
Chapter 2

Debugging

ww
w.
xk
cd
.c
om

When writing a program from scratch we almost always make mistakes. Accordingly, a quite sub-
stantial amount of time is invested into finding and fixing errors. This process is called debugging.
Don’t be frustrated that a self-written program does not work as intended and produces errors. It is
quite exceptional if a program appears to be working on the first try and, in fact, should leave you
suspicious.

In this chapter we will talk about typical mistakes, how to read and understand error messages,
how to actually debug your program code and some hints that help to minimize errors.

2.1 Types of errors and error messages

There are a number of different classes of programming errors and it is good to know the common
ones. Some of your programming errors will will lead to violations of the syntax or to invalid
operations that will cause MATLAB© to throw an error. Throwing an error ends the execution of a
program and there will be an error messages shown in the command window. With such messages
MATLAB© tries to explain what went wrong and to provide a hint on the possible cause.

Bugs that lead to the termination of the execution may be annoying but are generally easier to
find and to fix than logical errors that stay hidden and the results of, e.g. an analysis, are seemingly
correct.

37

www.xkcd.com


38 CHAPTER 2. DEBUGGING

Try — catch

There are ways to catch errors during runtime (i.e. when the program is executed) and handle
them in the program.

Try catch clause
1 try
2 y = function_that_throws_an_error(x);
3 catch
4 y = 0;
5 end

This way of solving errors may seem rather convenient but is risky. Having a function throwing
an error and catching it in the catch clause will keep your command line clean but may obscure
logical errors! Take care when using the try-catch clause.

Syntax errors

The most common and easiest to fix type of error. A syntax error violates the rules (spelling and
grammar) of the programming language. For example every opening parenthesis must be matched
by a closing one or every for loop has to be closed by an end . Usually, the respective error
messages are clear and the editor will point out and highlight most syntax errors.

Listing 2.2: Unbalanced parenthesis error.

1 >> mean(random_numbers
2 |
3 Error: Expression or statement is incorrect --possibly unbalanced (, {, or

[.
4
5 Did you mean:
6 >> mean(random_numbers)

Indexing error

Second on the list of common errors are the indexing errors. Usually MATLAB© gives rather
precise infromation about the cause, once you know what they mean. Consider the following code.

Listing 2.3: Indexing errors.

1 >> my_array = (1:100);
2 >> % first try: index 0
3 >> my_array(0)
4 Subscript indices must either be real positive integers or logicals.
5
6 >> % second try: negative index
7 >> my_array(-1)
8 Subscript indices must either be real positive integers or logicals.



2.1. TYPES OF ERRORS AND ERROR MESSAGES 39

9
10 >> % third try: a floating point number
11 >> my_array (5.7)
12 Subscript indices must either be real positive integers or logicals.
13
14 >> % fourth try: a character
15 >> my_array(’z’)
16 Index exceeds matrix dimensions.
17
18 >> % fifth try: another character
19 >> my_array(’A’)
20 ans =
21 65 % wtf ?!?

The first two indexing attempts in listing 2.3 are rather clear. We are trying to access elements
with indices that are invalid. Remember, indices in MATLAB© start with 1. Negative numbers
and zero are not permitted. In the third attemp we index using a floating point number. This fails
because indices have to be ’integer’ values. Using a character as an index (fourth attempt) leads to
a different error message that says that the index exceeds the matrix dimensions. This indicates that
we are trying to read data behind the length of our variable my_array which has 100 elements.
One could have expected that the character is an invalid index, but apparently it is valid but simply
too large. The fith attempt finally succeeds. But why? MATLAB© implicitely converts the char to
a number and uses this number to address the element in my_array . The char has the ASCII code
65 and thus the 65th element of my_array is returned.

Assignment error

Related to the Indexing error, an assignment error occurs when we want to write data into a variable,
that does not fit into it. Listing 2.4 shows the simple case for 1-d data but, of course, it extents to
n-dimensional data. The data that is to be filled into a matrix hat to fit in all dimensions. The
command in line 7 works due to the fact, that matlab automatically extends the matrix, if you
assign values to a range outside its bounds.

Listing 2.4: Assignment errors.

