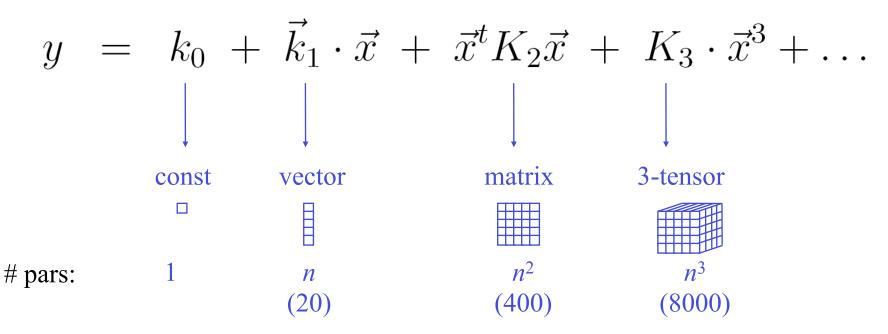
Spike-triggered Average, Spike-triggered Covariance, LNP models

Jonathan Pillow

Methods in Computational Neuroscience (NEU 394P, PSY 394U) Spring 2010

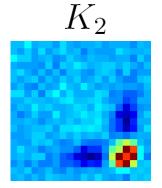
2nd idea: polynomial model (Volterra/ Wiener Kernels)

Taylor series expansion of a function f(x) in *n* dimensions



- estimate kernels using moments of spike-triggered stimuli
- in practice, rarely have enough data to go beyond 2nd order.

Quadratic Model $y = k_0 + \vec{k}_1 \cdot \vec{x} + \vec{x}^t K_2 \vec{x}$



 k_1

HW problem:

Show that if: $x \sim \mathcal{N}(0, I)$ (Gaussian white noise stimuli)

 $\frac{1}{n_{sp}} \sum_{i=1}^{N} y_i x_i$, the spike-triggered average

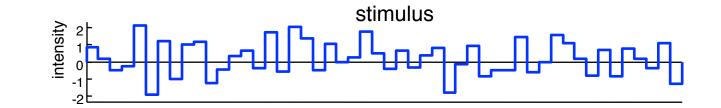
and

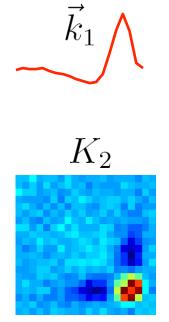
 $\frac{1}{n_{sp}} \sum_{i=1}^{N} y_i(x_i x_i^T) \quad \text{, the spike-triggered covariance}$

provide a consistent estimators for k_1 and K_{2} , respectively.

Test of Quadratic Model

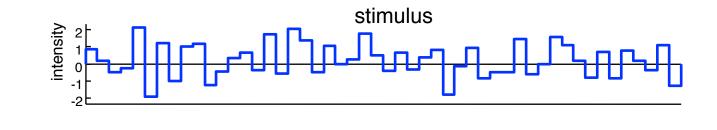
$$y = k_0 + \vec{k}_1 \cdot \vec{x} + \vec{x}^t K_2 \vec{x}$$

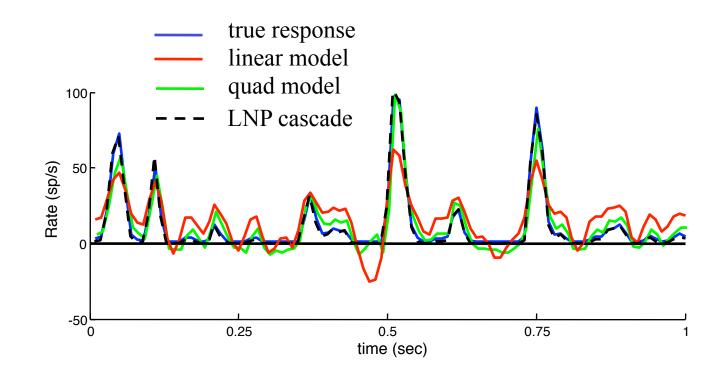


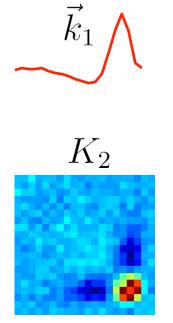


Test of Quadratic Model

$$y = k_0 + \vec{k}_1 \cdot \vec{x} + \vec{x}^t K_2 \vec{x}$$

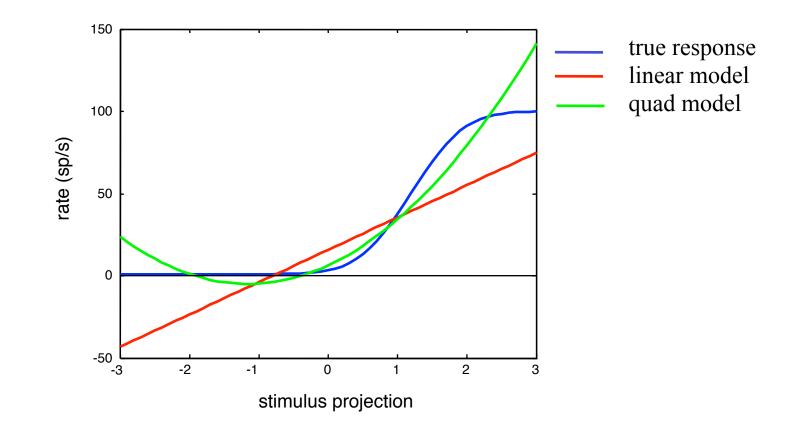






Why do Volterra/Wiener models perform poorly?

Polynomials do a poor job of representing the nonlinearities found in neurons.



Volterra / Wiener expansion for functionals

$$f(t) = \sum_{i} K_{i} \otimes x_{t}^{(i)}$$

$$K_i \otimes x_t^{(i)} = \sum_{j_1, \dots, j_i} K(j_1, \dots, j_i) \cdot \left(x(t - j_1) \cdot \dots \cdot x(t - j_i) \right)$$

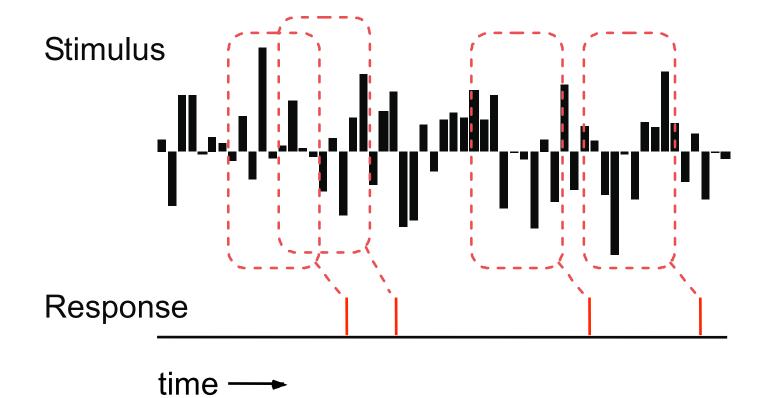
Summary so far:

