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ARTICLE INFO o , . .
Biologists commonly compare variances among samples, to test whether underlying populations have

equal spread. However, despite warnings from statisticians, incorrect testing is rife. Here we show that
one of the most commonly employed of these tests, the F test, is extremely sensitive to deviations from
normality. The F test suffers greatly elevated false positive errors when the underlying distributions are
heavy tailed, a distribution feature that is very hard to detect using standard normality tests. We high-
light and assess a selection of parametric, jackknife and permutation tests, consider their performance in
terms of false positives, and power to detect signal when it exists, then show correct methods to compare
measures of variation among samples. Based on these assessments, we recommend using Levene's test,
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jackknife test may not control type I error for extremely heavy-tailed distributions. As noted previously, do not use
Levene's test F tests to compare variances.

normality © 2018 The Association for the Study of Animal Behaviour. Published by Elsevier Ltd. All rights reserved.
permutation

power

variance

Never use an F-test to test equality of variances (Van Valen, 2005,
page 30)

The effects of nonnormality on the distribution theories for the test
statistics ... are catastrophic (Miller, 1998, page 264)

Evolutionary biologists and behavioral ecologists study varia-
tion alongside averages, and commonly wish to partition observed
variation among various causes. This is of course the basis of
analysis of variance (ANOVA) and its associated family of tests,
where variation is partitioned among and within experimental
treatments (predictors), to determine their influence on the
response variable(s).

Sometimes, however, we are also interested in comparing the
size of the variances themselves, among samples or treatments, to
ask is there more variation in A than in B? Classic examples include
comparing variation in behavioural plasticity, sex-specific variation
in fitness, variance in sex ratios, variance in dietary breadth or
preference, variation in preferred group size, and even how intra-
individual variation in trait size can affect mating success (e.g.

* Correspondence: D. ]J. Hosken and D. ]. Hodgson, Centre for Ecology & Con-
servation, University of Exeter, Cornwall, Penryn TR10 9EZ, U.K.
E-mail addresses: d.j.hosken@exeter.ac.uk (D. J. Hosken), d.j.hodgson@exeter.ac.
uk (D. J. Hodgson).

https://doi.org/10.1016/j.anbehav.2017.12.014

Brown & Robinson, 2016; Craft, 2016; Hosken, 2001; MacLeod &
Clutton Brock, 2013; Shafir, Menda, & Smith, 2005; Sutherland,
1985; reviewed in Krebs & Davies, 1978, 1997; Westneat & Fox,
2010).

Another common reason to compare sample variances is as a
diagnostic check for homogeneity of variance, prior to using
ANOVA. Given the importance of the question (‘Do the variances
differ?’), we seek a statistical test that tells us the probability of
detecting the observed signal were the null hypothesis to be true.
This P value is commonly considered ‘significant’ if it lies below the
conventional threshold of 0.05. So a test of variances must, if it is to
be accurate and effective, satisfy two statistical conditions. First, it
should have a low probability of concluding different variances
when in fact the samples are drawn from the same underlying
population. This is the type I (or false positive) error rate, and
conventionally it should be 0.05. Second, the test should have a
high probability of detecting a significant difference when samples
are drawn from populations with genuinely different variances.
This is called statistical ‘power’. Inevitably power decreases with
decreasing difference in variance between the underlying pop-
ulations, such that small differences in population variances can be
hard to detect.

A standard statistical approach, among biologists at least, is to
use the F test to ask whether variance ratios differ significantly from
unity. However, as Van Valen (1978, 2005), Miller (1998) and many
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other statisticians (e.g. Box, 1953) have noted, this is inappropriate.
Unfortunately, biologists have not heeded warnings from statisti-
cians (as we have noted when serving as both editors and referees),
and incorrect testing keeps occurring. As part of the continuing
battle against inappropriate and anticonservative (failure to control
type I error) statistical analyses, we reiterate points raised by Van
Valen (2005) and Miller (1998) by bringing this issue to the
attention of a larger audience. We provide a comparison of statis-
tical tests designed to compare sample variances, and use numer-
ical simulations to demonstrate risks of false positive and false
negative conclusions with increasingly severe deviations from
normality. We focus on absolute variation in continuous variables,
but point readers to Van Valen (1974) for suggestions on discrete
variables.