1 >> a = zeros(1, 100);
2 >> b = 0:10;
3
4 >> a(1:10) = b;
5 In an assignment A(:) = B, the number of elements in A and B must be

the same.
6
7 >> a(100:110) = b;
8 >> size(a)
9 ans =

10 110 1



40 CHAPTER 2. DEBUGGING

Dimension mismatch error

Similarly, some arithmetic operations are only valid if the variables fulfill some size constraints.
Consider the following commands (listing 2.5). The first one (line 3) fails because we are trying
to do al elementwise add on two vectors that have different lengths, respectively sizes. The matrix
multiplication in line 6 also fails since for this operations to succeed the inner matrix dimensions
must agree (for more information on the matrixmultiplication see box ?? in chapter ??). The ele-
mentwise multiplication issued in line 10 fails for the same reason as the addition we tried earlier.
Sometimes, however, things apparently work but the result may be surprising. The last operation
in listing 2.5 does not throw an error but the result is something else than the expected elementwise
multiplication.

Listing 2.5: Some arithmetic operations make size constraints, violating them leads to dimension mismatch
errors.

1 >> a = randn(100, 1);
2 >> b = randn(10, 1);
3 >> a + b
4 Matrix dimensions must agree.
5
6 >> a * b % The matrix multiplication!
7 Error using *
8 Inner matrix dimensions must agree.
9

10 >> a .* b
11 Matrix dimensions must agree.
12
13 >> c = a .* b’; % works but the result may not be what you expected!
14 >> size(c)
15 ans =
16 100 10

2.2 Logical error

Sometimes a program runs smoothly and terminates without any complaint. This, however, does
not necessarily mean that the program is correct. We may have made a logical error. Logical errors
are hard to find, MATLAB© has no chance to detect such errors since they do not violate the syntax
or cause the throwing of an error. Thus, we are on our own to find and fix the bug. There are a few
strategies that should we can employ to solve the task.

1. Be sceptical: especially when a program executes without any complaint on the first try.

2. Clean code: Structure your code that you can easily read it. Comment, but only where
necessary. Correctly indent your code. Use descriptive variable and function names.

3. Keep it simple.

4. Test your code by writing unit tests that test every aspect of your program (2.3).



2.3. AVOIDING ERRORS 41

5. Use scripts and functions and call them from the command line. MATLAB© can then provide
you with more information. It will then point to the line where the error happens.

6. If you still find yourself in trouble: Apply debugging strategies to find and fix bugs (2.4).

2.3 Avoiding errors

It would be great if we could just sit down, write a program, run it, and be done with the task. Most
likely this will not happen. Rather, we will make mistakes and have to bebug the code. There are a
few guidelines that help to reduce the number of errors.

Keep it small and simple

Debugging time increases as a square of the program’s size. Chris Wenham

Everyone knows that debugging is twice as hard as writing a program in the first place.
So if you’re as clever as you can be when you write it, how will you ever debug it? Brian
Kernighan

Break down your programming problems into small parts (functions) that do exactly one thing
and are thus easily testable. This has already been discussed in the context of writing scripts and
functions. In parts this is just a matter of feeling overwhelmed by 1000 lines of code. Further,
with each task that you incorporate into the same script the probability of naming conflicts (same
or similar names for variables) increases. Remembering the meaning of a certain variable that was
defined in the beginning of the script is simply hard.

Many tasks within an analysis can be squashed into a single line of code. This saves some space
in the file, reduces the effort of coming up with variable names and simply looks so much more
competent than a collection of very simple lines. Consider the following listing (listing 2.6). Both
parts of the listing solve the same problem but the second one breaks the task down to a sequence
of easy-to-understand commands. Finding logical and also syntactic errors is much easier in the
second case. The first version is perfectly fine but it requires a deep understanding of the applied
functions and also the task at hand.

Listing 2.6: Converting a series of spike times into the firing rate as a function of time. Many tasks can be
solved with a single line of code. But is this readable?

1 % the one-liner
2 rate = conv(full(sparse(1, round(spike_times/dt), 1, 1, length(time))),

kernel , ’same’);
3
4 % easier to read
5 rate = zeros(size(time));
6 spike_indices = round(spike_times/dt);
7 rate(spike_indices) = 1;
8 rate = conv(rate , kernel , ’same’);

The preferred way depends on several considerations. (i) How deep is your personal under-
standing of the programming language? (ii) What about the programming skills of your target



42 CHAPTER 2. DEBUGGING

audience or other people that may depend on your code? (iii) Is one solution faster or uses less
resources than the other? (iv) How much do you have to invest into the development of the most
elegant solution relative to its importance in the project? The decision is yours.

