ω):X(t, ω) ∈ A} ∈ B(R+)⊗ E , (A3.3.1)

where the right-hand side denotes the product σ-algebra of the two σ-algebras
there. As a consequence of this measurability and Fubini’s theorem, X(·, ω):
R+ �→ R is a.s. measurable, while for measurable functions h: R �→ R,

Y (ω) ≡
∫

R+

h(X(t, ω)) dt

is a random variable provided the integral exists. A stochastic process on R+,
if defined merely as an indexed family of r.v.s on a common probability space,
is necessarily measurable if, for example, the trajectories are either a.s. con-
tinuous or a.s. monotonic and right-continuous.
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The main topic we treat concerns the evolution of a stochastic process;
that is, we observe {X(s, ω): 0 < s ≤ t} for some (unknown) ω and finite time
interval (0, t]. It is then natural to consider the σ-algebra

F (X)
t ≡ σ{X(s, ω): 0 < s ≤ t}

generated by all possible such evolutions. Clearly,

F (X)
s ⊆ F (X)

t

for 0 < s < t < ∞. Of course, we may also have some foreknowledge of
the process X, and this we represent by a σ-algebra F0. Quite generally, an
expanding family F = {Ft: 0 ≤ t < ∞} of sub-σ-algebras of E is called a
filtration or history, and we concentrate on those histories that incorporate
information on the process X. For this purpose, we want the r.v. X(t, ω) to
be Ft-measurable (all t); we then say that X is F -adapted. We adopt the
special notation

H = {F (X)
t : 0 ≤ t ≤ ∞} ≡ {Ht: 0 ≤ t ≤ ∞},

where F (X)
0 = lim inft>0 F (X)

t = {∅,Ω} and F (X)
∞ =

⋂
t>0 F

(X)
t , and call H

the internal, minimal, or natural history of the process X, both of these last
two names reflecting the fact that H is the smallest family of nested σ-algebras
to which X is adapted. Any history of the form F = {F0 ∨ Ht: 0 ≤ t ≤ ∞}
is called an intrinsic history.

Suppose X is measurable and F -adapted. An apparently stronger condi-
tion to impose on X is that of progressive measurability with respect to F ,
meaning that for every t ∈ R+ and any A ∈ B(R),

{(s, ω): 0 < s ≤ t, X(s, ω) ∈ A} ∈ B((0, t])×Ft. (A3.3.2)

Certainly, (A3.3.2) is more restrictive on X than (A3.3.1), and while (A3.3.2)
implies (A3.3.1), the converse is not quite true. What can be shown, however,
is that given any measurable F -adapted R-valued process X, we can find an
F -progressively measurable process Y (that is therefore measurable and F -
adapted) that is a modification of X in the sense of being defined (like X) on
(Ω, E ,P) and satisfying

P{ω:X(t, ω) = Y (t, ω)} = 1 (all t) (A3.3.3)

(see e.g. Dellacherie and Meyer, 1978, Chapter IV, Theorems 29 and 30).
The sets of the form [s, t] × U, 0 ≤ s < t, U ∈ Ft, t ≥ 0, generate a

σ-algebra on R+×Ω, which may be called the F -progressive σ-algebra. Then
the requirement that the process X be F -progressively measurable may be
rephrased as the requirement that X(t, ω) be measurable with respect to the
F -progressive σ-algebra.
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A more restrictive condition to impose on X is that it be F -predictable
(the term F -previsible is also used). Call the sub-σ-algebra of B(R+) ⊗ E
generated by product sets of the form (s, t] × U , where U ∈ Fs, t ≥ s, and
0 ≤ s <∞, the predictable σ-algebra, denoted ΨF . (The terminology is well
chosen because it reflects what can be predicted at some ‘future’ time t given
the evolution of the process—as revealed by sets U ∈ Fs—up to the ‘present’
time s). Then X is F -predictable when it is ΨF -measurable; that is, for any
A ∈ B(R),

{(t, ω):X(t, ω) ∈ A} ∈ ΨF .

The archetypal F -predictable process is left-continuous, and this is re-
flected in Lemma A3.3.I below, in which the left-continuous history F(−) ≡
{Ft−} associated with F appears: here, F0− = F0 and Ft− = lim sups<t Fs =∨
s<t Fs. Note that if X(t, ω) is Ft−-measurable, its value at t is in fact de-

termined by information at times prior to t.

Lemma A3.3.I. An F -predictable process is F(−)-adapted.

Proof. Consider first a process of the form

X(t, ω) = I(a,b](t) IU (ω) (0 < a < b <∞, U ∈ Fa), (A3.3.4)

which is F -predictable by construction of ΨF . For given t,

{ω:X(t, ω) = 1} =
{ ∅ if a ≥ t or b < t,
U if a < t ≤ b,

so X(t, ω) is Ft−-measurable. Since an arbitrary F -predictable function can
be approximated by a linear combination of functions of this type, and since
the class of F(−)-adapted processes is closed under linear combinations and
monotone limits, standard extension arguments complete the proof.

Indicator functions as in (A3.3.4), and linear combinations of them, can be
used to show that the F -predictable σ-algebra ΨF above can be characterized
as the σ-algebra generated by the class of bounded left-continuous F -adapted
processes (see e.g. Kallianpur, 1980, Lemma 3.1.1).

It is often important to examine the behaviour of a process not at a fixed
time t but rather a random time T = T (ω). Here the definition of stopping
time is fundamental.

Definition A3.3.II. Given a history F , a nonnegative r.v. T : Ω �→ [0,∞] is
an F -stopping time if

{ω:T (ω) ≤ t} ∈ Ft (0 ≤ t <∞).

If S, T are stopping times, then so are S ∧ T and S ∨ T . Indeed, given a
family {Tn:n = 1, 2, . . .} of stopping times, supn≥1 Tn is an F -stopping time,
while infn≥1 Tn is an F(+)-stopping time.
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Since {T (ω) =∞} =
⋂
n{T (ω) > n} ∈ F∞, we can also consider extended

stopping times as those for which P{T (ω) <∞} < 1.
While stopping times can be generated in various ways, the most common

method is as a first passage time, which for a nondecreasing process usually
arises as a level-crossing time.

Lemma A3.3.III. Let X be an F -adapted monotonically increasing right-
continuous process, and let Y be an F0-measurable r.v. Then T (ω) ≡
inf{t:X(t, ω) ≥ Y (ω)} is an F -stopping time, possibly extended, while if
X is F -predictable, then T is an (extended) F(−)-stopping time.

Proof. If Y is constant, X(t) ≥ Y if and only if T ≤ t, and since {ω:X(t, ω)
≥ Y } ∈ Ft, we also have {T (ω) ≤ t} ∈ Ft. More generally, X(t, ω)− Y (ω) is
monotonically increasing, right-continuous, and F -adapted (because Y , being
F0-measurable, is necessarily Ft-measurable for every t > 0). Then, by the
same argument, {T (ω) ≤ t} = {ω:X(t, ω) − Y (ω) ≥ 0} ∈ Ft. Finally, when
X is F -predictable, it is F(−)-adapted, and thus we can replace Ft by Ft−
throughout.

The next result shows that a process stopped at an F -stopping time T
inherits some of the regularity properties of the original process. Here we use
the notation

X(t ∧ T ) =
{
X(t) (t ≤ T ),
X(T ) (t > T ).

Proposition A3.3.IV. Let F be a history, T an F -stopping time, and X a
process. Then X(t ∧ T ) is measurable, F -progressive, or F -predictable, ac-
cording to whether X(t) itself is measurable, F -progressive, or F -predictable.
In all these cases, if T <∞ a.s., then X(T ) is an F∞-measurable r.v.

Proof. The product σ-algebra B(R+) ⊗ E is generated by sets of the form
(a,∞)×B for real finite a and B ∈ E . Since

{(t, ω): (t ∧ T (ω), ω) ∈ (a,∞)×B} = (a,∞)× (B ∩ {T (ω) > a})

and B ∩ {T (ω) > a} ∈ E , if X is measurable, so is Y (t, ω) ≡ X(t ∧ T (ω), ω).
The F -predictable σ-algebra ΨF is generated by sets of a similar product

form but with B ∈ Fa. Since {T (ω) > a} ∈ Fa, (a,∞)× (B ∩ {T (ω) > a}) is
also a set generating ΨF , and thus if X is F -predictable, so is Y as before.