Linear Models, Volterra/Wiener Kernels:
 fit a polynomial to E(y|x)

Next Up:

• cascade models (Linear-nonlinear-Poisson)

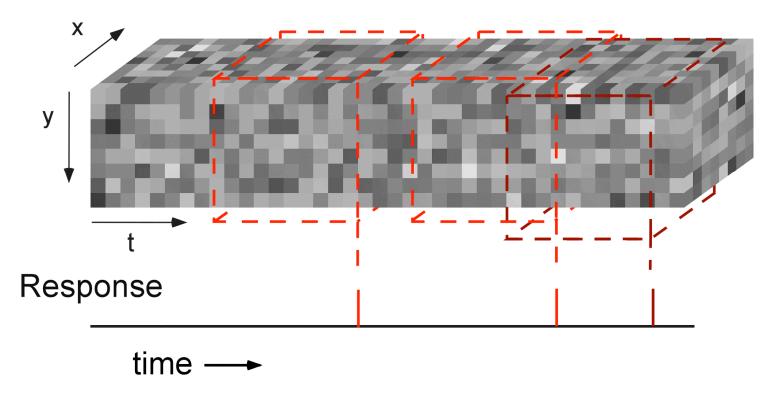
Spike-triggered ensemble



• 9-sample stimulus block

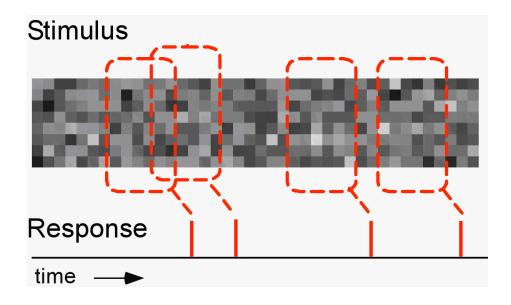
Spike-triggered ensemble (3D stimulus)

Stimulus

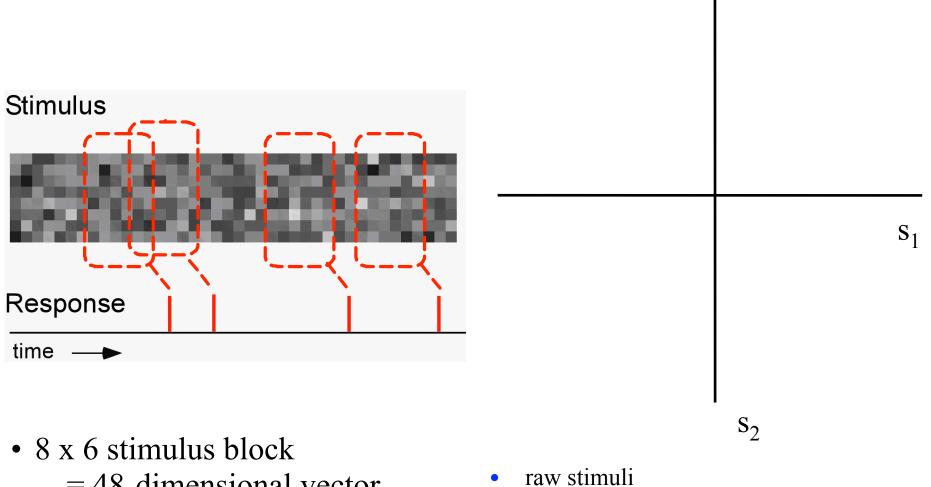


• 8 x 8 x 10 stimulus block

2D stimulus (flickering bars)