Unit tests

The idea of unit tests to write small programs that test all functions of a program by testing the
program’s results against expectations. The pure lore of test-driven development requires that the
tests are written before the actual program is written. In parts the tests put the functional specifi-
cation, the agreement between customer and programmer, into code. This helps to guarantee that
the delivered program works as specified. In the scientific context, we tend to be a little bit more
relaxed and write unit tests, where we think them helpful and often test only the obvious things.
To write complete test suits that lead to full test coverage is a lot of work and is often considered
a waste of time. The first claim is true, the second, however, may be doubted. Consider that you
change a tiny bit of a standing program to adjust it to the current needs, how will you be able to
tell that it is still valid for the previous purpose? Of course you could try it out and be satisfied, if
it terminates without an error, but, remember, there may be logical errors hiding behind the facade
of a working program.

Writing unit tests costs time, but provides the means to guarantee validity.

Unit testing in MATLAB©

Matlab offers a unit testing framework in which small scripts are written that test the features of
the program. We will follow the example given in the MATLAB© help and assume that there is a
function rightTriangle (listing 2.7).

Listing 2.7: Slightly more readable version of the example given in the MATLAB© help system. Note: The
variable name for the angles have been capitalized in order to not override the matlab defined functions
alpha, beta, and gamma .

1 function angles = rightTriangle(length_a , length_b)
2 ALPHA = atand(length_a / length_b);
3 BETA = atand(length_a / length_b);
4 hypotenuse = length_a / sind(ALPHA);
5 GAMMA = asind(hypotenuse * sind(ALPHA) / length_a);
6
7 angles = [ALPHA BETA GAMMA];
8 end

This function expects two input arguments that are the length of the sides a and b and assumes
a right angle between them. From this information it calculates and returns the angles α,β, and γ.

Let’s test this function: To do so, create a script in the current folder that follows the following
rules.

1. The name of the script file must start or end with the word ’test’, which is case-insensitive.

2. Each unit test should be placed in a separate section/cell of the script.

3. After the %% that defines the cell, a name for the particular unit test may be given.



2.3. AVOIDING ERRORS 43

Further there are a few things that are different in tests compared to normal scripts.

1. The code that appears before the first section is the in the so called shared variables section
and the variables are available to all tests within this script.

2. In the shared variables section, one can define preconditions necessary for your tests. If these
preconditions are not met, the remaining tests will not be run and the test will be considered
failed and incomplete.

3. When a script is run as a test, all variables that need to be accessible in all test have to be
defined in the shared variables section.

4. Variables defined in other workspaces are not accessible to the tests.

The test script for the rightTrianlge function (listing 2.7) may look like in listing 2.8.

Listing 2.8: Unit test for the rightTriangle function stored in an m-file testRightTriangle.m

1 tolerance = 1e-10;
2
3 % preconditions
4 angles = rightTriangle(7, 9);
5 assert(angles(3) == 90, ’Fundamental problem: rightTriangle is not

producing a right triangle’)
6
7 %% Test 1: sum of angles
8 angles = rightTriangle(7, 7);
9 assert((sum(angles) - 180) <= tolerance)

10
11 angles = rightTriangle(7, 7);
12 assert((sum(angles) - 180) <= tolerance)
13
14 angles = rightTriangle(2, 2 * sqrt(3));
15 assert((sum(angles) - 180) <= tolerance)
16
17 angles = rightTriangle(1, 150);
18 assert((sum(angles) - 180) <= tolerance)
19
20 %% Test: isosceles triangles
21 angles = rightTriangle(4, 4);
22 assert(abs(angles(1) - 45) <= tolerance)
23 assert(angles(1) == angles(2))
24
25 %% Test: 30-60-90 triangle
26 angles = rightTriangle(2, 2 * sqrt(3));
27 assert(abs(angles(1) - 30) <= tolerance)
28 assert(abs(angles(2) - 60) <= tolerance)
29 assert(abs(angles(3) - 90) <= tolerance)
30
31 %% Test: Small angle approx
32 angles = rightTriangle(1, 1500);
33 smallAngle = (pi / 180) * angles(1); % radians
34 approx = sin(smallAngle);
35 assert(abs(approx - smallAngle) <= tolerance , ’Problem with small angle

approximation’)



44 CHAPTER 2. DEBUGGING

In a test script we can execute any code. The actual test whether or not the results match our
predictions is done using the assert() assert function. This function basically expects a boolean
value and if this is not true, it raises an error that, in the context of the test does not lead to a
termination of the program. In the tests above, the argument to assert is always a boolean expression
which evaluates to true or false . Before the first unit test (“Test 1: sum of angles”, that starts
in line 5, listing 2.8) a precondition is defined. The test assumes that the γ angle must always be
90◦ since we aim for a right triangle. If this is not true, the further tests, will not be executed. We
further define a tolerance variable that is used when comparing double values (Why might the
test on equality of double values be tricky?).

