\documentclass[addpoints,10pt]{exam} \usepackage{url} \usepackage{color} \usepackage{hyperref} \pagestyle{headandfoot} \runningheadrule \firstpageheadrule \firstpageheader{Scientific Computing}{Project Assignment}{11/05/2014 -- 11/06/2014} %\runningheader{Homework 01}{Page \thepage\ of \numpages}{23. October 2014} \firstpagefooter{}{}{} \runningfooter{}{}{} \pointsinmargin \bracketedpoints %\printanswers %\shadedsolutions \begin{document} %%%%%%%%%%%%%%%%%%%%% Submission instructions %%%%%%%%%%%%%%%%%%%%%%%%% \sffamily % \begin{flushright} % \gradetable[h][questions] % \end{flushright} \begin{center} \input{../disclaimer.tex} \end{center} %%%%%%%%%%%%%% Questions %%%%%%%%%%%%%%%%%%%%%%%%% \begin{questions} \question The Fano factor $\frac{\sigma^2}{\mu}$ is a common measure in neural coding because a Poisson process---for which each spike is independent of every other---has a Fano factor of one. The table contains spike counts from a neuron measured in twelve trials. \begin{center} \begin{tabular}{cccc} \multicolumn{4}{c}{\bf number of spikes} \\ \hline\\ 36.00 & 28.00 & 38.00 & 35.00\\ 32.00 & 30.00 & 35.00 & 29.00\\ 29.00 & 24.00 & 26.00 & 34.00 \end{tabular} \end{center} \begin{parts} \part Use {\em Eden, U. T., \& Kramer, M. (2010). Drawing inferences from Fano factor calculations. Journal of neuroscience methods, 190(1), 149--152} to construct a test that uses the Fano factor as test statistic and tests against the Null hypothesis that the spike counts come from a Poisson process. \part Plot the spike counts appropriately. \part Implement the test and use that it on the data above. \end{parts} \end{questions} \end{document}