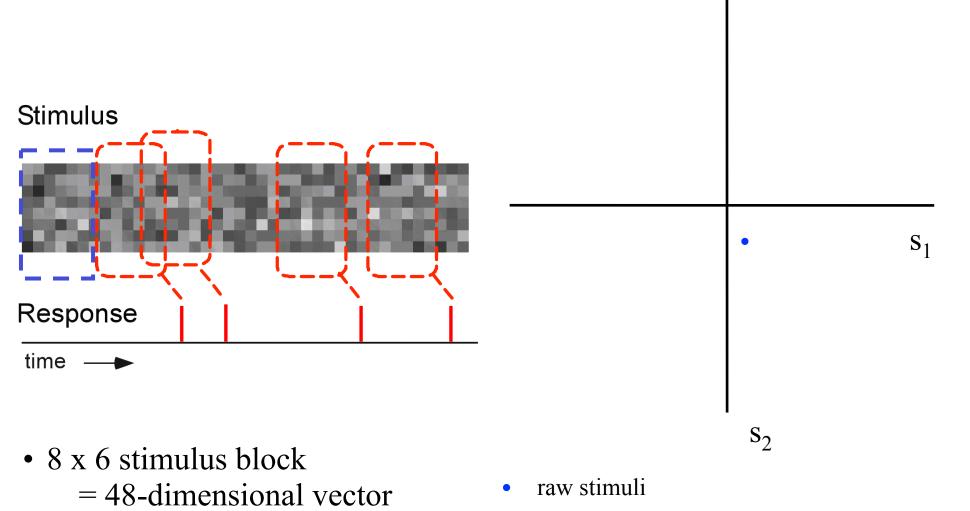


• 8 x 6 stimulus block = 48-dimensional vector

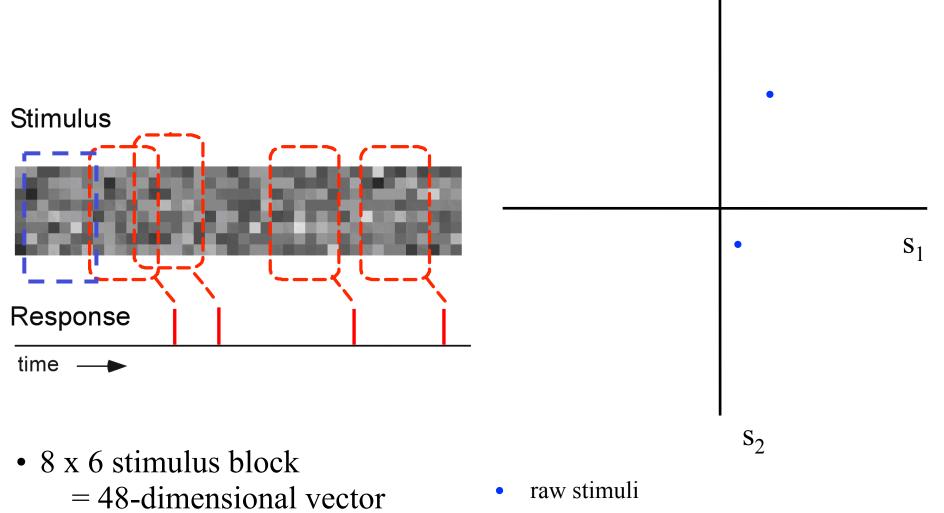


= 48-dimensional vector

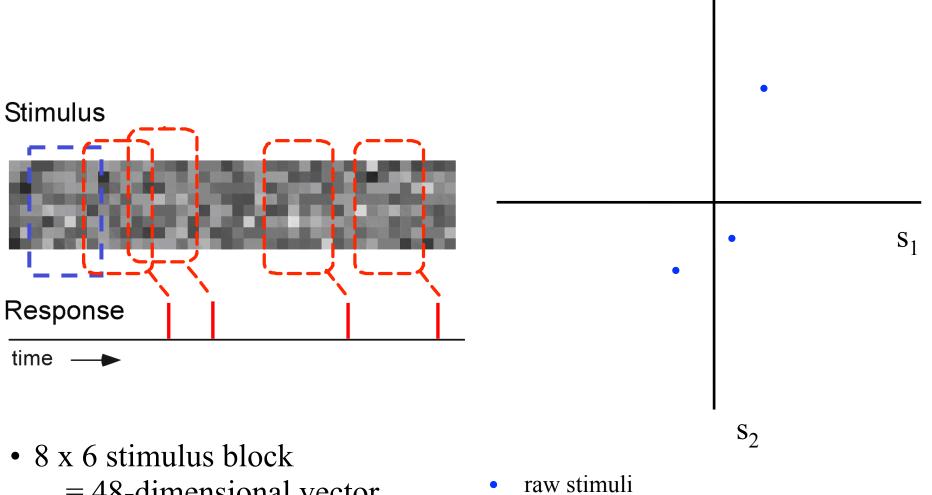
spiking stimuli



• spiking stimuli

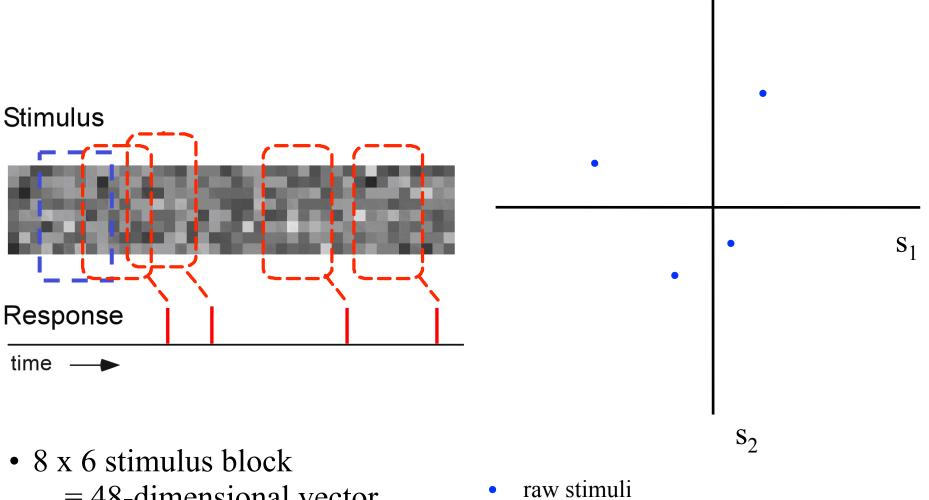


• spiking stimuli



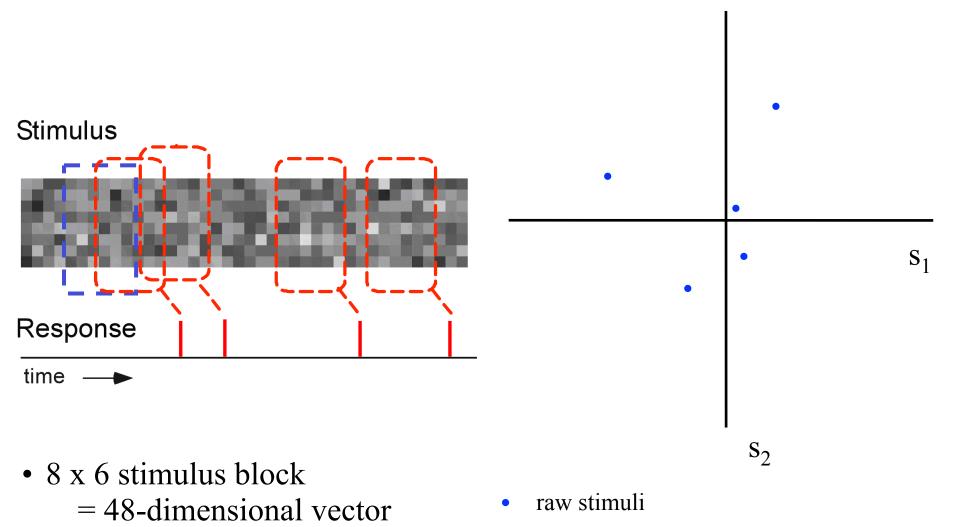
= 48-dimensional vector

spiking stimuli

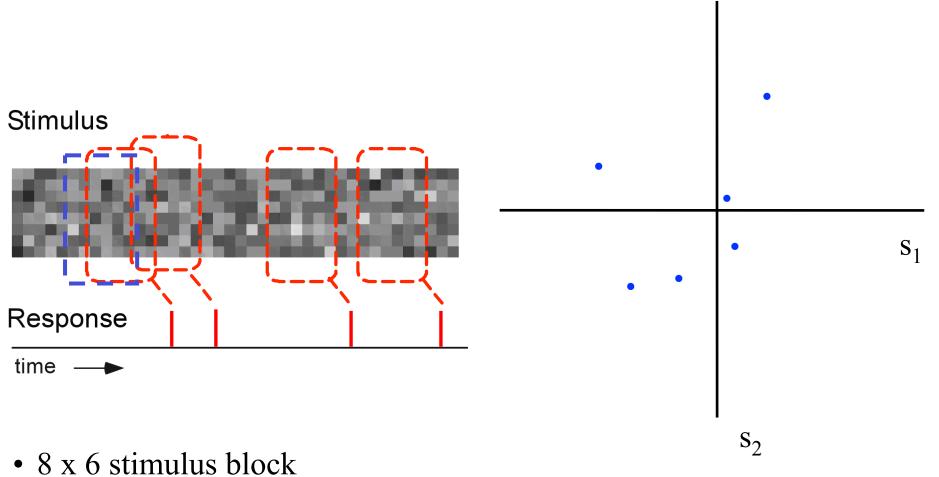


= 48-dimensional vector

spiking stimuli

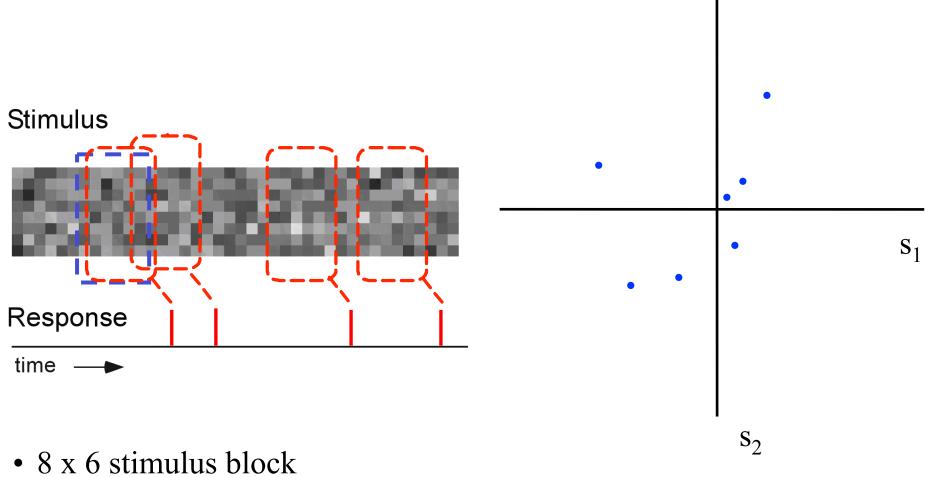


