import numpy as np import matplotlib.pyplot as plt from plotstyle import * # normal distribution: rng = np.random.RandomState(6281) x = np.arange(-4.0, 4.0, 0.01) g = np.exp(-0.5*x*x)/np.sqrt(2.0*np.pi) r = rng.randn(100) fig, (ax1, ax2) = plt.subplots(1, 2, figsize=cm_size(figure_width, 1.1*figure_height)) ax1.set_xlabel('x') ax1.set_xlim(-3.2, 3.2) ax1.set_xticks(np.arange(-3.0, 3.1, 1.0)) ax1.set_ylabel('Frequency') ax1.set_yticks(np.arange(0.0, 41.0, 10.0)) ax1.hist(r, 5, zorder=-10, **fsB) ax1.hist(r, 20, zorder=-5, **fsC) ax2.set_xlabel('x') ax2.set_xlim(-3.2, 3.2) ax2.set_xticks(np.arange(-3.0, 3.1, 1.0)) ax2.set_ylabel('Probab. density p(x)') ax2.set_ylim(0.0, 0.44) ax2.set_yticks(np.arange(0.0, 0.41, 0.1)) ax2.plot(x, g, zorder=-1, **lsA) if mpl_major > 1: ax2.hist(r, 5, density=True, zorder=-10, **fsB) ax2.hist(r, 20, density=True, zorder=-5, **fsC) else: ax2.hist(r, 5, normed=True, zorder=-10, **fsB) ax2.hist(r, 20, normed=True, zorder=-5, **fsC) fig.savefig('pdfhistogram.pdf')