Suppose now that X is F -progressive so that for given t in 0 < t < ∞,
{X(s, ω): o < s ≤ t} is measurable as a process on (0, t] with probability
space (Ω,Ft,P). Then, the first argument shows that Y (s) ≡ X(s ∧ T ) is a
measurable process on this space; that is, X(t ∧ T ) is F -progressive.

On the set {T <∞}, X(t∧T )→ X(T ) as t→∞, so when P{T <∞} = 1,
X(T ) is an r.v. as asserted.

As an important corollary to this result, observe that if X is F -progressive
and a.s. integrable on finite intervals, then
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Y (t, ω) =
∫ t

0
X(s, ω) ds

is F -progressive, Y (T ) is an r.v. if T < ∞ a.s., and Y (t ∧ T ) is again F -
progressive.

We conclude this section with some remarks about the possibility of a
converse to Lemma A3.3.I. In the case of a quite general history, no such
result of this kind holds, as is shown by the discussion in Dellacherie and
Meyer (1978), especially around Chapter IV, Section 97. On the other hand,
it is shown in the same reference that when X is defined on the canonical
measure space (M#

[0,∞),B(M#
[0,∞))), the two concepts of being F(−)-adapted

and F -predictable can be identified, a fact exploited in the treatment by
Jacobsen (1982).

The situation can be illustrated further by the two indicator processes

V +
T (t, ω) ≡ I{T (ω)≤t}(t, ω), V −

T (t, ω) ≡ I{T (ω)<t}(t, ω),

generated by an F -stopping time T . The trajectories of V +
T are right-

continuous while those of V −
T are left-continuous. Since Ft � {ω:T (ω) ≤ t} =

{ω:V +
T (t) = 1}, it follows that V +

T is F -adapted. So too is V −
T because

{ω:V −
T (t) = 1} = {ω:T (ω) < t} =

∞⋃
n=1

{
ω:T (ω) ≤ t− 1

n

}
∈ Ft.

Hence, both V +
T and V −

T are F -progressively measurable [see the earlier com-
ments or Brémaud (1981, Theorem A1.T33)].

Being left-continuous, V −
T is F -predictable (e.g. Brémaud, 1981, Theorem

1.T9) and hence also F(−)-adapted. No such statement can be made in general
about V +

T . However, suppose further that T is not only an F -stopping time
but also an F(−)-stopping time, so that from the above, V +

T is F(−)-adapted.
Can we assert that it is F -predictable?

Suppose T is a countably-valued r.v., so for some countable set {tk} ⊂ R+,

T−1({tk: k = 1, 2, . . .}) =
∞⋃
k=1

T−1(tk) =
∞⋃
k=1

Uk, say, = Ω.

Then

{(t, ω):V +
T (t, ω) = 1} =

∞⋃
k=1

[tk,∞)× Uk.

By assumption, T being an F(−)-stopping time, Uk ∈ Ftk−, so Uk ∈
σ
{⋃

n Ftk−1/n
}

and hence V +
T is F -predictable.

While it can be proved that any F -stopping time can be approximated
from above by a sequence of stopping times taking only a countable set of
values, this is not enough to treat the general case—indeed, the counterex-
ample considered by Dellacherie and Meyer is just of this indicator function
type.
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A3.4. Martingales

Definition A3.4.I. Let (Ω, E ,P) be a probability space, F a history on
(Ω, E), and X(·) ≡ {X(t): 0 ≤ t < ∞} a real-valued process adapted to F
and such that E(|X(t)|) < ∞ for 0 ≤ t < ∞. Then X is an F -martingale if
for 0 ≤ s < t <∞,

E[X(t) | Fs] = X(s) a.s., (A3.4.1)
an F -submartingale if

E[X(t) | Fs] ≥ X(s) a.s., (A3.4.2)

and an F -supermartingale if the reverse inequality in (A3.4.2) holds.

Strictly, we should speak of X as a P-F -martingale: mostly, it is enough
to call it a martingale since both P and F are clear from the context.

While the concept of a martingale had its origins in gambling strategies,
it has come to play a dominant role in the modern theory of stochastic pro-
cesses. In our text, we need only a small number of the many striking results
concerning martingales and their relatives, principally those connected with
stopping times and the Doob–Meyer decomposition.

An important example of a martingale is formed from an F∞-measurable
r.v. X∞ with finite mean by taking successive conditional expectations with
respect to F : define

X(t) = E(X∞ | Ft). (A3.4.3)

Such a martingale is uniformly integrable. The converse statement is also true
(see e.g. Liptser and Shiryayev, 1977, Theorem 3.6).

Proposition A3.4.II. Let X(·) be a uniformly integrable F -martingale.
Then, there exists an F∞-measurable r.v. X∞ such that (A3.4.3) holds.

The following form of the well-known convergence theorem can be found
in Liptser and Shiryayev (1977, Theorem 3.3).

Theorem A3.4.III. Let X(·) be an F -submartingale with a.s. right-contin-
uous trajectories. If sup0≤t<∞ E[max(0, X(t))] < ∞, then there exists an
F∞-measurable r.v. X∞ such that

X(t, ω)→ X∞(ω) (t→∞) a.s.

If also X(·) is uniformly integrable, then E(|X∞|) <∞ and E(|X(t)−X∞|)→
0 as t→∞; that is, X(t)→ X∞ in L1 norm.

This theorem can be applied to the example in (A3.4.3) whether the family
of σ-algebras {Ft} is increasing (as with a history F) or decreasing. For
convenience, we state the result in terms of a two-sided history G = {Gt:−∞ <
t <∞}, defining G∞ as usual and G−∞ =

⋂
−∞<t<∞ Gt = limt→−∞ Gt.
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Corollary A3.4.IV. If the r.v. Y is G∞-measurable, has finite first moment,
and Y (t) ≡ E(Y | Gt) has a.s. right-continuous trajectories on −∞ < t < ∞
for some two-sided history G, then

E(Y | Gt)→
{
Y (t→∞),
E(Y | G−∞) (t→ −∞),

(A3.4.4)

both a.s. and in L1 norm.

In most point process applications, the processes concerned are right-
continuous by definition, so the sample-path conditions for the convergence
results above are automatically satisfied. In the general theory of processes,
it is shown that, if the history F is right-continuous and the σ-algebras are
P-complete in the strong sense that F0 (and hence Ft for all t > 0) contains
all P-null sets from F∞, there always exists a right-continuous modification
of an F -submartingale, with the additional property that this modification
also has left limits at each t > 0; that is, the (modified) process is càdlàg [see
e.g. Liptser and Shiryayev (1977, pp. 55–59) or Dellacherie and Meyer (1980);
Elliott (1982) uses corlol, the acronym of the English equivalent, continuous
on right, limits on left].

In turning to properties of martingales with fixed times s, t replaced by
stopping times S, T , say, we need the notion of σ-algebras consisting of events
prior to (and including) the time T and also strictly prior to T .

Definition A3.4.V. Let F be a history and T an F -stopping time. The
T -prior σ-algebra FT is the sub-σ-algebra of F∞ defined by

FT = {A:A ∈ F∞ and A ∩ {T ≤ t} ∈ Ft for every t};

the strict T -prior σ-algebra FT− is generated by the sets

{A:A ∈ F0} ∪
{
A ∩ {T > t} for A ∈ Ft and t ≥ 0

}
.

Clearly, FT and FT− are somewhat different entities (see Dellacherie and
Meyer, 1978, p. 117). It can be checked that T is both FT - and FT−-
measurable. A contrast is provided in the next result.

Lemma A3.4.VI. Let F be a history, T an F -stopping time, and X(·)
an F -progressive process. Then X(T ) is FT -measurable. Further, if X(·) is
F -predictable, then X(T ) is FT−-measurable.