• spiking stimuli



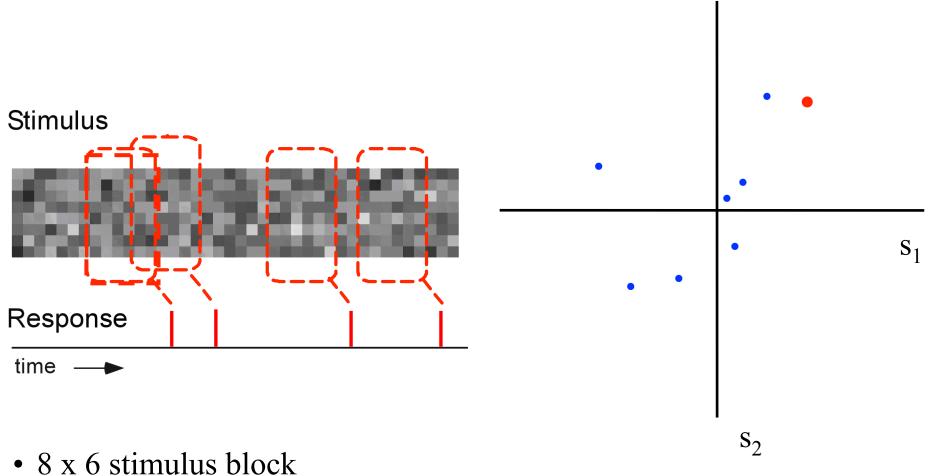
= 48-dimensional vector

- raw stimuli
- spiking stimuli



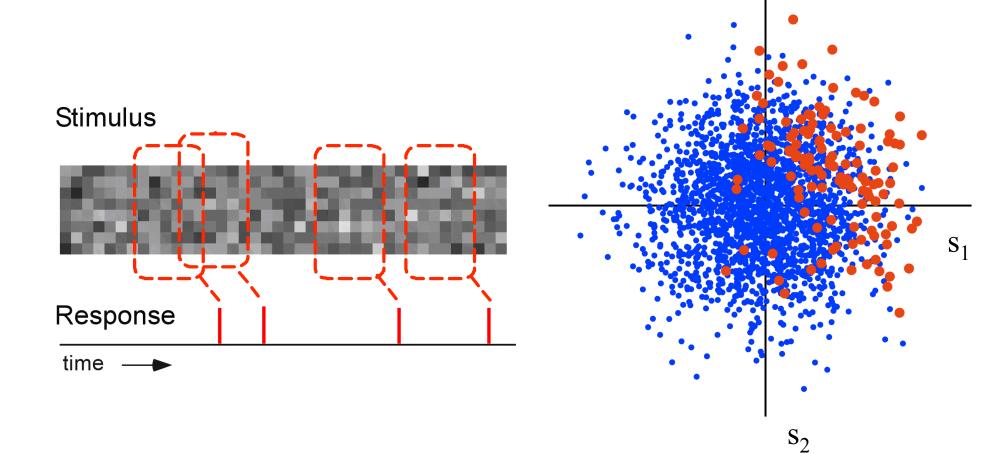
= 48-dimensional vector

- raw stimuli
- spiking stimuli

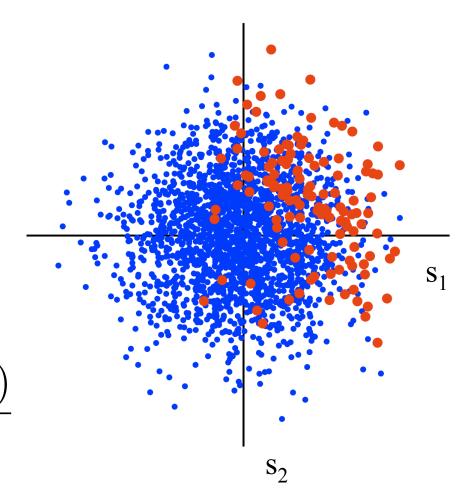


= 48-dimensional vector

- raw stimuli
- spiking stimuli

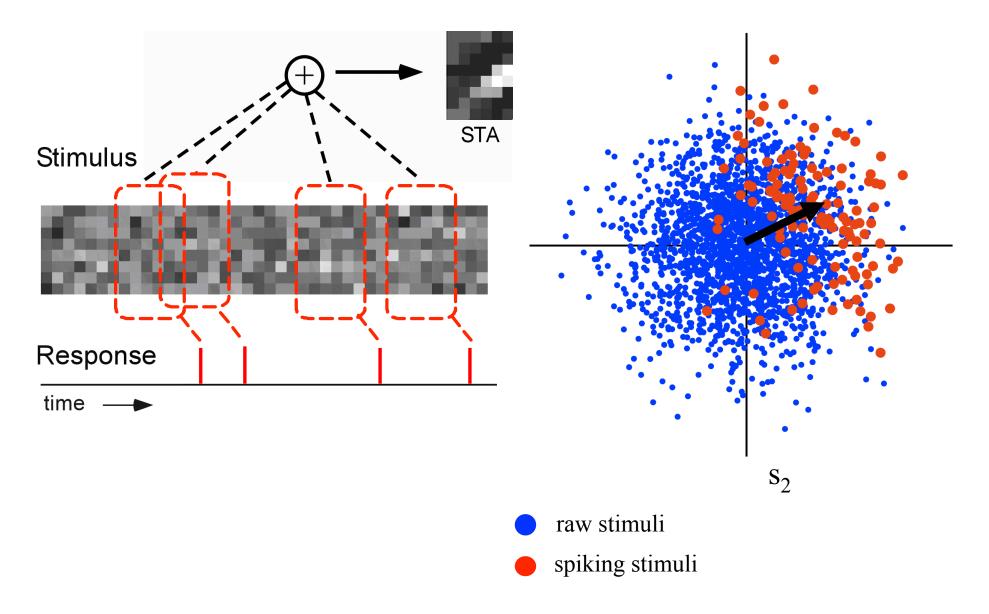


<u>General Idea:</u> look for ways to capture the difference between the distribution of red dots, P(x,y=spike), and blue dots, P(x).

