import numpy as np import matplotlib.pyplot as plt from plotstyle import * def hompoisson(rate, trials, duration) : spikes = [] for k in range(trials) : times = [] t = 0.0 while t < duration : t += np.random.exponential(1/rate) times.append(t) spikes.append(times) return spikes def inhompoisson(rate, trials, dt) : spikes = [] p = rate*dt for k in range(trials) : x = np.random.rand(len(rate)) times = dt*np.nonzero(x= vthresh : v = vreset times.append(k*dt) spikes.append(times) return spikes # parameter: rate = 20.0 drate = 50.0 trials = 10 duration = 2.0 dt = 0.001 tau = 0.1; # homogeneous spike trains: homspikes = hompoisson(rate, trials, duration) # OU noise: rng = np.random.RandomState(54637281) time = np.arange(0.0, duration, dt) x = np.zeros(time.shape)+rate n = rng.randn(len(time))*drate*tau/np.sqrt(dt)+rate for k in range(1,len(x)) : x[k] = x[k-1] + (n[k]-x[k-1])*dt/tau x[x<0.0] = 0.0 # inhomogeneous spike trains: #inhspikes = inhompoisson(x, trials, dt) # pif spike trains: inhspikes = pifspikes(x, trials, dt, D=0.3) fig, (ax1, ax2) = plt.subplots(1, 2, figsize=cm_size(figure_width, 0.5*figure_width)) fig.subplots_adjust(**adjust_fs(fig, left=4.0, right=1.0, top=1.2)) ax1.set_title('stationary') ax1.set_xlim(0.0, duration) ax1.set_ylim(-0.5, trials-0.5) ax1.set_xlabel('Time [s]') ax1.set_ylabel('Trial') ax1.eventplot(homspikes, colors=[lsA['color']], linelength=0.8, lw=1) ax2.set_title('non-stationary') ax2.set_xlim(0.0, duration) ax2.set_ylim(-0.5, trials-0.5) ax2.set_xlabel('Time [s]') ax2.set_ylabel('Trial') ax2.eventplot(inhspikes, colors=[lsA['color']], linelength=0.8, lw=1) plt.savefig('rasterexamples.pdf') plt.close()