Denouncement of the F test might seem rather heretical, given
its deep roots in the statistical training of all biologists. The bad
news is that F tests of the equality of variances are highly sensitive
to deviations from normality of the underlying data distributions

(a)

[ Heavy tailed; leptokurtic
[E Normal
B Light tailed; platykurtic

(Fig. 1). Van Valen (2005) linked this sensitivity to violations of the
central limit theorem, but Miller (1998) attributed the problem
more properly to a direct mathematical dependence of the variance
of the sample variance on the kurtosis of the underlying probability
distribution, damped by the sample size. The F test is very insen-
sitive to the data's third moment, skew, but highly sensitive to its
fourth, kurtosis (Miller, 1998; Fig. 1). Kurtosis measures the clus-
tering of data around the mode, relative to variance: leptokurtic
distributions have most data clustered tightly around the mode,
coupled with very extreme values, and are therefore ‘heavy tailed’.
Platykurtic distributions are less clustered around the mode,
coupled with a paucity of extreme values, and are therefore ‘light
tailed’. Heavy-tailed distributions risk very high rates of falsely
positive F tests (i.e. type I error >0.05), while light-tailed distribu-
tions can yield painfully conservative tests (i.e. type I error <0.05).
The good news is that F tests used in standard ANOVA are very
robust to minor deviations from normality, for two reasons. First,
the numerator of ANOVA tests represents variance among means;
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Figure 1. The influence of kurtosis on F test comparisons of sample variances. (a) Probability distribution functions of a population's phenotypic measurement ‘Y’: normal/Gaussian
distribution (green); a heavy-tailed distribution (red; kurtosis parameter & = 0.5) and a light-tailed distribution (blue; d = 100). Each distribution has a mean of 0 and a standard
deviation of 1. From each population we draw two samples of N = 30, mimicking the null hypothesis of no difference in variance. (b—d) Histograms of the samples from each
population, and the results of F tests. In each case, darker bars show where the samples overlap. (b) Two samples drawn from a light-tailed distribution overlap considerably, have
similar variance (the spread of the grey and light blue bars is similar) and yield an F ratio close to 1. (c) Two samples from a normal distribution overlap, but the light green sample
has greater variance (although the P value correctly concludes not significantly so). (d) Two samples from a heavy-tailed population have overlapping means but the light red
sample has a much greater variance (and the P value yields a type I error). These scenarios have been chosen to mirror simulations of type I error rates.
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hence kurtoses of the underlying distributions have been ‘averaged
away'. Second, the denominator of ANOVA tests will (usually) have
large degrees of freedom that dampen the influence of kurtosis.
Perversely though, the use of F tests (and their multisample
extension, Bartlett's test) to check ANOVA's assumption of homo-
geneous variance across treatments, remains highly sensitive to
departures from normality. To quote Zar (1999, page 204), ‘Because
of the poor performance of tests for variance homogeneity .... it is
not recommended that [they] be performed as tests of the under-
lying assumptions of [ANOVA]'.

Defenders of the F test might cite the availability of statistical
tests for the normality of data distributions. However, tests of
normality have low power (they incorrectly fail to reject H, except
at very large sample sizes), and it is particularly hard to detect the
heavy distribution tails that can have so much influence on both the
magnitude of variance and the outcome of any F test. Affirmative
results of normality tests (e.g. nonsignificant goodness-of-fit tests)
should not be used to justify using the F test to compare equality of
variances (Van Valen, 2005). Basically F tests should be avoided,
and since Bartlett's test is a generalization of the F test to k samples,
it should also be avoided or at least used with extreme caution.

A COMPARISON OF VARIANCE COMPARISONS

So, what tests are appropriate to use in tests of equality of
variance? For univariate tests of absolute variation, Van Valen
(2005) recommended three relatively simple and appropriate
tests: jackknifing, Smith's test and Levene's test. Miller (1998) did
not scrutinize Smith's test, but dissected a selection of robust
parametric (including Levene's test and the Box—Anderson test)
and nonparametric options.

Here we compare parametric tests (Levene's, Box—Anderson,
Smith's) and resampling tests (jackknifing), and to the latter
group we append a discussion of bootstrapping and permutation
testing. We do not cover nonparametric tests based on ranked
data and ranked variances because they either require assump-
tions of equal medians, throw away data, are not robust or are
inefficient (Miller, 1998). Each test we consider has strengths and
weaknesses, and they vary in their robustness to the problems
that plague F testing of variance equality. We hope this compar-
ison helps to guide the choice of tests for biologists wishing to
compare sample variances but are suffering from, or simply
worried about, non-normality.

