import numpy as np import matplotlib.pyplot as plt def hompoisson(rate, trials, duration) : spikes = [] for k in range(trials) : times = [] t = 0.0 while t < duration : t += np.random.exponential(1/rate) times.append( t ) spikes.append( times ) return spikes def inhompoisson(rate, trials, dt) : spikes = [] p = rate*dt for k in range(trials) : x = np.random.rand(len(rate)) times = dt*np.nonzero(x= vthresh : v = vreset times.append(k*dt) spikes.append( times ) return spikes # parameter: rate = 20.0 drate = 50.0 trials = 10 duration = 2.0 dt = 0.001 tau = 0.1; # homogeneous spike trains: homspikes = hompoisson(rate, trials, duration) # OU noise: rng = np.random.RandomState(54637281) time = np.arange(0.0, duration, dt) x = np.zeros(time.shape)+rate n = rng.randn(len(time))*drate*tau/np.sqrt(dt)+rate for k in xrange(1,len(x)) : x[k] = x[k-1] + (n[k]-x[k-1])*dt/tau x[x<0.0] = 0.0 # inhomogeneous spike trains: #inhspikes = inhompoisson(x, trials, dt) # pif spike trains: inhspikes = pifspikes(x, trials, dt, D=0.3) fig = plt.figure( figsize=(9,4) ) ax = fig.add_subplot(1, 2, 1) ax.set_title('stationary') ax.set_xlim(0.0, duration) ax.set_ylim(-0.5, trials-0.5) ax.set_xlabel('Time [s]') ax.set_ylabel('Trials') ax.eventplot(homspikes, colors=[[0, 0, 0]], linelength=0.8) ax = fig.add_subplot(1, 2, 2) ax.set_title('non-stationary') ax.set_xlim(0.0, duration) ax.set_ylim(-0.5, trials-0.5) ax.set_xlabel('Time [s]') ax.set_ylabel('Trials') ax.eventplot(inhspikes, colors=[[0, 0, 0]], linelength=0.8) plt.tight_layout() plt.savefig('rasterexamples.pdf') plt.show()