Listing 2.9: Run the test!

1 result = runtests(’testRightTriangle’)

During the run, MATLAB© will put out error messages onto the command line and a summary
of the test results is then stored within the result variable. These can be displayed using the
function table(result)

Listing 2.10: The test results.
1 table(result)
2 ans =
3 4x6 table
4
5 Name Passed Failed Incomplete Duration Details
6 _________________________________ ______ ______ ___________ ________ ____________
7
8 ’testR.../ Test_SumOfAngles’ true false false 0.011566 [1x1 struct]
9 ’testR.../ Test_IsoscelesTriangles’ true false false 0.004893 [1x1 struct]

10 ’testR.../ Test_30_60_90Triangle’ true false false 0.005057 [1x1 struct]
11 ’testR.../ Test_SmallAngleApprox’ true false false 0.0049 [1x1 struct]

So far so good, all tests pass and our function appears to do what it is supposed to do. But tests
are only as good as the programmer who designed them. The attentive reader may have noticed
that the tests only check a few conditions. But what if we passed something else than a numeric
value as the length of the sides a and b? Or a negative number, or zero?

2.4 Debugging strategies

If you still find yourself in trouble you can apply a few strategies that help to solve the problem.

1. Lean back and take a breath.

2. Read the error messages and identify the line or command where the error happens. Unfor-
tunately, the position that breaks is not always the line or command that really introduced the
bug. In some instances the actual error hides a few lines above.

3. No idea what the error message is trying to say? Google it!

4. Read the program line by line and understand what each line is doing.

5. Use disp to print out relevant information on the command line and compare the output
with your expectations. Do this step by step and start at the beginning.



2.4. DEBUGGING STRATEGIES 45

Figure 2.1: Screenshot of the MATLAB© m-file editor. Once a file is saved and passes the syntax check
(the indicator in the top-right corner of the editor window turns green or orange), a breakpoint can be set.
Breakpoints can be set either using the dropdown menu on top or by clicking the line number on the left
margin. An active breakpoint is indicated by a red dot. The line at which the program execution was stopped
is indicated by the green arrow.

6. Use the MATLAB© debugger to stop execution of the code at a specific line and proceed step
by step. Be sceptical and test all steps for correctness.

7. Call for help and explain the program to someone else. When you do this, start at the begin-
ning and walk through the program line by line. Often it is not necessary that the other person
is a programmer or exactly understands what is going on. Often, it is the own reflection on
the problem and the chosen approach that helps finding the bug. (This strategy is also known
as Rubber duck debugging.

Debugger

The MATLAB© editor (figure 2.1) supports interactive debugging. Once you save an m-file in
the editor and it passes the syntax check, i.e. the little box in the upper right corner of the editor
window is green or orange, you can set one or several break points. When the program is executed
by calling it from the command line it will be stopped at the line with the breakpoint. In the editor
this is indicated by a green arrow. The command line will change to indicate that we are now
stopped in debug mode (listing 2.11).

Listing 2.11: Command line when the program execution was stopped in the debugger.



46 CHAPTER 2. DEBUGGING

1 >> simplerandomwalk
2 6 for run = 1:num_runs
3 K>>

When stopped in the debugger we can view and change the state of the program at this point,
we can also issue commands to try the next steps etc. Beware however, the state of a variable can
be altered or even deleted which might affect the execution of the remaining code.

The toolbar of the editor offers now a new set of tools for debugging:

1. Continue — simply move on until the program terminates or the execution reaches the next
breakpoint.

2. Step — Execute the next command and stop.

3. Step in — If the next command is a function call, step into it and stop at the first command.

4. Step out — If the next command is a function call, proceed until the called function returns,
then stop.

5. Run to cursor — Execute all statements up to the current cursor position.

6. Quit debugging — Immediately stop the debugging session and stop the further code exe-
cution.

The debugger offers some more (advanced) features but the functionality offered by the basic
tools is often enough to debug a program.


	Debugging
	Types of errors and error messages
	Logical error
	Avoiding errors
	Debugging strategies