PARAMETRIC TESTS
Levene's Test

The most commonly used and simplest of the univariate equality
of variance tests is Levene's test. For each sample first find the median
(or, if that is not possible, the mean), and then calculate the absolute
deviation of each datum from the median (y; = |x; — median(x)|). This
generates a new variable (y;= deviance), which increases with
increasing variation in the sample. Then calculate the mean and
variance of the deviances among samples, and these can be tested for
equality by t test or an F test. This is very straightforward and has been
implemented as the Levene Test function in the ‘car’ package in R (Fox
& Weisberg, 2011).

Formally, Levene's test is a test of all the even moments of a
distribution rather than just a test of variances, but the test is
dominated by the effect of the variance and is robust in that sense.
It has been recommended that for very long-tailed symmetrical
distributions, the 10% of data in either tail can be removed before

testing. However, Van Valen (2005) suggested that removal of
biologically important data is hardly ever justified for the small
increase in the precision of estimates that this procedure generates.
The test is conservative, but only just so for all but the heaviest-
tailed distributions (type I errors lie below, but not far below, the
critical threshold of 0.05; Fig. 2) and is robust even to extreme
changes in skew and (pertinently, as the next even moment) kur-
tosis. Levene's test ranks among the most powerful of the tests
compared here, at all sample sizes (Figs 3—5).

Box—Anderson Test

Box and Anderson (1955) developed an approximately robust
test, based on permutation theory, which is discussed in Miller's
(1998) review of variance comparisons. The test scales the
numerator and denominator degrees of freedom of the standard F
test, to better match the theoretical variances under the normal
distribution and those under the permutation distribution. The
significance of the F ratio should be judged based on degrees of

df1=d(N; —1) and df2=d(N,—1)
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In R, this significance can be queried using pf(statistic, df1, df2).
This test satisfies type I error rates of 0.05 for all but the most
extreme heavy-tailed distributions, for which it is anticonservative
(Fig. 2). It ranks among the most powerful tests of equality of
variance (Figs 3—5).

freedom where

Smith's Test

Smith's test is general, but rarely used even though it is robust
and normality is not required (Van Valen, 2005; apparently pub-
lished only in Griineberg et al., 1966). It is also the only univariate
test that can be used to compare published summaries of variation.

With a sample size of N, the variance of the sample variance is
given as the square of the standard error of the variance:

N

—\4 N;—-3
, Bont-g0)
s% =

i (N; = 2)(N; - 3)

For k samples, the following statistic is approximately x>-
distributed with k-1 degrees of freedom:
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and the significance of this statistic can be assessed using tables of
significance or by querying the cumulative distribution function
(e.g. using pchisq(statistic, df) in software R; R Core Team, 2016).
Our simulations show that Smith's test is hardly affected by even
the most extreme skews and kurtoses, but is extremely conserva-
tive, delivering type I error (rejection of a true null: a false positive)
rates consistently and dramatically less than 5% (i.e. type I errors lie
well below the critical threshold of 0.05; Fig. 2). It is not commonly
used in any of the empirical sciences, and this super-conservatism
also yields low power to detect real differences (Figs 3—5; spec-
tacularly low power with sample size N = 10), which will probably
not improve its popularity.
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Figure 2. Rates of false positive conclusions from tests of the equality of variance of samples with N =30, drawn from two populations. (a) F test, (b) Levene's test, (c)
Box—Anderson test, (d) Smith's test, (e) jackknife, (f) permutation test. Type I error rates are simulated from identical background populations of the sinh-arcsinh family with mean
0, standard deviation 1 and kurtosis (on the x-axis) defined by the delta parameter (small values = heavy tailed; 1 = normal; large values = light tailed). Line shadings represent
different skews, described by the epsilon parameter: black = symmetrical (epsilon = 1); mid-grey = moderate skew (epsilon = 0.5); light grey = heavy skew (epsilon = 1.5). Dashed
vertical lines mark a symmetrical (normal) distribution (kurtosis = 1); dashed horizontal lines mark an error rate of 0.05 which is our convention for accepted likelihood of falsely

rejecting null (P = 0.05). Well-behaved tests converge on a type I error rate of 0.05.
RESAMPLING TESTS

The Bootstrap

One method often used in testing equality of variances is the
bootstrap (random sampling with replacement). This is one of a
family of randomization techniques that has become commonplace
with the advent of the desktop computer. However, some bootstrap
methods are poor, nonrobust performers (Hall & Wilson, 1991) and
generally, for very heavy-tailed distributions, the technique is
prone to providing incorrect but increasingly well-supported re-
sults as sample size increases (Wu, 1988).