Proof. Suppose X(·) is F -progressive. Setting for any x ∈ R

Ax = {ω:X(T (ω), ω) ≤ x},

X(T ) is FT -measurable if Ax ∩ {T ≤ t} ∈ Ft. But from Proposition A3.4.IV,
X(t∧ T ) is F -progressive, and therefore F -adapted, so {ω:X(t∧ T (ω), ω) ≤
x} ∈ Ft; hence

Ax ∩ {T ≤ t} = {ω:X(t ∧ T (ω), ω) ≤ x} ∩ {T ≤ t} ∈ Ft.
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Now suppose that X(·) is F -predictable. To show the FT−-measurability
of X(T ), look at the inverse image under X(T ):ω �→ X(T (ω), ω) ∈ R of a
generating set (t,∞)×A (A ∈ Ft) of the F -predictable σ-algebra ΨF , namely

{ω: t < T (ω) <∞} ∩ {ω:ω ∈ A},

which is a generating set for FT−.

The optional sampling theorem for martingales follows (see e.g. Liptser and
Shiryayev, 1977, pp. 60–61).

Theorem A3.4.VII. Let F be a history, S and T the F -stopping times
with S ≤ T a.s., and X(·) an F -submartingale that is uniformly integrable
and has right-continuous trajectories. Then FS ⊆ FT and

E[X(T ) | FS ] ≥ X(S) a.s.,

where equality holds if X is an F -martingale.

Corollary A3.4.VIII. Let T be an F -stopping time. If X(·) is a uniformly
integrable F -martingale (resp. submartingale), then so is X(t ∧ T ).

Proof. For fixed s, t with s < t, s ∧ T and t ∧ T are two stopping times
satisfying the conditions of the theorem, so

E[X(t ∧ T ) | Fs∧T ] ≥ X(s ∧ T ),

and thus {X(t∧T )} is an {Ft∧T }-martingale. To show the stronger property
that it is an F -martingale, note that Ft∧T ⊆ Ft so {X(t∧ T )} is F -adapted,
and it remains to show that∫

A

Xt∧T P(dω) ≥
∫
A

Xs∧T P(dω) (all A ∈ Fs), (A3.4.5)

knowing that it holds for all A ∈ Fs∧T . Express the left-hand side as the
sum of integrals over A1 = A ∩ {T > s} and A2 = A ∩ {T ≤ s}. Certainly,
A1 ∈ Fs, while

A1 ∩ {s ∧ T ≤ u} = A ∩ {T > s} ∩ {s ∧ T ≤ u} =
{ ∅ ∈ Fu if u < s,
A1 ∈ Fs if u ≥ s.

Now Fs ⊆ Fu, so by definition of Fs∧T , we have A1 ∈ Fs∧T , and (A3.4.5)
holds for A1. On A2, t ≥ s ≥ T so X(t ∧ T ) = X(s ∧ T ) there, and (A3.4.5)
holds for A2. By addition, we have shown (A3.4.5).

Finally, we quote the form of the Doob–Meyer decomposition theorem used
in Chapter 14; see e.g. Liptser and Shiryayev (1977) for proof.

Theorem A3.4.IX (Doob–Meyer). Let F be a history and X(·) a bounded
F -submartingale with right-continuous trajectories. Then, there exists a
unique (up to equivalence) uniformly integrable F -martingale Y (·) and a
unique F -predictable cumulative process A(·) such that

X(t) = Y (t) +A(t). (A3.4.6)



A3.4. Martingales 431

For nondecreasing processes A(·) with right-continuous trajectories, it can
be shown that F -predictability is equivalent to the property that for every
bounded F -martingale Z(·) and positive u,

E
[ ∫ u

0
Z(t)A(dt)

]
= E
[ ∫ u

0
Z(t−)A(dt)

]
.

Since for any F -adapted cumulative process ξ and any F -martingale Z,
E
[
Z(u)

∫ u
0 ξ(dt)

]
= E
[ ∫ u

0 Z(t) ξ(dt)
]
, the property above is equivalent to

E[Z(u)A(u)] = E
[ ∫ u

0
Z(t−)A(dt)

]
.

A cumulative process with this property is referred to in many texts as a
natural increasing process. The theorem can then be rephrased thus: ev-
ery bounded submartingale has a unique decomposition into the sum of a
uniformly integrable martingale and a natural increasing function. The re-
lation between natural increasing and predictable processes is discussed in
Dellacherie and Meyer (1980).

The boundedness condition in Theorem A3.4.IX is much stronger than is
really necessary, and it is a special case of Liptser and Shiryayev’s (1977)
‘Class D’ condition for supermartingales; namely, that the family {X(T )} is
uniformly integrable for all F -stopping times. More general results, of which
the decomposition for point processes described in Chapter 13 is in fact a
special case, relax the boundedness or uniform integrability conditions but
weaken the conclusion by requiring Y (·) to be only a local martingale [i.e. the
stopped processes Y (·∧Tn) are martingales for a suitable increasing sequence
{Tn} of F -stopping times].

The Doob–Meyer theorem is often stated for supermartingales, in which
case the natural increasing function should be subtracted from the martingale
term, not added to it.

Given an F -martingale S, it is square integrable on [0, τ ] for some τ ≤ ∞
if sup0<t≤τ E[X2(t)] < ∞. The process {X2(t)} is then an F -submartingale
on [0, τ ]. When it is a bounded submartingale, the Doob–Meyer theorem as
quoted above implies that we have the decomposition

X2(t) = Y2(t) +A2(t) (0 ≤ t ≤ τ) (A3.4.7)

for some F -martingale Y2(·) and F -predictable process A2(·). It is readily
checked that for 0 ≤ s < t ≤ τ ,

A2(t)−A2(s) = E[(Xt −Xs)2 | Fs],

hence the name quadratic variation process for A2(·). Equation (A3.4.7) can
be established for any square-integrable martingale via the general Doob–
Meyer theorem. A significant calculus for such processes, including appli-
cations to point processes, can be constructed as in Kunita and Watanabe
(1967) and Brémaud (1981).
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Grégoire, G. (1984). Negative binomial distribution for point processes. Stoch. Proc.
Appl. 16, 179–188. [200]

Greig-Smith, P. (1964). Quantitative Plant Ecology, 2nd ed. Butterworths, London.
[296]

Griffiths, R.C., Milne, R.K., and Wood, R. (1979). Aspects of correlation in bivariate
Poisson distributions and processes. Aust. J. Statist. 21, 238–255. [188]

Guttorp, P. (1995). Stochastic Modeling of Scientific Data. Chapman and Hall,
London. [320]
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Jĭrina, M. (1966). Asymptotic behaviour of measure-valued branching processes.
Rozpr. Cesk. Akad. Ved., Rada Mat. Prir. Ved. 75(3). [15]

Johnson, N.L and Kotz, S. (1969). Distributions in Statistics, Vol. I: Discrete Dis-
tributions. Houghton Mifflin, Boston. [2nd ed. 1993. Wiley, New York.] [10, 12]

—— and —— (1970). Distributions in Statistics, Vol. II: Continuous Univariate Dis-
tributions–1. Houghton Mifflin, Boston. [2nd ed. 1994. Wiley, New York.] [7]

—— and —— (1994). = 2nd ed. of Johnson and Kotz (1970). [82]
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Lüders, R. (1934). Die Statistik der seltenen Ereignisse. Biometrika 26, 108–128.
[11]

Lukacs, E. (1970). Characteristic Functions, 2nd ed. Griffin, London. [79]
Lundberg, F. (1903). Approximerad framställning av sannolikhetsfunktionen. Åter-
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Yvon, J. (1935). La Théorie Statistique des Fluides et l’Équation d’État, Actualités
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superpositions, 313

Batch-size distribution
moments, 51
point process on line, 46, 49
Poisson process, 29

Baum–Welch see E–M algorithm
Bessel transform

in Bartlett spectrum of isotropic
planar process, 310

Best linear predictor, 353
ARMA representations, 354
point process with rational spectral
density, 354

two-point cluster process, 356
Binary process, 237

logistic regression model, 237
Binning, 343
Binomial score, 278
Birth process, linear, simulation of, 275
Bivariate mark kernel for second-order

stationary MPP, 325
Bivariate MPP

Palm–Khinchin equations for, 331
Bivariate point processes

from input–output process, 329
Bivariate Poisson distributions, 188
Bivariate Poisson process, 187

