import numpy as np import matplotlib.pyplot as plt # normal distribution: x = np.arange( -3.0, 5.0, 0.01 ) g = np.exp(-0.5*x*x)/np.sqrt(2.0*np.pi) x1=0.0 x2=1.0 plt.xkcd() fig = plt.figure( figsize=(6,3.4) ) ax = fig.add_subplot( 1, 1, 1 ) ax.spines['right'].set_visible(False) ax.spines['top'].set_visible(False) ax.yaxis.set_ticks_position('left') ax.xaxis.set_ticks_position('bottom') ax.set_xlabel( 'x' ) ax.set_ylabel( 'Probability density p(x)' ) ax.set_ylim( 0.0, 0.46 ) ax.set_yticks( np.arange( 0.0, 0.45, 0.1 ) ) ax.annotate('Gaussian', xy=(-1.0, 0.28), xycoords='data', xytext=(-2.5, 0.35), textcoords='data', ha='left', arrowprops=dict(arrowstyle="->", relpos=(0.5,0.0), connectionstyle="angle3,angleA=10,angleB=110") ) ax.annotate('$P(0", relpos=(0.0,0.5), connectionstyle="angle3,angleA=10,angleB=80") ) ax.fill_between( x[(x>x1)&(xx1)&(x