The Jackknife

Jackknifing is another randomization technique and is now
fairly standard. It requires reasonable sample sizes (>20) and

involves dropping one datum at a time and calculating a variance
for each group to be tested and for the total variance, until each
datum has been dropped in turn. The variance of the variances can
then be calculated and since these are distributed as t with N-1
degrees of freedom, they can be compared with t or F tests. The
jackknife is robust to skew and to all but the most extreme kurtoses
(Fig. 2), is conservative, but more so than Levene's test (i.e. the type
1 error surface is below 0.05). It is relatively powerful at reasonable
sample sizes (Figs 3 and 5) but, being based on subsamples of the
data, suffers low power at small sample sizes (Fig. 4). However, it is
the only test that can provide confidence intervals on variance es-
timates (also see Bissell & Ferguson, 1975).

Permutation Tests

The final test we consider here, data permutation, is completely
data driven, relying entirely on the sample data to consider the
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Figure 3. Simulations to determine the power (ability to detect real signal at significance threshold = 0.05) of tests that compare sample variances. (a) F test, (b) Levene's test, (c)
Box—Anderson test, (d) Smith's test, (e) jackknife, (f) permutation test. Samples drawn with N = 30 from underlying populations following sinh-arcsinh probability distributions,
with mean 0, skew parameter 0 and sharing different values of kurtosis parameter delta. For each test, the x-axis changes the variance ratio of the two underlying populations, from
1 to 5. Dashed line shows the threshold type I error rate, which should ideally equal 0.05 for variance ratio = 1 and should be recreated by ‘power’ simulations at this variance ratio.
Line shadings: black = normal (delta = 1); mid-grey = moderately heavy tailed (delta = 0.75); light grey = heavy tailed (delta = 0.5). The ‘apparent’ high power of the F test for
variance ratios close to 1 is in fact due to type I error (see Fig. 2). Power trajectories converge to a maximum of 1 with increasing variance ratio.

evidence for or against differences in variance between the two
underlying populations. In other words, it requires no distribu-
tional assumptions for the test statistic and therefore loses power
dramatically at small sample sizes. Data from the two samples are
shuffled (sampled without replacement) between two fake sam-
ples, and the variance ratio is calculated. This is repeated many
times (here, 10K) to create an empirical distribution of variance
ratios under the null hypothesis of no difference. The observed
variance ratio of the real samples is compared to this null distri-
bution, and significant differences are inferred when this obser-
vation lies in the lower or upper 2.5% of the distribution of
outcomes. This test therefore uses the variance ratio, which might
be called F, but it is not an F test. Permutation tests are computa-
tionally expensive, but for most real-world examples the power of
the modern personal computer is more than sufficient. See
Rodriguez-Munoz, Bretman, Slate, Walling, and Tregenza (2010) for
an application to sex differences in reproductive variance in a wild

insect. The permutation test is robust to skew and kurtosis and,
perhaps self-evidently, provides type I error rates of 0.05 or below
(Fig. 2). It is powerful at reasonable sample sizes (Figs 3 and 5) but,
being based on data shuffles, suffers low power at small sample
sizes (Fig. 4). We note, however, that the permutation approach is
more powerful than the jackknife at small sample sizes (Fig. 4).