Bartlett spectrum, 318
forward recurrence times, 330
intensities for different histories, 250,
256

martingale properties, 256
random time transformations, 264

Blackwell renewal theorem, 83

Bochner’s theorem, 303, 412
Bolzano–Weierstrass property, 371
Bonferroni inequalities, 120, 122
Boolean algebra, 368
Boolean model for random set, 206

associated random fields, 206
moments of union set, 210
simulation, 275

Borel measurable function, 374
Borel measure, 374

on c.s.m.s.
boundedly finite, 402
space of, 402

Borel sets, 384
countably generated in separable
metric space, 385

in topological space, 374
Borel σ-algebra, 382, 384
Borelian sets, 384
Boson process, 172

discrete version, 174
Janossy densities, 222

Bounded convergence theorem, 376
Bounded variability process, 295, 301
Boundedly finite

counting measures, 158
space of (= N#

X ), 158
measures,
relatively compact family of, 405
space of (= M#

X ), 402
as a c.s.m.s., 403
weak convergence in, 403
w#-topology, 403

signed measure on R
d, 358

p.p.d., 358
positive-definite, 358
transformable, 358
translation-bounded, 358

Branching process
age-dependent, 156
Galton–Watson, 13
sib distribution in, 13

model for spread of infection, 155
Branching process, general (= multi-

plicative population chain), 150
extinction probability in, 155
p.g.fl., moment measure relations, 150
for total population, 155

Burkill integral, 59
Burn-in period, in simulation, 269

as edge effect, 275
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Càdlàg process, 429
Campbell measure, 163
Canonical ensemble, 127
Cartesian product, 377
Cauchy sequence, 370
Cauchy’s functional equation, 64

nonmeasurable solutions, 64
Central limit theorem,

early proof by Ellis, 4
Centre-satellite process, 181

see Neyman–Scott process
Change-point detection

in residual analysis tests, 262, 263
Characteristic functional, 14
Characterizations of point processes

Poisson, 26
renewal process, 77, 78

Chebyshev’s inequality, 418
Clique, in Markov point process, 218
Cluster models and processes, 11, 175

Bartlett spectrum, 307
centre and component processes, 176
independent clusters, 176
moment measure for, 191
p.g.fl., 178
second-order factorial moments, 178
sufficient condition for existence of
stationary version, 191

see also Poisson cluster process
Coherence in multivariate process

spectrum, 318
Coincidence density, 136

product density, 136
Combinatorial arguments, 112
Compact regular measure, 387

iff tight measure in c.m.s., 387
Compact set in topological space, 371
Compensator, 241

defining random time change, 258
renewal process, 246

Complete history, 281
Complete independence

Poisson process, 27
Complete intensity function, 234
Complete separable metric space

(c.s.m.s.), 124, 371, 384
separability set in, 385, 388
tightness of Borel measure in, 388

Complete space, 370

Complete stationarity, 27
see stationarity

Compound Poisson process, 25
conditional intensity characterization,
252, 257

definition via MPP, 198
infinite intensity example, 53
p.g.f., 27
random time transformation of MPP,
266

Conditional distributions, 415
regular version of, 416

Conditional expectation, 414, 417
Doob representation for, 417
repeated conditioning, 415

Conditional intensity function, 211,
231

as amalgam of hazard functions, 231
as random hazard function, 211
Papangelou intensity contrast, 232
terminology, 231

complete intensity function, 234
determine fidi distributions, 233
for MPP, 246
mark characterizations, 252, 257
of ground process, 249

history-dependent in bivariate pro-
cess, 250, 256

in likelihood, 232
in nonlinear prediction, 267, 344
left-continuous version, 232
linear parametrizations, 235
Markov representations for, 239
of Cox process with Markovian rate
process, 254

of renewal process, 237
use in thinning construction, 268

Conditional probability, 379
existence in regular case, 380

Conditional (second-order) intensity,
296

Conditional survivor functions, 229
Contagious distribution, 11
Continuity lemma for measures, 372

for σ-finite set function, 373
Continuous mapping theorem, 371
Controlled variability process

see Bounded variability process
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Convergence
of conditional distributions,
see Stable convergence

of functions or r.v.s
almost everywhere (a.e.), 376
almost sure (a.s.), 418
in Lp, 418
in probability, 418
stable, 419

of measures
strong = in variation norm, 391

for renewal theorem, 90
vague, 391
weak, 391
w#, boundedly finite case, 403

Convergence-determining class of sets,
393

Corlol, = càdlàg, 429
Correlation function, radial, 298
Countable base, 371
Counting measure,

point process on line, 42
Coupling method of proof

Blackwell renewal theorem, 83
Coverage process, 205
Covering ring, 389

covering class, 396
covering semiring, 393

Cox process (= doubly stochastic
Poisson process), 169

Bartlett spectrum, 313
conditions to be renewal process, 174
fidi distributions and moments, 170
Markovian rate functions, 244
p.g.fl., 170

Cox regression model, 238
Crude stationarity, 44

Poisson process, 27
C.s.m.s., 124

see Complete separable metric space
Cumulative processes, 256
Current lifetime, 59

of renewal process, 76
Cyclic Poisson process, 26

likelihood, 226
Cyclic process on four points, 313

Bartlett spectrum, 314
Cylinder set in product space, 378

Delayed renewal process, 74

Determining class of set functions, 372
Deterministic process, 76
L2 sense, 345
process of equidistant points, 76
stationary, Bartlett spectrum of, 307

Diffuse measure, 382
Dirac measure, 382
Direct Riemann integrability, 85

conditions for, 90
Discrete point process

binary process, 237
Hawkes process, 281
Wold process, 94, 103

Disintegration of measures, 379
Dissecting ring, 386
Dissecting system, 282, 382

existence in separable metric space,
385

nested family of partitions, 383
Dobrushin’s lemma, 48
Dominated convergence theorem, 376
Doob representation for conditional

expectation, 417
Doob–Meyer decomposition of sub-

martingale, 241, 430
Double stochastic Poisson process, see

Cox process
Doubly Poisson compound Poisson

distribution, 123
Dynkin system (of sets), 369

Dynkin system theorem, 369

Earthquake models, see
Epidemic type aftershock sequence
(ETAS) model

Stress-release model
Edge effects

in moment estimates, 299, 303
multivariate case, 320

in segment of stationary process, 216
in simulation, 275
periodic boundary effect, 222
plus and minus sampling, 221

Efficient score statistic
factorial cumulant densities, 223
Gauss–Poisson process, 228
Neyman–Scott process, 228
point process on R

d, 222
Poisson cluster process, 225

Eigenvalues of random unitary
matrices, 140



456 Subject Index

Elastic rebound theory, 239
Elementary renewal theorem, 72

analogue for process on R, 60
E–M algorithm, 239, 244
Entropy

of finite point process, 287
score, 276

Epidemic type aftershock sequence
(ETAS) model, 203

ground process, 239
nonlinear generalization, 253
spatial version, 205
under random time change, 266

Equivalent
bases for topology, 392
metrics, 370
topological spaces, 370

Ergodic point process on R, 61
Ergodic theorems for point processes

and random measures, 291
Erlang distribution, 4, 21
Essentially bounded r.v., 418
ETAS, see Epidemic type aftershock

sequence
Evolutionary dimension

absent in spatial point pattern, 212
Evolutionary process

likelihood theory for, 214
Exclusion probabilities, 124
Expectation function of stationary

point process on R, 61
Expectation measure

finite point process, 133
renewal process, 67
see also First moment measure

Expected information gain, 277
linear and nonlinear predictors, 357
per time step, 280
per unit time, 283

Exponential
autoregressive process, 92
density, two-sided, multivariate, 359
distribution
lack of memory property, 24
transformation to, 258

formula for Lebesgue–Stieltjes
integral, 107

Extension theorem for measures, 373
Extreme value distributions, 7

Factorial cumulant densities
in efficient score statistics, 223

Factorial cumulant measures, 146
relation to other measures, 154
representation via factorial moment

measures, 147
converse, 148

Factorial moment measures, 133
characterization of family of, 139
relation to other measures, 153

