import numpy as np import matplotlib.pyplot as plt # normal distribution: x = np.arange( -4.0, 4.0, 0.01 ) g = np.exp(-0.5*x*x)/np.sqrt(2.0*np.pi) r = np.random.randn( 100 ) plt.xkcd() fig = plt.figure( figsize=(6,4) ) ax = fig.add_subplot( 1, 2, 1 ) ax.spines['right'].set_visible(False) ax.spines['top'].set_visible(False) ax.yaxis.set_ticks_position('left') ax.xaxis.set_ticks_position('bottom') ax.set_xlabel( 'x' ) ax.set_ylabel( 'Frequency' ) #ax.set_ylim( 0.0, 0.46 ) #ax.set_yticks( np.arange( 0.0, 0.45, 0.1 ) ) ax.hist(r, 5, color='#CC0000') ax.hist(r, 20, color='#FFCC00') ax = fig.add_subplot( 1, 2, 2 ) ax.spines['right'].set_visible(False) ax.spines['top'].set_visible(False) ax.yaxis.set_ticks_position('left') ax.xaxis.set_ticks_position('bottom') ax.set_xlabel( 'x' ) ax.set_ylabel( 'Probability density p(x)' ) #ax.set_ylim( 0.0, 0.46 ) #ax.set_yticks( np.arange( 0.0, 0.45, 0.1 ) ) ax.hist(r, 5, normed=True, color='#CC0000') ax.hist(r, 20, normed=True, color='#FFCC00') plt.tight_layout() fig.savefig( 'pdfhistogram.pdf' ) plt.show()