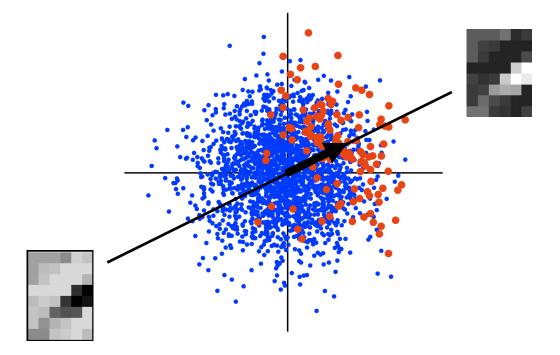


$$P(\text{spike}|x) = \frac{P(x, \text{spike})}{P(x)}$$
(Bayes' rule)

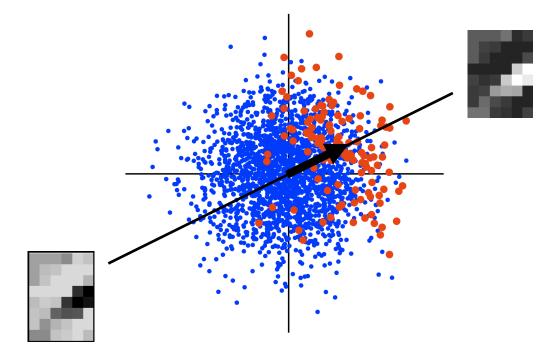
Computing the STA



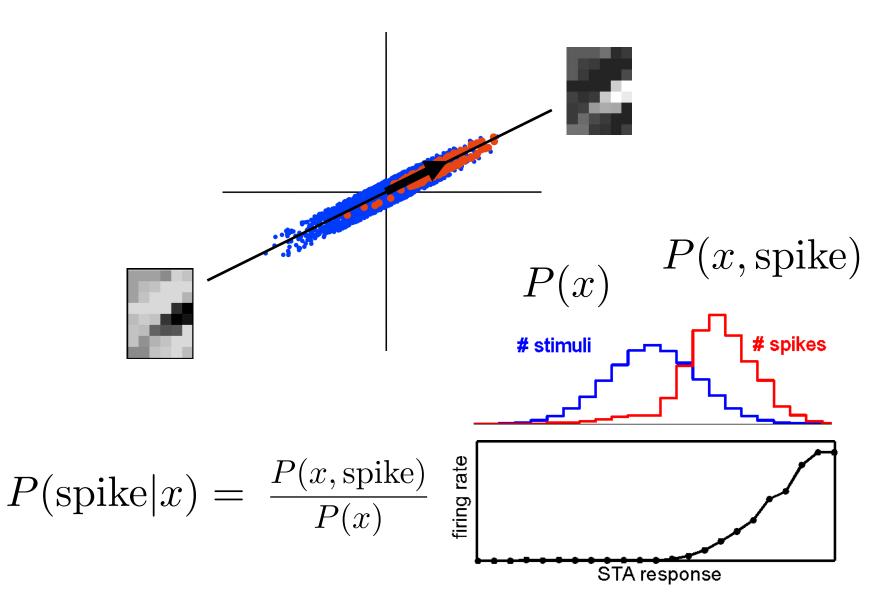
STA corresponds to a "direction" in stimulus space

