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2nd idea:  polynomial model (Volterra/
Wiener Kernels)

Taylor series expansion of a function f(x) in n dimensions

const vector matrix 3-tensor
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# pars:

• estimate kernels using moments of spike-triggered stimuli 
• in practice, rarely have enough data to go beyond 2nd order.



Quadratic Model

HW problem:

Show that if:  (Gaussian white noise 
stimuli)

, the spike-triggered covariance

provide a consistent estimators for k1 and K2, respectively.

, the spike-triggered average

and



Test of Quadratic Model
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Test of Quadratic Model
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Why do Volterra/Wiener models perform poorly?

Polynomials do a poor job of representing the 
nonlinearities found in neurons.
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Volterra / Wiener expansion for functionals

i’th order tensor



Summary so far:

• Linear Models,  Volterra/Wiener Kernels:  
       fit a polynomial to E(y|x)

Next Up:

• cascade models (Linear-nonlinear-Poisson)



Spike-triggered ensemble

Stimulus

time

Response

• 9-sample stimulus block



Spike-triggered ensemble (3D stimulus)

• 8 x 8 x 10 stimulus block



2D stimulus (flickering bars)

• 8 x 6 stimulus block
       = 48-dimensional vector



Geometric picture
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General Idea:  
look for ways to capture 
the difference between 
the distribution of 
red dots, P(x,y=spike), 
and blue dots, P(x).

s1

s2

(Bayes’ rule)



Computing the STA

s1

s2

raw stimuli

spiking stimuli



STA corresponds to a “direction” in stimulus space 



Projecting onto the STA



STA response

Projecting onto the STA



Projecting onto an axis orthogonal to the STA



Projecting onto an axis orthogonal to the STA



LNP (Linear-Nonlinear-Poisson)
cascade model 

    Spike 
Responses

Stimuli k f

Characterization Procedure:

1. Identify a single dimension of stimulus space 
that drives the neuron’s response.  (STA)

 2.  Project stimuli onto STA, estimate pdf of 
spiking stimuli, and compute f via Bayes’ rule.



LNP (Linear-Nonlinear-Poisson)
cascade model 

    Spike 
Responses

Stimuli k f

encoding distribution:

parameters:

(Bernoulli)

stimulus filter (“receptive field”)

nonlinearity



Bussgang’s Theorem

If  P(y|x) = f (k ⋅ x), the STA is an unbiased 
estimator for k, if:

 1.  P(x) is spherically symmetric.
 2.  f introduces a change of mean in P(y|x).



Bussgang’s Theorem

Proof Intuition
• For circularly symmetric 
distribution, P(stimulus) on either 
side of k is equal.
• These equal contributions will 
average out, leaving only k

k



Caveat: stimulus choice is important
• STA requires spherical stimulus distribution

Example: 
uniform noise

true



How else can the STA fail?

idea:  look for axes with a change in variance!



Looking for changes in variance

Two facts from linear algebra:
1)  variance always traces out an ellipse
2)  there is a readymade tool for solving this problem 
      (PCA, eigenvector decomposition, Hotelling transform)



Spike-triggered covariance (STC)



Multiple linear filters

Adelson & Bergen 1985



Multiple linear filters



Constructing the 2D nonlinearity



Suppressive interactions

divisive normalization

÷



STC: suppressive axes



STC: suppressive axes



Summary: spike-triggered covariance 
analysis

1.  Compute covariance of spike triggered stimuli

2. Compute eigenvectors/eigenvalues of A

3. Eigenvalues bigger/smaller than 1 indicate stimulus 
axes along which the response is excited/suppressed

4. Construct model of multi-dim nonlinearity f



Examples:

STC applied to neural data



V1 simple cell

• flickering bars (16 bars x 16 time bins)

Rust, Schwartz, Movshon, Simoncelli (Neuron 2005)



V1 simple cell

Rust, Schwartz, Movshon, Simoncelli (Neuron 2005)

• flickering bars (16 bars x 16 time bins)



V1 complex cell, standard model

Adelson & Bergen 1985



V1 complex cell

Rust et al 05



conclusion:

Standard models of neural response may 
underestimate the number of dimensions in 
which neurons compute their responses.



Beyond mean and variance: other techniques for 
finding stimulus features that affect response 

Information-theoretic approach: Search for axis 
maximizing the diff. between the two distributions

maximize
k

rate = 



Beyond mean and variance: other techniques for 
finding stimulus features that affect response 

• Paninski ‘03
• Sharpee, Rust & Bialek ‘03

• computationally intensive, but 
• doesn’t require spherical symmetry

Information-theoretic approach: Search for axis 
maximizing the diff. between the two distributions



Summary (last 2 lectures):

1. Neural encoding problem:  P(y|x)
2. Classical approach: parametric stimuli 
3. Wiener Kernels: polynomial models 
4. Linear-Nonlinear-Poisson cascade models:          

fit using dimensionality-reduction techniques 
(STA, STC)



Open problems:

1. Better models of the nonlinearity.
2. Characterizing neurons deeper in sensory 

processing pathway
3. Incorporating adaptative effects