COMPARISON OF FALSE POSITIVES AND POWER
Simulations of Type I Error (False Positive) Rates

For each test described here, including the F test of sample
variances, we asked, ‘how often would we mistakenly conclude
different variances when in fact the samples are drawn from the
same underlying population?’ This is the risk of false positive
outcome, or the type I error rate [i.e. Pr(reject Ho|Ho True)]. We
simulated populations of 10K measurements drawn from adapted
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Figure 4. Simulations to determine the power (ability to detect real signal at significance threshold = 0.05) of tests that compare small-sample variances. (a) F test, (b) Levene's test,
(c) Box—Anderson test, (d) Smith's test, (e) jackknife, (f) permutation test. Samples drawn as in Fig. 3 but with N = 10. Power trajectories fail to converge to 1, across the selected

range of variance ratios, because of small sample size.

normal distributions. We used the sinh-arcsinh family of distribu-
tions (Jones & Pewsey, 2009) for which skew is manipulated using
shape parameter ¢ (positive values yield long tails above the mode,
while negative values yield long tails below the mode), and kurtosis
using shape parameter 9 (increasing values move from leptokurtic
(data clustered around the mode, but heavy tailed) to platykurtic
(data spread around the mode, but light tailed) distributions, rec-
reating the normal distribution at 3 = 1). We simulated populations
factorially across a range of skews and kurtoses, and scaled all
populations to have zero mean and unit standard deviation.

y~N(,1)

y = sinh((%) (arcsinh(y) + e))
.Y by

y = ay

here, y is a sample from the standard normal distribution, y* is its
sinh-arcsinh transformation and y** scales the transformed distri-
bution back to zero mean and unit variance.

For each assessment of type I errors, we drew two samples (each
with N =30) from the simulated population y**, compared vari-
ances, stored the P value of the test, and repeated 10K times. For
each simulated population and each test, the type 1 error rate is the
proportion of tests deemed significant at a threshold a = 0.05. The
relative performance of the tests we assess can then be judged by
the type I error rate for an underlying normal distribution (ideal-
ly =0.05, and usefully conservative when <0.05), and by the
sensitivity of this risk of false positives with changes in skew and
kurtosis (Fig. 2). We checked our simulations by confirming that for
each combination of d and e, the average ratio of the variances of
the two samples was one.

Simulations of Power

The second valuable characteristic of a statistical test is its po-
wer, i.e. its ability to detect signal when that signal is real. We only
analysed power of the tests in relation to changes in kurtosis
because all were relatively robust to distributional skew (Fig. 2). For
these simulations we drew two samples of N = 30 from distribu-
tions with mean zero, that shared kurtoses of § = 0.5 (heavy tailed),
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Box—Anderson test, (d) Smith's test, (e) jackknife, (f) permutation test. Samples drawn as in Fig. 3 but with N = 100. Power trajectories converge rapidly to 1 due to large sample sizes.

0.75 (moderately heavy tailed) or 1 (normal), but whose variances
increased in ratio from 1 to 5. Using 10K simulations of each
parameter combination, we measured power as the probability of
detection of these real variance ratios. This is the complement of
the type II error rate (power = 1 — Pr(false negative)). Somewhat
confusingly, tests can provide what appears to be high power when
signal is weak: this is in fact a consequence of high type I error rates
(see the apparent power of the F test in Fig. 3, related to its high
type I error rate in Fig. 2). We therefore require a test that has a type
[ error rate of 0.05 at a variance ratio of 1, but whose ability to detect
genuine signal increases rapidly as the variance ratio moves away
from 1. We repeated these power analyses for small sample sizes
(N =10, Fig. 4) and large sample sizes (N = 100, Fig. 5).

Comparison of False Positives and Power

Our analyses, summarized in Figs 2—5, bring together a set of
considerations of test specificity and sensitivity from the statistical
literature of several decades ago (e.g. Miller, 1968; Shorack, 1969;
reviewed in Van Valen, 1978, 2005; Miller, 1998). Our main point is
that the F test, although apparently powerful to detect real differ-
ences in variance, is indeed highly anticonservative (i.e. type I error

(falsely rejecting Ho) is high) with even small deviations in kurtosis
from the normal distribution, and while less sensitive to skew,
deviations in this moment also reduce the test's usefulness (Fig. 2, F
test). To reiterate and emphasize our starting position, if the
experimenter or analyst is ever in any doubt about the assumption
of normality, the F test should be avoided for the testing of equality
of variances.

The remaining tests have strengths and weaknesses. We suggest
Smith's test is not a viable alternative to the F test because of its
extreme conservatism (i.e. type I error rates are much lower than
0.05). The permutation test is immune to kurtosis and skews when
considering type I errors, but like the jackknife, has low power (fails
to reject H, when Hy is false). This lack of power is further exag-
gerated at small sample sizes, because the tests are driven by the
data themselves and rely on resampling, but the permutation test
trumps the jackknife for power when N = 10 (Fig. 4).