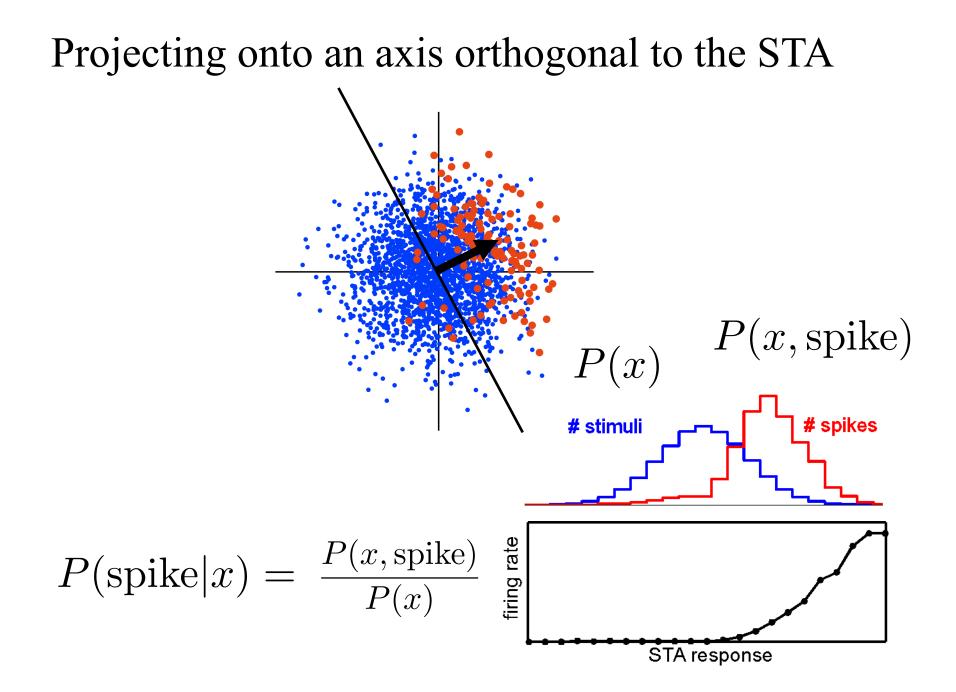


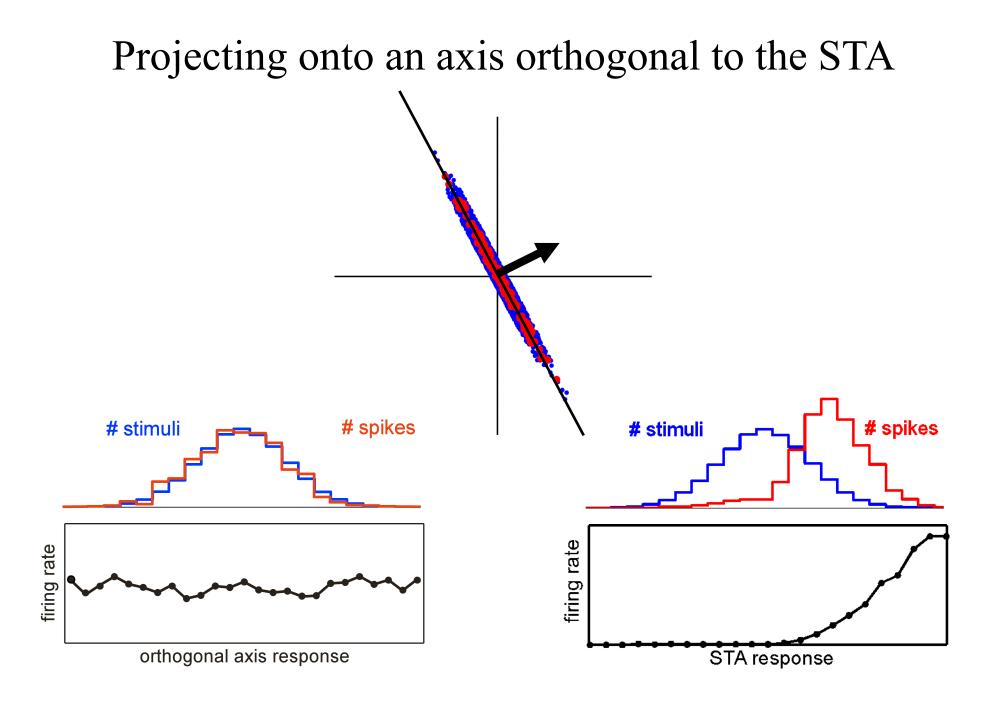
Projecting onto the STA



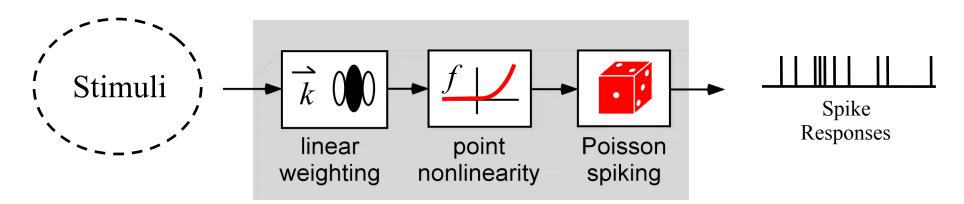
Projecting onto the STA







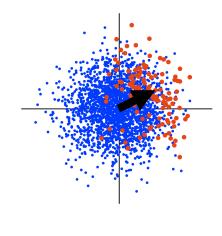
LNP (Linear-Nonlinear-Poisson) cascade model

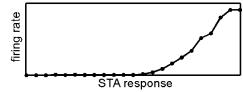


Characterization Procedure:

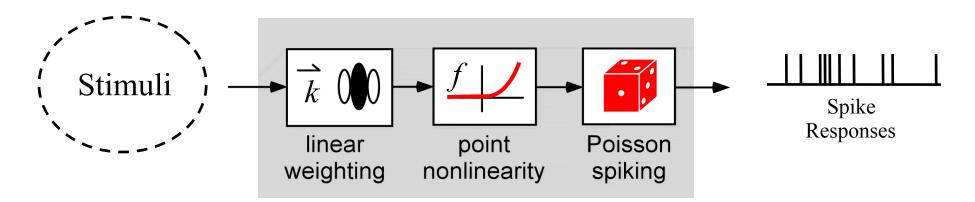
1. Identify a single dimension of stimulus space that drives the neuron's response. (STA)

2. Project stimuli onto STA, estimate pdf of spiking stimuli, and compute *f* via Bayes' rule.





LNP (Linear-Nonlinear-Poisson) cascade model



encoding distribution: (Bernoulli)

$$P(\text{spike}|\vec{x}_t) = f(\vec{k} \cdot \vec{x}_t)$$

parameters:
$$\vec{k}$$

stimulus filter ("receptive field") nonlinearity

Bussgang's Theorem

If $P(y|x) = f(k \cdot x)$, the STA is an unbiased estimator for *k*, if:

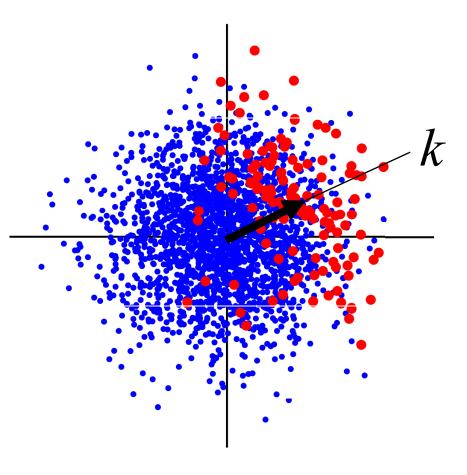
- 1. P(x) is spherically symmetric.
- 2. *f* introduces a change of mean in P(y|x).

Bussgang's Theorem

Proof Intuition

• For circularly symmetric distribution, P(stimulus) on either side of k is equal.

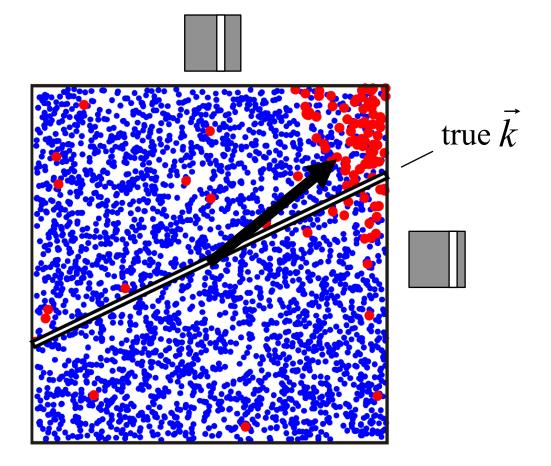
• These equal contributions will average out, leaving only k



