import numpy as np import scipy.stats as st import matplotlib.pyplot as plt plt.xkcd() fig = plt.figure(figsize=(6, 3)) # the line: slope = 2.0 xx = np.arange(0.0, 4.1, 0.1) yy = slope*xx # the data: n = 40 rng = np.random.RandomState(5218) sigma = 1.5 x = 4.0*rng.rand(n) y = slope*x+rng.randn(n)*sigma # fit: slopef = np.sum(x*y)/np.sum(x*x) yf = slopef*xx # plot it: ax = fig.add_axes([0.09, 0.02, 0.33, 0.9]) ax.spines['left'].set_position('zero') ax.spines['bottom'].set_position('zero') ax.spines['right'].set_visible(False) ax.spines['top'].set_visible(False) ax.get_xaxis().set_tick_params(direction='inout', length=10, width=2) ax.get_yaxis().set_tick_params(direction='inout', length=10, width=2) ax.yaxis.set_ticks_position('left') ax.xaxis.set_ticks_position('bottom') ax.set_xticks(np.arange(0.0, 4.1)) ax.set_xlim(0.0, 4.2) ax.set_ylim(-4.0, 12.0) ax.set_xlabel('x') ax.set_ylabel('y') ax.scatter(x, y, label='data', s=40, zorder=10) ax.plot(xx, yy, 'r', lw=5.0, color='#ff0000', label='original', zorder=5) ax.plot(xx, yf, '--', lw=1.0, color='#ffcc00', label='fit', zorder=7) ax.legend(loc='upper left', bbox_to_anchor=(0.0, 1.15), frameon=False) ax = fig.add_axes([0.42, 0.02, 0.07, 0.9]) ax.spines['left'].set_position('zero') ax.spines['right'].set_visible(False) ax.spines['top'].set_visible(False) ax.spines['bottom'].set_visible(False) ax.get_yaxis().set_tick_params(direction='inout', length=10, width=2) ax.yaxis.set_ticks_position('left') ax.set_xticks([]) ax.set_ylim(-4.0, 12.0) ax.set_yticks([]) bins = np.arange(-4.0, 12.1, 0.75) ax.hist(y, bins, orientation='horizontal', zorder=10) ax = fig.add_axes([0.6, 0.02, 0.33, 0.9]) ax.spines['left'].set_position('zero') ax.spines['bottom'].set_position('zero') ax.spines['right'].set_visible(False) ax.spines['top'].set_visible(False) ax.get_xaxis().set_tick_params(direction='inout', length=10, width=2) ax.get_yaxis().set_tick_params(direction='inout', length=10, width=2) ax.yaxis.set_ticks_position('left') ax.xaxis.set_ticks_position('bottom') ax.set_xticks(np.arange(0.0, 4.1)) ax.set_xlim(0.0, 4.2) ax.set_ylim(-4.0, 12.0) ax.set_xlabel('x') ax.set_ylabel('y - mx') ax.scatter(x, y - slopef*x, label='residuals', s=40, zorder=10) #ax.legend(loc='upper left', bbox_to_anchor=(0.0, 1.0), frameon=False) ax = fig.add_axes([0.93, 0.02, 0.07, 0.9]) ax.spines['left'].set_position('zero') ax.spines['right'].set_visible(False) ax.spines['top'].set_visible(False) ax.spines['bottom'].set_visible(False) ax.get_yaxis().set_tick_params(direction='inout', length=10, width=2) ax.yaxis.set_ticks_position('left') ax.set_xlim(0.0, 11.0) ax.set_xticks([]) ax.set_ylim(-4.0, 12.0) ax.set_yticks([]) r = y - slopef*x ax.hist(r, bins, orientation='horizontal', zorder=10) gx = np.arange(-4.0, 12.1, 0.1) gy = st.norm.pdf(gx, np.mean(r), np.std(r)) ax.plot(1.0+gy*29.0, gx, 'r', lw=2, zorder=5) plt.savefig('mlepropline.pdf') #plt.show();