Factorial moments and cumulants, 114
Factorization lemma for measures

invariant under σ-group of
transformations, 409

rotation-invariant measure, 410
Fatou’s lemma, 376
Fermion process, 140

discrete, 143
Janossy densities, 222
renewal process example, 144

Fidi, see Finite-dimensional
Filtration, 424

see History
Finite Fourier transform of point

process, 336
Finite inhomogeneous Poisson process

likelihood, 213
likelihood ratio, 215

Finite intersection property, 371
of c.s.m.s., 371

Finite point process, 111, 123, 129
absolute continuity of Poisson, 226
canonical probability space for, 129
eigenvalues of random unitary matrix,
18, 140

expectation measure, 133
fidi distributions, 112
moment measures, 132
product density, 136
symmetric probability measures, 124,
129

Finite renewal process, 125
Finite-dimensional (fidi) distributions

for point process, 130, 158
conditional density and survivor

function representation, 230
for MPP, 247

consistency conditions, 158
for finite point process, 130
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determined by conditional intensity,
233
for MPP, 251

Poisson process, 19, 159
Finitely additive set function, 372

condition to form measure, 388
continuity lemma, 372
countably or σ-additive, 372
measure when compact regular, 388

First passage time, 426
stopping time property, 426

First-order moment measures
structure in stationary case, 289
for MPP, 322
for multivariate process, 316

see also Expectation measure
Fixed atom of point process, 35

sample path family property, 35
Forecast of point process

see Scores for probability forecast
Forward recurrence time, 58

analyzed as MPP, 327
bivariate Poisson process, 330
convergence of distribution, 86
hazard function of, 59
Palm–Khinchin equation for, 58
Poisson process, 20
renewal process, 69
stationary renewal process, 75

Fourier transform, 411
inverse of, 411
inversion theorems for, 412
of Poisson process, 335
of p.p.d. measures, 357
of unbounded measures, 303, 357
Riemann–Lebesgue lemma for, 411

Fourier’s singular integral, 341
Fourier–Stieltjes transform, 412
Fredholm determinant, 141
Fubini’s theorem, 379
Functions of rapid decay, 332, 357

Gamma distribution, 3
Gamma random measure

general, 167
stationary, 162

Gauss–Poisson process, 174, 185
efficient score statistic, 228
existence conditions, 185
Khinchin and Janossy measures, 219
marked, 331

on bounded set, 219
pseudo Cox process, 174
stationary, 220, 228

General Poisson process, 34
characterization by complete
independence, 36

orderliness, 35
General renewal equation, 68

uniqueness of solution, 69
General theory of processes, 236
Generalized entropy

see Relative entropy
Generalized functions and p.p.d. mea-

sures, 357
Generating functional expansions

relationships between, 153
Germ–grain model, 206
Gibbs process, 126

finite, 216
likelihood, pseudolikelihood, 217

ideal gas model, 128
interaction and point pair potentials,
127

soft- and hard-core models, 128
Gompertz–Makeham law, 3
Goodness-of-fit for point process, 261

algorithm for test of, 262
Grand canonical ensemble, 127
Ground process, 53, 194

conditional intensity λ∗
g, 249

Group, 407
direct product, 408
dual, 413
topological, 407
equivalence classes on, 408
metrizable, 407
quotient topology, 408

Gumbel distribution, 7

Haar measure, 408
in factorization lemma, 409
on topological group and its dual, 413
Plancherel identity for, 413

Halo set, 387
Hamel equation, 64
Hard-core model, 128

Gibbs process, 128
Matérn’s models, 299
Strauss process, 217, 219

Hausdorff metric, 205
Hausdorff topology, 370
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Hawkes process, 183
autoregressive process analogy, 309
Bartlett spectrum, 309
minimal p.p.d. measure for, 367

cluster construction of, 184
condition to be well-defined, 184, 234
conditional intensity for, 233
parametric forms, 234
representation by, 233

discrete, 281
infectivity function µ(·), 184
exponential, 185, 243
long-tailed, 203

linear prediction formula, 355
marked, 202
moments, 184
multivariate, see Mutually exciting
nonlinear marked, 252
stationarity conditions, 252

self-exciting, 183
without immigration, 203

Hazard function, 2, 231, 242
in conditional intensity, 231
in life table, 2
of recurrence time r.v.s, 59
random, 211
role in simulation, 271
see also Integrated hazard function

Hazard measure, 106
Heine–Borel property, 371
Hermite distribution, 123
Hilbert space, Poisson process on, 40
History of point process, 234, 424

complete, 281
filtration, 236
internal, 234, 424
for MPP, 249

intrinsic, 234, 424
list history, 269
minimal or natural, 424

Ideal gas model, 128
IHF, see Integrated hazard function
I.i.d., see Independent identically

distributed
Immanants, 140
Independent σ-algebras, 415

redundant conditioning, 415
Independent cluster process, 176

conditions for existence, 177

Independent identically distributed
(i.i.d.) clusters, 112, 125, 148

Janossy and other measures, 149
Janossy density, 125
negative binomial counts, 113
p.g.fl., 148
see also Neyman–Scott process

Independent increments
Poisson process, 29

Index of dispersion, 23
Infectivity model, 183

see Hawkes process
Infinitely divisible p.g.f., 30
Information gain, 276

average, 279
conditional, 279
see also Expected information gain

Inhomogeneous (= nonstationary)
Poisson process, 22

conditional properties, 24
thinning construction, 24

Innovations process, 242
Input–output process

cluster process example, 329
M/M/∞ queue example, 188
point process system, 319

Integrated hazard function (IHF), 108
exponential r.v. transformation, 258
in renewal process compensator, 246

Intensity function,
inhomogeneous Poisson process, 22
see also Conditional intensity

Intensity of point process on R, 47
infinite intensity example, 53

Interaction potential for Gibbs process,
127

Internal and intrinsic history, 234
see also History

Inverse method of simulation, 260
Ising problem, 216

plus and minus sampling, 221
Isomorphisms of Hilbert spaces in

spectral representations, 333
Isotropic planar point process, 297

Bartlett spectrum, 310
Bessel transform in, 310

Neyman–Scott example, 298, 302
Bartlett spectrum, 312

Ripley’s K-function, 297
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Janossy measure and density, 125
local character of density, 136
moment measure representation, 135
converse, 135

relation to other measures, 153
Jensen’s inequality, 415
Jordan–Hahn decomposition of signed

measure, 374

K-function, 297
Kagan (tapered Pareto) distribution,

255
Key renewal theorem, 86

applications, 86
Wold process analogue, 100

Khinchin existence theorem
stationary point process on R, 46

Khinchin measures, 146
in likelihood, 219
relation to other measures, 154
use in efficient score statistics, 223

Khinchin orderliness, 52
Kolmogorov extension theorem, 381

projective limit, 381
Kolmogorov forward equations

Hawkes process with exponential
decay, 243

Kolmogorov–Smirnov test, 262
Korolyuk theorem, 47

generalized equation, 51
Kullback–Leibler distance, 277

Lp convergence, 418
Laguerre polynomials, in conditional

intensity for Hawkes process, 234
Lampard reversible counter system, 106
Laplace functional for random measure,

161
Taylor series expansion, 161

Lebesgue
bounded convergence theorem, 376
decomposition theorem, 377
integral, 375
monotone convergence theorem, 376

Lebesgue–Stieltjes integral
exponential formula for, 107
integration by parts, 106

LeCam precipitation model, 191, 207,
209

Length-biased distribution
for sibs in branching process, 13
in MPP, 326
in sampling, 45
see also waiting-time paradox

Life table, 1
applications, 7
renewal equation from, 6

Likelihood for point process, 211, 213
as local Janossy density, 213
of Poisson process, 21
of regular MPP, 251

Likelihood ratio for point process, 214
inhomogeneous Poisson process, 215
score, 277
binomial score, 278

Line process
Poisson, 39
representation as point process on
cylinder, 39

Linear birth process simulation, 275
Linear filters acting on point processes

and random measures, 342
Linear predictor, 344

best, 353
conditional intensity comparison, 344

Linear process from completely random
measure, 169

Linearly parameterized intensities, 235
uniqueness of ML estimates, 235

Linked stress-release model, 255
simulation of, 273

List history, in simulation, 269
Local

Janossy density, 137
as point process likelihood, 213

Janossy measure, 137
Khinchin measure, 150
process on A, p.g.fl., 149

Locally compact
second countable topology, 371
topological space, 371

Logarithmic distribution p.g.f., 11
Logistic autoregression, 281

see Discrete Hawkes process
Lognormal distribution, 3
Long-range dependent point process,

