import numpy as np import matplotlib.pyplot as plt from plotstyle import * def hompoisson(rate, trials, duration) : spikes = [] for k in range(trials) : times = [] t = 0.0 while t < duration : t += np.random.exponential(1/rate) times.append( t ) spikes.append( times ) return spikes def inhompoisson(rate, trials, dt) : spikes = [] p = rate*dt for k in range(trials) : x = np.random.rand(len(rate)) times = dt*np.nonzero(x
= vthresh :
v = vreset
times.append(k*dt)
spikes.append( times )
return spikes
def isis( spikes ) :
isi = []
for k in range(len(spikes)) :
isi.extend(np.diff(spikes[k]))
return np.array( isi )
def plotreturnmap(ax, isis, lag=1, max=1.0) :
ax.set_xlabel(r'ISI$_i$', 'ms')
ax.set_ylabel(r'ISI$_{i+1}$', 'ms')
ax.set_xlim(0.0, 1000.0*max)
ax.set_ylim(0.0, 1000.0*max)
isiss = isis[isis