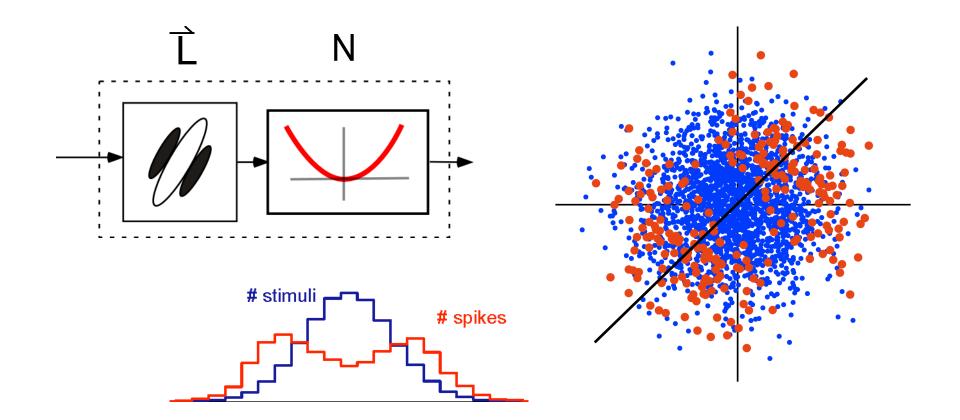
Caveat: stimulus choice is important

• STA requires spherical stimulus distribution

Example: uniform noise

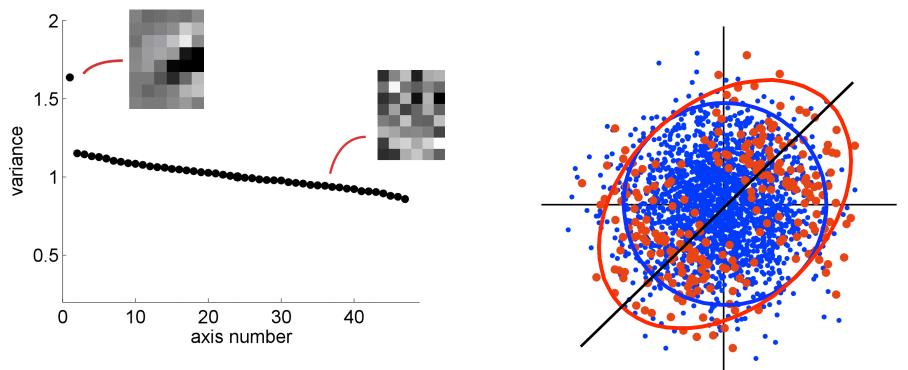


How else can the STA fail?



idea: look for axes with a change in variance!

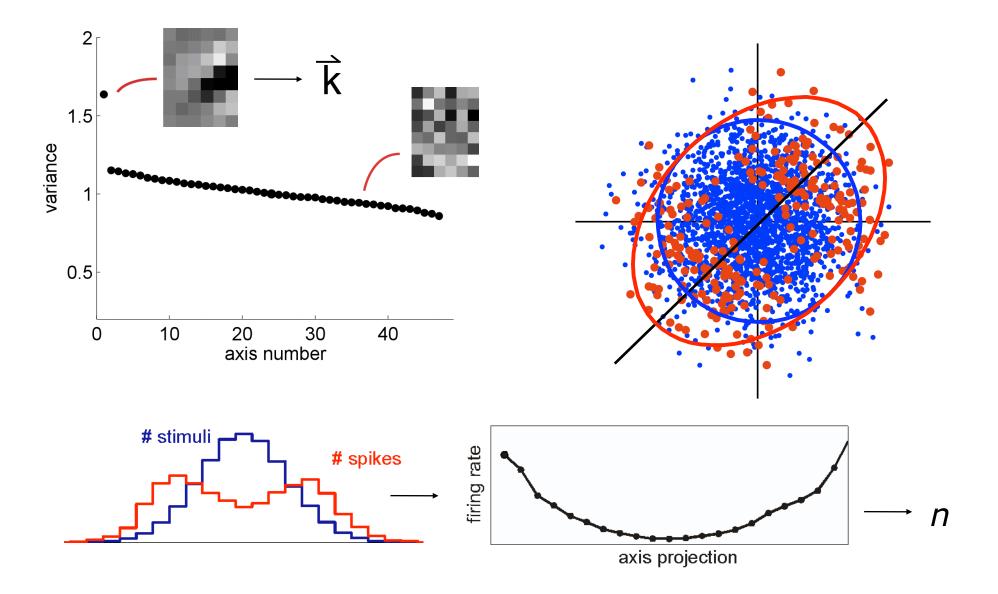
Looking for changes in variance



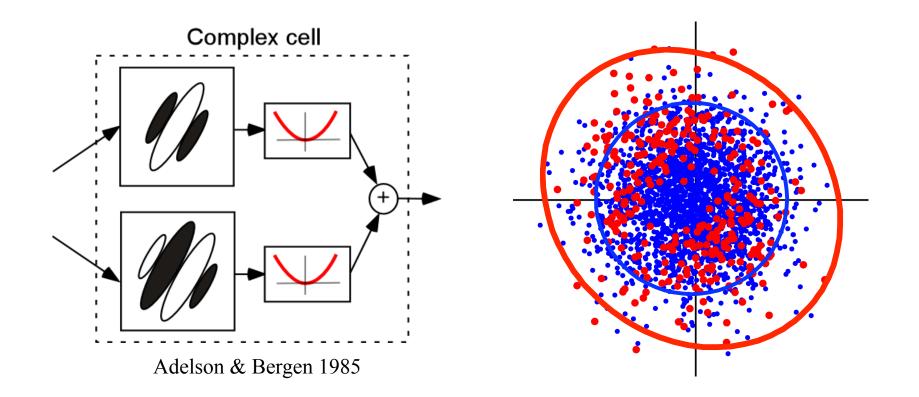
Two facts from linear algebra:

- 1) variance always traces out an ellipse
- 2) there is a readymade tool for solving this problem (PCA, eigenvector decomposition, Hotelling transform)

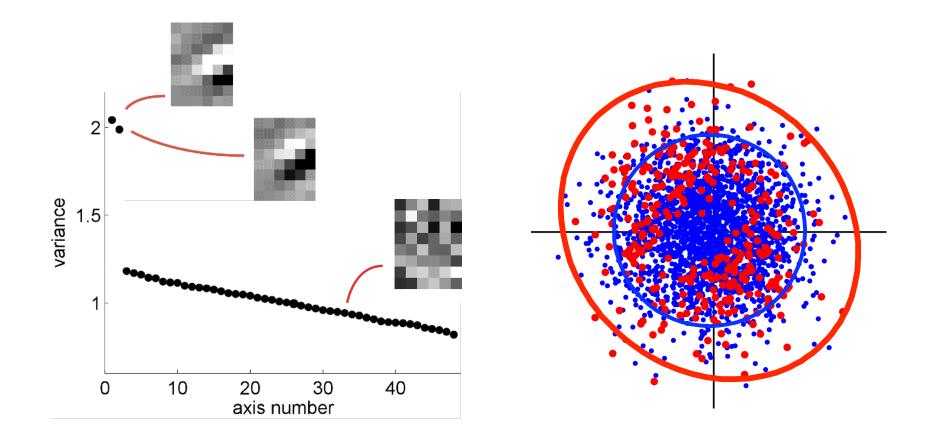
Spike-triggered covariance (STC)