106
Lundberg’s collective risk model, 199

ruin probability, Cramér bound, 209
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Mapping
continuous, 371
measurable, 374

Marginal probability measures, 379
conditional probability, 379

Marginal process of locations in MPP,
= ground process Ng, 194

Mark distributions in MPP,
second-order properties, 323

Mark kernel for MPP, 195
Marked point process (MPP), 194
—general properties

conditional intensity, 246
characterization of mark structure,
252, 257

ground process (= marginal process
of locations), 194
simple MPP, 195
stationary, 195

internal history, 249
likelihood, 247
predictability, 249
reduced second moment measure
distribution interpretation, 325

reference measure for, 247
regular, 247
second-order characteristics
diverse nature, 325

MPP—mark-related properties
evolutionary-dependent marks, 253
mark kernel, 195
structure of MPP with independent
marks, 196
p.g.fl. and moment measures, 196

sum of marks as random measure,
197

with independent or unpredictable
marks, 195, 238
conditional intensity character-
ization, 252, 257

MPP—named processes
cluster, cluster-dependent marks, 326
Gauss–Poisson, 331
governed by Markovian rate function,
254

ground process with infinite mean
density, 330

Hawkes, 202
expected information gain, 286
existence of stationary version, 203
functional, moment measure, 209

Markov chain on R+

homing set conditions for
convergence, 96
existence of invariant measure, 97

application to Wold process, 100
intervals defining Wold process, 92
kernel with diagonal expansion, 104

Markov chain Monte Carlo, 217
Markov point processes, 218
Markov process

governing MPP, 254
governing point process, 239

Martingale, 427
convergence theorem, 428
two-sided history version, 428

from Doob–Meyer decomposition,
430

in bivariate Poisson process, 256
representation of point process, 241
uniform integrability of, 428

Matérn’s models for underdispersion
Model I in R, 298, 302
Model I in R

d, 302
Model II, 303

Maxwell distribution, 4
Mean density

point process on line, 46
Mean square

continuous process, 332, 348
integral of process with uncorrelated
increments, 333

Measurable family
of point process, 165
of random measures, 168

Measurable function, space, 374
closure under monotone limits, 376

Measure, 372
atomic and diffuse components, 383
Haar, 408
invariant under σ-group of

transformations, 409
factorization lemma, 409

nonatomic, 383
on BR, defined by right-continuous
monotonic function, 373

on topological group, 407
positive-definite, 290, 358
reduced moment measure, 160, 289
regular, 386, 387
sequence of, uniform tightness, 394
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signed, 372
symmetric, 290
tight, 387
compact regular, 387

transformable, 358
translation-bounded, 290, 358

Metric, metric topology, 370
compactness theorem, 371
complete, 370
distance function, 370
equivalent, 370
separable, 372

Metrizable space, 370
Minimal p.p.d. measures, 365

Hawkes process example, 367
Mixed Poisson distribution, 10

terminology, 10
Mixed Poisson process, 25, 167

orderliness counterexamples, 52
p.g.fl., 167

M/M/∞ queue input and output, 188
Modification of process, 424
Modulated renewal process, 237

Poisson process example, 244
Moment densities, 136

for renewal process, 139
Moment measure, 132

factorial, 133
Janossy measure representation,
134

for finite point process, 132
Janossy measure representation, 134

converse, 135
symmetry properties, 133

reduced, 290
of multivariate process, 316

Monotone class (of sets), 369
monotone class theorem, 369

Monotone convergence theorem, 376
Moving average representation

of best linear predictor, 354
of random measure, 351

MPP, 194, see Marked point process
µ-regular set, 387
Multiple points, 51
Multiplicative population chain,

see Branching process, general
Multivariate Neyman–Scott process

moments, 329

Multivariate point process spectra
coherence and phase, 318

Multivariate random measure
Bartlett spectrum, 317

Multivariate triangular density, 359
Mutually exciting process, 320

Bartlett spectrum, 322
second-order moments, 321

Natural increasing process, 431
Negative binomial distribution, 10

counts in i.i.d. clusters, 113
p.g.f. expansions, 118
Pólya–Eggenberger, 12

Negative binomial process, 200
from compound Poisson, 200
from mixed Poisson, 201

Neighbourhood (w.r.t. a topology), 370
Neyman Type A distribution, 12
Neyman–Scott process, 181, 192

efficient score statistic, 228
likelihood, 221, 227
multivariate, moments of, 329
planar, 192, 298
isotropic, 302

shot-noise process, 192
Nonlinear marked Hawkes process, 252
Nonstationary Poisson

see Inhomogeneous Poisson

One-point process, 242
MPP, 256
random time change of, 260

Open sphere, 370
Optional sampling theorem, 429

in random time change, 259
Order statistics

exponential distribution, 23
Poisson process, 24

Orderliness, 30, 47
general Poisson process, 35
Khinchin, 52
mixed Poisson
simple but not orderly, 52

Poisson process, 30
renewal process, 67
simple but not Khinchin orderly, 52
simple nonorderly example, 52
stationary point process on R, 47

Palm process
in reduced moment measure, 296
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Palm–Khinchin equations, 14, 53
bivariate MPP, 331
interval stationarity, 53
renewal process, 55
Slivnyak’s derivation of, 59
stationary orderly point process, 53

Papangelou intensity
contrast with conditional intensity
function, 232

Parameter measure of Poisson process,
34

Pareto distribution, tapered, 255
Parseval equation or identity or

relation, 304, 357
extended, for L1(µ)-functions, 362
isotropic planar process, 311
p.p.d. measures, 357
one-to-one mapping, 362

random measure, 334
Particle process, 205

as random closed set, 205
coverage process, 205
union set, 205
volume fraction, 207

Partition function for Gibbs process,
127

Partitions
nested family of, 383
in relative entropy, 383

of coordinate set, 143
of integer, 120
of interval set or space, 282
of set or space, 382

Perfect simulation, 275
Periodogram of point process, 336
Perron–Frobenius theorem

use in Hawkes process analysis, 321
P.g.f., 10

see Probability generating function
P.g.fl., 15

see Probability generating functional
Phase in multivariate process spectrum,

318
Planar point processes,

isotropic, moments, 297
Neyman–Scott, 298, 302
Ripley’s K-function, 298
two-dimensional renewal, 71

Plancherel identity, 413
Plus and minus sampling, 221

Point pair potential for Gibbs process,
127

Point process (see also individual
entries)

—basic properties
absolute continuity, 214
canonical probability space, 158
definition
as counting measure, 41

boundedly finite, 158
as sequence of intervals, 42
as set or sequence of points, 41
as step function, 41

exclusion probabilities, 124
fidi distributions, 158
Janossy measures, 124
measurable family of, 165
ordered v. unordered points, 124
orderly, 30, 47
origin of name, 14
second-moment function, 61
simple, 47
stationarity, 44, 160
with multiple points, 51

Point process—general properties
best linear predictor, 353
efficient score statistic, 222
goodness-of-fit test, 261
likelihood, 211, 213
likelihood ratio for, 215
martingale representation, 241
periodogram for, 336
prediction via simulation, 274
relative entropy of, 283
residual analysis, 261

Point process—named (see also
individual entries)

Bartlett–Lewis, 182
Cox, 169
Gauss–Poisson, 174, 185
Gibbs, 126
Hawkes, 183
Neyman–Scott, 181
Poisson, 19
bivariate Poisson, 187
compound Poisson, 25
doubly stochastic Poisson, 169
mixed Poisson, 25
quasi Poisson, 31

Poisson cluster, 179
Wold, 92
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Point process—types or classes of (see
also individual entries)