This leaves two rivals for the crown of ‘best test of equality of
variances’: Levene's test and the Box—Anderson test. Levene's test
is favoured by its conservatism at all values of skew and kurtosis.
The Box—Anderson test is the most powerful at all sample sizes, but
only just so, and this power comes at a cost of anticonservatism for
extremely heavy-tailed distributions.
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A final point worthy of note is that power declines with
increasingly heavy-tailed distributions, whatever test is chosen.
Differences in dispersion of heavy-tailed distributions are simply
very hard to detect.

WHO CARES?

We have chosen not to name or shame those who have used the
F test for equality of variances. Many examples of its misuse are
caught in time by referees during peer review. However, errors do
slip through the peer review net, and some of these are recent and
include papers in Animal Behaviour. Examples of misuse fall into
two camps: (1) studies whose hypotheses relate directly to the
comparison of two or more variances; and (2) studies that use F
tests or Bartlett's test to test homogeneity of variance as an
assumption of ANOVA. ‘F test equality of variance’ is difficult to
search for using bibliographic search engines, because of the vast
number of hits for studies using ANOVA or hierarchical variance
partitioning. However, a quick search of Google Scholar using the
keywords ‘variance-ratio Animal Behaviour’ revealed 15 examples
from the first camp within the first few pages, including six from
Animal Behaviour. Most of these examples cite Zar (1999), or
alternative editions of this classic textbook, to justify their choice of
test, despite his repeated warnings about the sensitivity of F tests
and Bartlett's test to non-normality.

Diagnostic tests of homogeneity of variance are even more
prevalent, and raise an interesting slant on our argument. F tests
risk type I errors for heavy-tailed distributions. A significant F test
could therefore reveal either that the variances are not homoge-
neous or that the underlying population distribution is heavy
tailed. On the other hand, a nonsignificant diagnostic F test could
reveal either that the underlying populations have similar variance
and are not heavy tailed or that there is low power to detect either
effect due to small sample size. We recommend much more
stringent approaches to the verification of ANOVA's assumptions.

CONCLUSION

Variation is not just one of the fundamental requirements for
organic evolution, it is a concept that occupies and unifies many
fields of biological investigation. Whether one is interested in viral
gene transcription, behavioral repertoires, reproductive skew or
elephant parasites, comparing variation can be revealing and
important (e.g. Dukas & Real, 1993; Hosken & Blanckenhorn, 1999;
Sutherland, 1985). Unfortunately, biologists often compare homo-
geneity of variances incorrectly. Rather than name and shame here,
we thought it would be more helpful to point out this problem,
reiterating Van Valen's (1978, 2005) previous discourse, alert bi-
ologists to the pitfall and provide simple solutions. Our simulations
of type I error rates associated with various tests confirm the
sensitivity of F test comparisons of variances to deviations from
normality, particularly those associated with heavy-tailed data
distributions. Overall, Levene's test tends to be the best means of
comparing variances. It is robust to deviations from normality, is
conservative but not painfully so and is powerful enough to detect
signal when signal exists. For sufficiently large sample sizes, per-
mutation tests also seem to be robust and relatively powerful. But
whatever you do, when comparing variances, do not use the F test.

Author contributions
DHos conceived the idea; DHos and DHod designed the study;

DHod performed the simulations; DBuss did bibliographic
searches; DHos and DHod wrote the paper. All authors contributed

critically to the drafts, declare no conflict of interest and give final
approval for publication.

Acknowledgments

We thank Van Valen and Miller for their inspirational previous
work on this topic and the referees who helped us clarify the
submission significantly. DHod is supported by NERC standard
grant NE/LO07770/1 and by NERC International Opportunities Fund
NE/N006798/1 and DHos by the Leverhulme Trust (RF-2015-001).

References

Bissell, A. F, & Ferguson, R. A. (1975). The jackknife — toy, tool or two edged
weapon? Statistician, 24, 79—100. https://doi.org/10.2307/2987663.

Box, G. E. P. (1953). Non-normality and tests on variances. Biometrika, 40, 318—335.
https://doi.org/10.1093/biomet/40.3-4.318.

Box, G. E. P, & Anderson, S. L. (1955). Permutation theory in the derivation of robust
criteria and the study of departures from assumption. Journal of the Royal
Statistical Society, Series B, 17, 1-26.

