import numpy as np import matplotlib.pyplot as plt # data: rng = np.random.RandomState(981) data = rng.randn(100) xs = np.sort(data) cdf = np.arange(len(xs))/float(len(xs)) # Gauss: dx = 0.01 xx = np.arange(-4.0, 4.0, dx) gauss = np.exp(-0.5*xx*xx)/np.sqrt(2.0*np.pi) gausscdf = np.cumsum(gauss)*dx # plot: plt.xkcd() fig = plt.figure( figsize=(6, 2.4) ) ax = fig.add_subplot(1, 1, 1) ax.spines['right'].set_visible(False) ax.spines['top'].set_visible(False) ax.yaxis.set_ticks_position('left') ax.xaxis.set_ticks_position('bottom') ax.set_xlabel( 'x' ) ax.set_xlim(-3.2, 3.2) ax.set_xticks( np.arange( -3.0, 3.1, 1.0 ) ) ax.set_ylabel( 'F(x)' ) ax.set_ylim(-0.05, 1.05) ax.set_yticks( np.arange( 0.0, 1.1, 0.2 ) ) med = xs[cdf>=0.5][0] ax.plot([-3.2, med, med], [0.5, 0.5, 0.0], 'k', lw=1, zorder=-5) ax.text(-2.8, 0.55, 'F=0.5') ax.text(0.15, 0.25, 'median at %.2f' % med) q3 = xs[cdf>=0.75][0] ax.plot([-3.2, q3, q3], [0.75, 0.75, 0.0], 'k', lw=1, zorder=-5) ax.text(-2.8, 0.8, 'F=0.75') ax.text(0.8, 0.5, '3. quartile at %.2f' % q3) p = cdf[xs>=-1.0][0] ax.plot([-3.2, -1.0, -1.0], [p, p, 0.0], 'k', lw=1, zorder=-5) ax.text(-2.8, 0.2, 'F=%.2f' % p) ax.text(-0.9, 0.05, '-1') ax.plot(xx, gausscdf, '-', color='#0000ff', lw=2, zorder=-1) ax.plot(xs, cdf, '-', color='#cc0000', lw=4, zorder=-1) ax.plot([-3.2, 3.2], [1.0, 1.0], '--', color='k', lw=2, zorder=-10) plt.subplots_adjust(left=0.1, right=0.98, bottom=0.15, top=0.98, wspace=0.35, hspace=0.3) fig.savefig( 'cumulative.pdf' ) #plt.show()