ARMA representations, 351
exponential intervals, 69
infinite intensity example, 53
long-range dependent, 106
of equidistant points, 76
on real line R, 41
stationarity, 44
Palm–Khinchin equations, 53
counting measure, 42
time to ith event, 44

regular, 213
system and system identification, 319
with complete independence, 34
structure theorem, 38

with or without aftereffects, 13
Poisson branching process, 182

see Bartlett–Lewis model
Poisson cluster process, 179

bounded cluster size, 225
efficient score statistic, 225
existence and moments, 179
p.g.fl., canonical form, 188
point closest to the origin, 179
reduced factorial moment and
cumulant densities, 180

representation of likelihood, 227
stationary
second-order properties, 295

zero cluster probability not estimable,
190

Poisson distribution, 8
‘compound’ or ‘generalized’ or ‘mixed’
terminology, 10

limit of binomial, 8
p.g.f., 10
Raikov theorem characterization, 32

Poisson process, 13, 19 (see also
individual entries)

—on real line R

avoidance functions, 25
batch-size distribution, 28
characterization by
complete randomness, 26
count distributions on unions of in-
tervals, 31

forward recurrence time, 77
renewal process, 77

exponential intervals, 69
superposition, 80

superposition counterexample, 82
complete independence, 27
conditional distributions, 22
crude stationarity, 27
implies stationarity, 27

fidi distributions, 19
Fourier transform of, 335
from random time change, 257
in random environment, 244
independent increment process, 29
index of dispersion, 23
inhomogeneous (= nonstationary), 22
cyclic intensity, 26
time change to homogeneous, 23

intensity, 20
likelihood, 21
mean density, 20
order statistics for exponential
distribution, 23

orderly, simple, 30
recurrence time, 20
backward, 27

stationary, 19
survivor function, 20
waiting-time paradox, 21

Poisson process—in R
d

avoidance function, 32
characterization by, 32

Bartlett spectrum, 306
finite inhomogeneous, likelihood, 213
random thinning, 34
random translation, 34
simulation, 25

Poisson process—in other named spaces
cylinder, 39
as Poisson line process, 39

Hilbert space, 40
lattice, 39
surface of sphere, 39
surface of spheroids, 39

Poisson process—in c.s.m.s.
fixed atom, 35
Khinchin measures, 219
parameter measure, 34
atom of, 35

see also extension of R, 22
Poisson summation formula, 367
Poisson tendency in vehicular traffic,

329
Polish space, 371
Pólya–Eggenberger distribution, 12
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Positive measure, 290
Positive positive-definite (p.p.d.)

measure, 290, 303, 357
closure under products, 359
nonunique ‘square root’, 359

decomposition of, 365
density of, 367
Fourier transform of, 357, 359
minimal, 365
Hawkes process example, 367

of counting measure, 359
Parseval equations, one-to-one
mapping, 362

symmetry of, 360
tempered measure property, 367
translation-bounded property, 360
use of Parseval identities, 357

Positive-definite
function, 412
measure, 290, 358
sequence, 366

Power series expansions of p.g.f., 117
P.p.d., see Positive positive-definite
Predictability, predictable σ-algebra,

425
characterization of, 425
conditional intensity function, 232,
241

in random time change, 259
of MPP, 249
of process, 425

Prediction of point process, 267
use of simulation in, 274

Previsibility, 425
Prior σ-algebra, 429

see T -prior σ-algebra
Probability forecast, 276

see also Scores for
Probability gain, 278

see also Expected information gain
Probability generating function

(p.g.f.), 10
compound Poisson process, 27–29
discrete distribution, 115
for i.i.d. cluster, 113
infinitely divisible, 30
negative binomial, 10
power series expansions, 117
Taylor series expansions, 115

Probability generating functional
(p.g.fl.), 15

cluster process, 178
Cox process, 170
factorial moment measure
representation, 146

finite point process, 144
i.i.d. clusters, 148
Janossy measure representation, 145
mixed Poisson process, 167

Probability space, 375
product space, 377
conditional probability, 379
independence, 378
marginal probability measures, 379

Process governed by Markov process
conditional intensity function, 253
MPP, 254

Process of correlated pairs, 185
see Gauss–Poisson process

Process of Poisson type, 259
Process with marks, see Marked point

process
Process with orthogonal increments,

333
Processes with stationary increments

spectral theory, 303
Product density, 136

finite point process, 136
coincidence density, 136

Product measurable space, 378
disintegration, 379
double integrals, 378
Fubini theorem, 379

setting for independence, 378
Product measure, σ-ring, 378

extension problem, 382
projective limit, 382

Product space, 377
of measure spaces, 378
of topological spaces, 377

Product space, topology, 377
cylinder set, 378

Progressive measurability, 424
Prohorov distance, 398

weak convergence theorem, 394
Pseudolikelihood, 217
Purely nondeterministic process, 345

Bartlett spectrum condition, 347
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Quadratic random measure, 162
Bartlett spectrum, 313
moments, 168

Quadratic
score for probability forecast, 286
variation process of martingale, 431

Radial correlation function, 298
Radon–Nikodym derivative, 377

approximation to, 383
as conditional expectation, 414

Radon–Nikodym theorem, 376
Raikov’s theorem, 32
Random hazard function, 211
Random measure, 160

ARMA representations, 351
best linear predictor, 353

as sum of marks in MPP, 197
atomic, from MPP, 197
gamma, 162, 167
see named entry

Laplace functional, 161
measurable family of, 168
quadratic, 164
see named entry

shot-noise process, 168
smoothing of, 168
as linear process, 169

stationary, NNN
second-order moment structure, 289
wide-sense, 339

Random sampling of random process,
337

Random signed measure
as mean-corrected random measure,
292

wide-sense spectral theory, 339
characterization of spectral measure,
342

Random thinning, 24, 34, 78
see also Thinning operation

Random time change, 257
multivariate, 265
for multivariate and MPP, 265
transformation to Poisson process,
258

Random translation
Bartlett spectrum, 314
Poisson process, 34

Random variable, formal definition, 375

Random walk
as a point process, 70
generalized renewal equation, 70
nonlattice step distribution, 73
symmetric stable distribution, 71
transience and recurrence, 70
two-dimensional, 71, 74

cluster process, 182
see Bartlett–Lewis process

finite, normally distributed steps, 131
Rapid decay, functions of, 357
Rational spectral density, 348

canonical factorization, 348
Hawkes process example, 309
linear predictor, 354
renewal process, 357

Recurrence time r.v.s, 58, 75, 331
MPP stationary d.f. derivation, 327

Reduced covariance measure, 292
properties, 292
structure, atomic component, 292
simple point process character-
ization, 294

Reduced moment and cumulant
measures, 160

Reduced moment measures
estimates for, 299, 303
multivariate case, 320

Reduced second-moment measure, 290
characterization problem, 305, 315
for multivariate process, 317
for MPP, 322
bivariate mark kernel, 325
interpretations, 324

Palm process interpretation, 296
Reference probability measure

for MPP, 247
in likelihood ratio score, 277

Regeneration point, 13
Regular measure, 386, 387
Regular point process, 213

conditional densities in one-to-one
relation, 230, 232

MPP case, 247
defined uniquely by conditional
intensity, 251

likelihood, 251
Relative compactness of measures, 394

of Radon measures on locally
compact c.s.m.s., 406
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Relative entropy, 277, 383
of point processes, 283

Relative second-order intensity, 297
Reliability theory, 6

failure rate classification of
distributions, 7

Renewal equation, 6, 68
general, 68
linear solution, 70
unique solution, 69

Renewal function, 67
asymptotic discrepancy from linearity,
91

for Erlang distribution, 78
thinning, 76
rescaling characterization, 79, 82

see also Renewal theorem
Renewal measure, 67
Renewal process, 67
—general properties

compensator, 246
conditional intensity function, 237
construction by thinning, 268
delayed or modified, 74
expected information gain, 284, 287
exponential intervals, 69
finite, 125
Janossy densities for, 126

first moment measure for, 67
forward recurrence time, 69, 75
from fermion process, 144
from Matern’s Model I, 302
higher moments, 73
lifetime, 67
current lifetime, 76

likelihood, 242
linear and nonlinear predictors, 357
with rational spectral density, 357

modulated, 237
moment densities for, 139
orderliness, 67
ordinary, 67
Palm–Khinchin equation setting, 55
interval distributions, 55

prediction of time to next event, 110
process with limited aftereffects, 13
recurrence times, 58, 74
two-dimensional, 71, 74