Brown, A. L., & Robinson, B. W. (2016). Variation in behavioral plasticity regulates
consistent individual differences in Enallagama damselfly larvae. Animal
Behaviour, 112, 63—73. https://doi.org/10.1016/j.anbehav.2015.11.018.

Craft, B. B. (2016). Risk sensitive foraging: Changes in choice due to reward quality
and delay. Animal Behaviour, 111, 41-47. https://doi.org/10.1016/
j.anbehav.2015.09.030.

Dukas, R., & Real, L. A. (1993). Effects of nectar variance on learning by bumble bees.
Animal Behaviour, 45, 37—41. https://doi.org/10.1006/anbe.1993.1004.

Fox, J., & Weisberg, S. (2011). An {R} companion to applied regression (2nd ed.).
Thousand Oaks, CA: Sage.

Griineberg, H., Bains, G. S., Berry, R. ], Riles, L., Smith, C. A. B., & Weiss, R. A. (1966).
A search for genetic effects of high natural radioactivity in South India. London,
U.K: Her Majesty's Stationery Office.

Hall, P, & Wilson, S. R. (1991). Two guidelines for bootstrap hypothesis testing.
Biometrics, 47, 451—454. https://doi.org/10.2307/2532163.

Hosken, D. J. (2001). Size and fluctuating asymmetry in sexually selected traits.
Animal Behaviour, 62, 603—605. https://doi.org/10.1006/anbe.2001.1809.

Hosken, D. ]., & Blanckenhorn, W. U. (1999). Female multiple mating, inbreeding
avoidance and fitness: It is not only the magnitude of the costs and benefits that
counts. Behavioral Ecology, 10, 462—464. https://doi.org/10.1093/beheco/
10.4.462.

Jones, M. C, & Pewsey, A. (2009). Sinh-arcsinh distributions. Biometrika, 96,
761-780. https://doi.org/10.1093/biomet/asp053.

Krebs, J. R., & Davies, N. B. (1978). Behavioral ecology: An evolutionary approach.
Oxford, U.K: Blackwells.

Krebs, ]. R., & Davies, N. B. (1997). Behavioral ecology: An evolutionary approach (4th
ed.). Oxford, U.K: Blackwells.

MacLeod, K. J., & Clutton Brock, T. H. (2013). No evidence for adaptive sex ratio
variation in the cooperatively breeding meerkat Suricata suricatta. Animal
Behaviour, 85, 645—653. https://doi.org/10.1016/j.anbehav.2012.12.028.

Miller, R. G., Jr. (1968). Jackknifing variances. Annals of Mathematical Statistics, 39,
567—-582. https://doi.org/10.1214/aoms/1177698418.

Miller, R. G., Jr. (1998). Beyond ANOVA: Basics of applied statistics. Boca Raton, FL:
Chapman & Hall.

R Core Team. (2016). R: A language and environment for statistical computing. Vienna,
Austria: R Foundation for Statistical Computing. https://www.R-project.org/.

Rodriguez-Munoz, R., Bretman, A., Slate, J., Walling, C. A., & Tregenza, T. (2010).
Natural and sexual selection in a wild insect population. Science, 328,
1269—1272. https://doi.org/10.1126/science.1188102.

Shafir, S., Menda, G., & Smith, B. H. (2005). Caste-specific differences in risk
sensitivity in honeybees, Apis mellifera. Animal Behaviour, 69, 859—868. https://
doi.org/10.1016/j.anbehav.2004.07.011.

Shorack, G. R. (1969). Testing and estimating ratios of scale parameters. Journal of
the American Statistical Association, 64, 999—1013. https://doi.org/10.1080/
01621459.1969.10501032.

Sutherland, W. J. (1985). Chance can produce a sex difference in variance in mating
success and explain Bateman's data. Animal Behaviour, 33, 1349—1352. https://
doi.org/10.1016/S0003-3472(85)80197-4.

Van Valen, L. (1974). Multivariate structural statistics in natural history. Journal of
Theoretical Biology, 45, 235—247. https://doi.org/10.1016/0022-5193(74)90053-8.

Van Valen, L. (1978). The statistics of variation. Evolutionary Theory, 4, 33—43.

