\documentclass[addpoints,10pt]{exam}
\usepackage{url}
\usepackage{color}
\usepackage{hyperref}

\pagestyle{headandfoot}
\runningheadrule
\firstpageheadrule
\firstpageheader{Scientific Computing}{Project Assignment}{11/05/2014
  -- 11/06/2014}
%\runningheader{Homework 01}{Page \thepage\ of \numpages}{23. October 2014}
\firstpagefooter{}{}{}
\runningfooter{}{}{}
\pointsinmargin
\bracketedpoints

%\printanswers
%\shadedsolutions


\begin{document}
%%%%%%%%%%%%%%%%%%%%% Submission instructions %%%%%%%%%%%%%%%%%%%%%%%%%
\sffamily
% \begin{flushright}
% \gradetable[h][questions]
% \end{flushright}

\begin{center}
  \input{../disclaimer.tex}
\end{center}

%%%%%%%%%%%%%% Questions %%%%%%%%%%%%%%%%%%%%%%%%%


\begin{questions}
  \question The Fano factor $\frac{\sigma^2}{\mu}$ is a common measure
  in neural coding because a Poisson process---for which each spike is
  independent of every other---has a Fano factor of one.

  The table contains spike counts from a neuron measured in twelve
  trials.

  \begin{center}
    \begin{tabular}{cccc}
      \multicolumn{4}{c}{\bf number of spikes} \\ \hline\\
      36.00 & 28.00 & 38.00 & 35.00\\
      32.00 & 30.00 & 35.00 & 29.00\\
      29.00 & 24.00 & 26.00 & 34.00
    \end{tabular}
  \end{center}

  \begin{parts}
    \part Use {\em Eden, U. T., \& Kramer, M. (2010). Drawing
      inferences from Fano factor calculations. Journal of
      neuroscience methods, 190(1), 149--152} to construct a test that
    uses the Fano factor as test statistic and tests against the Null
    hypothesis that the spike counts come from a Poisson process.
    \part Plot the spike counts appropriately. 
    \part Implement the test and use that it on the data above.
  \end{parts}

\end{questions}



\end{document}