Renewal process—stationary, 75
Bartlett spectrum, 306
transformation to Poisson process,
259

characterizations of Poisson process,
77, 80

conditions to be Cox process, 174
infinite divisibility conditions, 82
recurrence times, current lifetime, 75
superposition of, 79
thinning of, 78

Renewal theorem
Blackwell, 83
convergence in variation norm, 90
counterexample, 91

for forward recurrence time, 86
for renewal density, 86
key, 86
rate of convergence, 91
uniform convergence, 90

Renewal theory, 1, 67
in life tables, 1

Repulsive interaction, 128, 142
Residual analysis for point process,

261
for multivariate and MPP, 267
tests
for return to normal intensity, 262
for relative quiescence, 263

see also Goodness-of-fit
Ring of sets, 368

covering ring, 389
generating ring, 369
self-approximating, 389
existence of, 390
finite and σ-additive, 389

Ripley’s K-function, 297

Score for probability forecast
binomial, 278
entropy, 276
likelihood, 277
quadratic, 286

Second-order intensity, 296
relative, 296

Second-order properties of point pro-
cesses and random measures, 288

complementarity of count and interval
properties, 288

moment measures, 61, 289
structure in stationary case, 289
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for multivariate process, 317
for MPP, 322

Second-order stationarity, 289, 334
Self-approximating ring, 389

existence of, 390
Self-correcting point process, 239

see also Stress-release model
Self-exciting process, 183

see Hawkes process
Semiring, 368
Separability set (of metric space), 371
Set closure, 369

boundary, interior, 369
Shot-noise process, 163, 170

as Neyman–Scott process, 192
Campbell measure, 163
conditions for existence, 168
intensity of, 163
p.g.fl. and factorial cumulants, 170
random measure, 168

σ-additive set function, 372, 387
determining class for, 372
see also Measure

σ-algebra of sets, 369
countably generated, 369
independent, 415
σ-compactness in c.s.m.s., 372

σ-compact space, 372
σ-finite set function, 373
σ-group, 408

of scale changes, 409
of rotations, 410

σ-ring, 369
countably generated, 369
σ-compactness in c.s.m.s., 372

Signed measure, 373
Jordan–Hahn decomposition for, 374
variation norm for, 374

Simple function, 375
Simple point process, 47

characterization via
Janossy measure, 138
moment measure, 139
reduced covariance measure, 294

with continuous compensator, 259
Simple Poisson process

fidi distributions, 159

Simulation of point process, 260, 267
by inverse method, 260
MPP extension, 267

by thinning method, 268
MPP extension, 273
Ogata, 271
Shedler–Lewis, 270, 275

perfect, 275
use in prediction, 274

Simulation—named processes
cluster process, 275
linear birth process, 275
Poisson process in R

d, 25
renewal process, 268
stress-release models, 271, 273
Wold process, 274

Singularity of measures, 377
Soft-core model, 128
Spatial point pattern, 17, 212

can lack evolutionary dimension, 212
Spectral density of point process, 305

see also Rational spectral density
Spectral measure

point process, see Bartlett spectrum
stationary process, 305

Spectral representation, 331
of random measure, 331
isomorphisms of Hilbert spaces, 333
for randomly sampled process, 337
via second-moment measure, 341

Spread-out distribution, 87
use in renewal theory, 88

Stable convergence, 419
equivalent conditions for, 420
F-mixing convergence, 421
selection theorem for, 422
topology of, 423

Stable random measure, 168
Stationarity, 41, 45, 159

crude, 44
interval, 45
reduced moment and cumulant
measures, 160

second-order, 289
simple, 44
see also individual entries for named
processes

Stationary interval function, 331
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Stationary mark distribution, 323
ergodic and Palm probability
interpretation, 323

Stationary random measure
deterministic and purely
nondeterministic, 345

Stirling numbers, 114
first and second kind, 114
in factorial moment representations,
142

recurrence relations, 122
Stochastic geometry, 17, 205
Stochastic process, 423

as function on Ω × X , 423
F(−)-adapted, 426
measurable, 424
modification of, 424
predictable, 425
progressively measurable, 425

Stopping time, 425
extended, 425
first passage time construction, 426
in random time change, 259
T -prior σ-algebra, 429

Strauss process, 217
cluster version, 227
likelihood, 217

Stress-release model, 239
forward Kolmogorov equations, 245
linked, 255
conditional intensity function, 255
stability results, 257

risk and moments of, 245
simulation of, 271
variance of stress, 245

Sub- and superadditive functions, 63
applications of, 46–59
limit properties, 64

Sub- and supermartingale, 428
see also Martingale

Subgroup, 407
invariant, 407
normal, 407

Survival analysis, 17
Survivor function, 2

Poisson process, 20
conditional, 229
determine fidi distributions, 230

Symmetric difference of sets, 368

Symmetric measure, 290
p.p.d. measure property, 360

Symmetric probability measure, 124,
129

Symmetric sets and measures, 129, 131
System identification for point

processes, 319
cluster process example, 329
for input–output process, 329

T -prior σ-algebra, 429
strict, 429

Tapered Pareto distribution, 255
Taylor series expansions of p.g.f., 115
Thinning operation

Poisson process, 24, 34
renewal process, 78
simulation algorithms, 268–275

Tight measure, 387
Topological group, measure on, 407

locally compact, 408
Abelian, characters of, 413
dual group, 413

Topology, topological space, 369
basis for, 370
compact set in, 372
countable base for, 370
equivalent bases for, 370
Hausdorff, 370
locally compact, 372
metric, 370
product, 377
relative compactness, 372
second countable, 370

Totally bounded space, 373
Totally finite additive set function, 373
Totally finite measures

regular on metric space, 387
metric properties of, 398

space of (= MX ), 398
c.s.m.s. under weak convergence
topology, 400

equivalent topologies for, 398
mapping characterization of
σ-algebra, 401

Prohorov’s metric on, 398
Transformable measure, 358

property of p.p.d. measure, 362
sequences, 366
translation-bounded counter-
example, 366
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Translation-bounded measure, 290, 358
integrability characterization of, 367
property of p.p.d. measure, 360

Triangular density, 359
multivariate extension, 359

Trigger process, see Shot-noise, 163
Two-dimensional process, see Planar
Two-point cluster process, 348

Bartlett spectrum factorization, 348
best linear predictor, 356

Two-point process, 266
Two-sided exponential density, 359

multivariate extension, 359

Unbounded measures
Fourier transform, 303, 357

Uniform integrability, 418
equivalent to L1 convergence, 419

Unitary matrix group
eigenvalues of random element as
finite point process, 18, 140

Unpredictable marks, process with, 238
Urysohn’s theorem for c.s.m.s., 371

Variance function of stationary point
process, 294, 301

bounded variability process, 295
Fourier representation, 305
simple point process, 62, 295

Variation norm for signed measure, 374
Variation of function

upper, lower, total, 374
Vehicles on a road, 328
Volume fraction of union set, 207

Waiting-time paradox, 21, 45
Weak convergence of measures, 390

compactness criterion for, 394
on metric space, equivalent conditions
for, 391

functional condition for, 392
preservation under mapping, 394
relative compactness of, 394

Weibull distribution, 3, 7
Wide-sense theory, 339, 345
Wold decomposition theorem, 344

extension to random measures, 345
Wold process, 92
—general properties of

conditional intensity for, 233
convergence in variation norm, 102
intervals as Markov chain
homing set conditions for, 96
Markov transition kernel for, 92
diagonal expansion specification, 95,
104

key renewal theorem analogue, 100
likelihood and hazard function, 242
mth order, 105
stationary distribution, 93
homing set condition for, 96

Wold process—named examples
χ2 distributed intervals, 104
conditionally exponentially distri-

buted intervals, 95, 105, 110
information gain, 287
prediction of, 274

discrete, 94, 103
first-order exponential autoregressive
process, 92

infinite intensity example, 102
infinitely divisible intervals, 102
intervals as autoregressive process
time-reversed example, 105

Lampard’s reversible counter system,
106

long-range dependent example, 106
non-Poisson process with exponential
intervals and Poisson counts, 105