Van Valen, L. (2005). The statistics of variation. In B. Hallgrimsson, &
B. K. Hall (Eds.), Variation: A central concept in biology (pp. 29—48). Bur-
lington, MA: Elsevier Academic Press. https://doi.org/10.1016/B978-
012088777-4/50005-3.

Westneat, D. F, & Fox, C. W. (2010). Evolutionary behavioral ecology. Oxford, U.K:
Oxford University Press.

Wu, C. F. ]. (1988). Discussion of the papers by Hinkley and DiCiccio and Romano.
Journal of the Royal Statistics Society B, 50, 364—365.

Zar, J. H. (1999). Biostatistical analysis (4th ed.). Upper Saddle River, NJ: Prentice Hall.


https://doi.org/10.2307/2987663
https://doi.org/10.1093/biomet/40.3-4.318
http://refhub.elsevier.com/S0003-3472(17)30416-5/sref3
http://refhub.elsevier.com/S0003-3472(17)30416-5/sref3
http://refhub.elsevier.com/S0003-3472(17)30416-5/sref3
http://refhub.elsevier.com/S0003-3472(17)30416-5/sref3
https://doi.org/10.1016/j.anbehav.2015.11.018
https://doi.org/10.1016/j.anbehav.2015.09.030
https://doi.org/10.1016/j.anbehav.2015.09.030
https://doi.org/10.1006/anbe.1993.1004
http://refhub.elsevier.com/S0003-3472(17)30416-5/sref7
http://refhub.elsevier.com/S0003-3472(17)30416-5/sref7
http://refhub.elsevier.com/S0003-3472(17)30416-5/sref9
http://refhub.elsevier.com/S0003-3472(17)30416-5/sref9
http://refhub.elsevier.com/S0003-3472(17)30416-5/sref9
https://doi.org/10.2307/2532163
https://doi.org/10.1006/anbe.2001.1809
https://doi.org/10.1093/beheco/10.4.462
https://doi.org/10.1093/beheco/10.4.462
https://doi.org/10.1093/biomet/asp053
http://refhub.elsevier.com/S0003-3472(17)30416-5/sref14
http://refhub.elsevier.com/S0003-3472(17)30416-5/sref14
http://refhub.elsevier.com/S0003-3472(17)30416-5/sref15
http://refhub.elsevier.com/S0003-3472(17)30416-5/sref15
https://doi.org/10.1016/j.anbehav.2012.12.028
https://doi.org/10.1214/aoms/1177698418
http://refhub.elsevier.com/S0003-3472(17)30416-5/sref18
http://refhub.elsevier.com/S0003-3472(17)30416-5/sref18
http://refhub.elsevier.com/S0003-3472(17)30416-5/sref18
https://www.R-project.org/
https://doi.org/10.1126/science.1188102
https://doi.org/10.1016/j.anbehav.2004.07.011
https://doi.org/10.1016/j.anbehav.2004.07.011
https://doi.org/10.1080/01621459.1969.10501032
https://doi.org/10.1080/01621459.1969.10501032
https://doi.org/10.1016/S0003-3472(85)80197-4
https://doi.org/10.1016/S0003-3472(85)80197-4
https://doi.org/10.1016/0022-5193(74)90053-8
http://refhub.elsevier.com/S0003-3472(17)30416-5/sref25
http://refhub.elsevier.com/S0003-3472(17)30416-5/sref25
https://doi.org/10.1016/B978-012088777-4/50005-3
https://doi.org/10.1016/B978-012088777-4/50005-3
http://refhub.elsevier.com/S0003-3472(17)30416-5/sref27
http://refhub.elsevier.com/S0003-3472(17)30416-5/sref27
http://refhub.elsevier.com/S0003-3472(17)30416-5/sref28
http://refhub.elsevier.com/S0003-3472(17)30416-5/sref28
http://refhub.elsevier.com/S0003-3472(17)30416-5/sref28
http://refhub.elsevier.com/S0003-3472(17)30416-5/sref29

	Beware the F test (or, how to compare variances)
	A comparison of variance comparisons
	Parametric tests
	Levene's Test
	Box–Anderson Test
	Smith's Test

	Resampling tests
	The Bootstrap
	The Jackknife
	Permutation Tests

	Comparison of false positives and power
	Simulations of Type I Error (False Positive) Rates
	Simulations of Power
	Comparison of False Positives and Power

	Who cares?
	Conclusion
	Author contributions
	Acknowledgments
	References