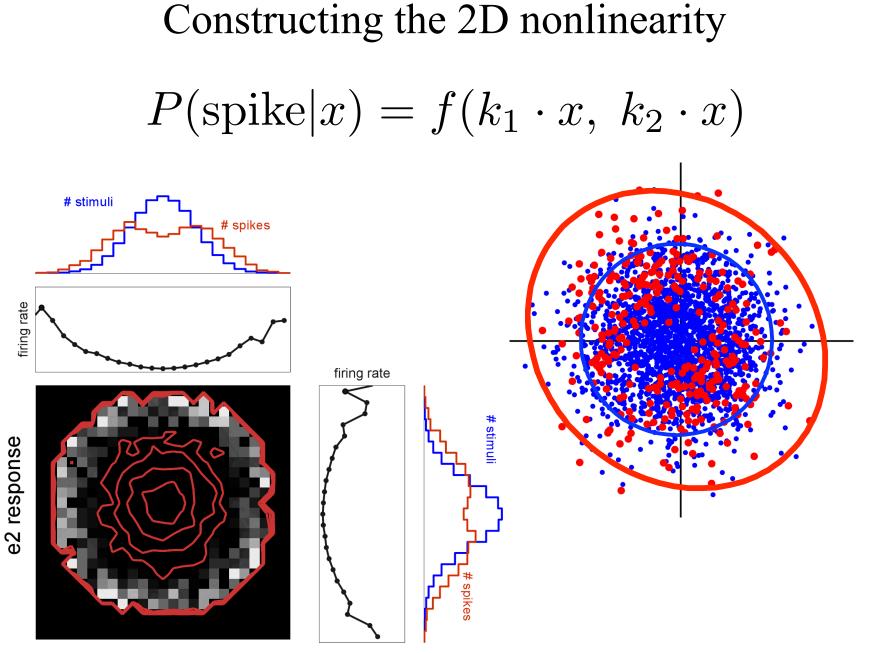


Multiple linear filters



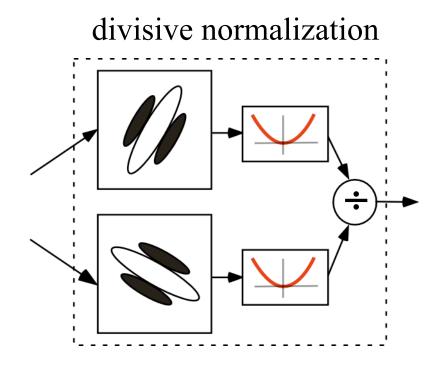
Multiple linear filters

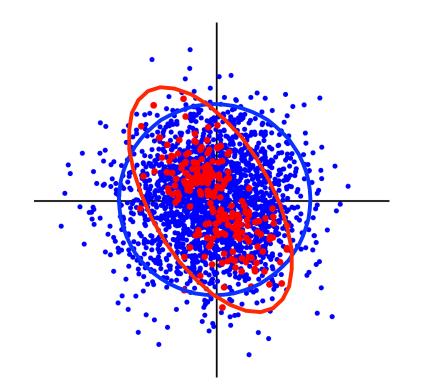




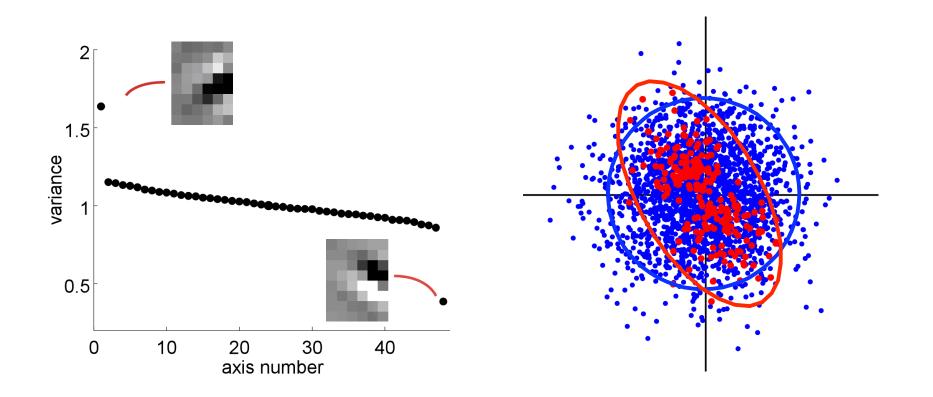
e1 response

Suppressive interactions

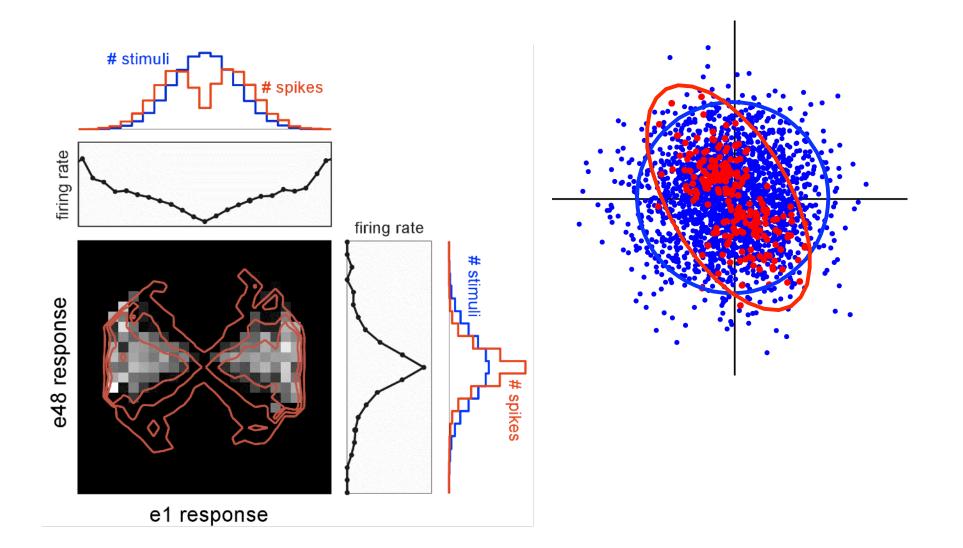




STC: suppressive axes



STC: suppressive axes



Summary: spike-triggered covariance analysis

1. Compute covariance of spike triggered stimuli

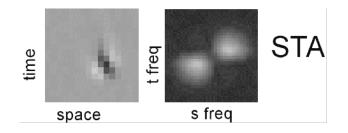
$$A = \frac{1}{n} \sum x_i x_i^T$$

- 2. Compute eigenvectors/eigenvalues of A
- 3. Eigenvalues bigger/smaller than 1 indicate stimulus axes along which the response is excited/suppressed
- 4. Construct model of multi-dim nonlinearity f

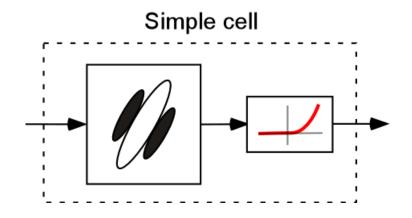
Examples:

STC applied to neural data

V1 simple cell

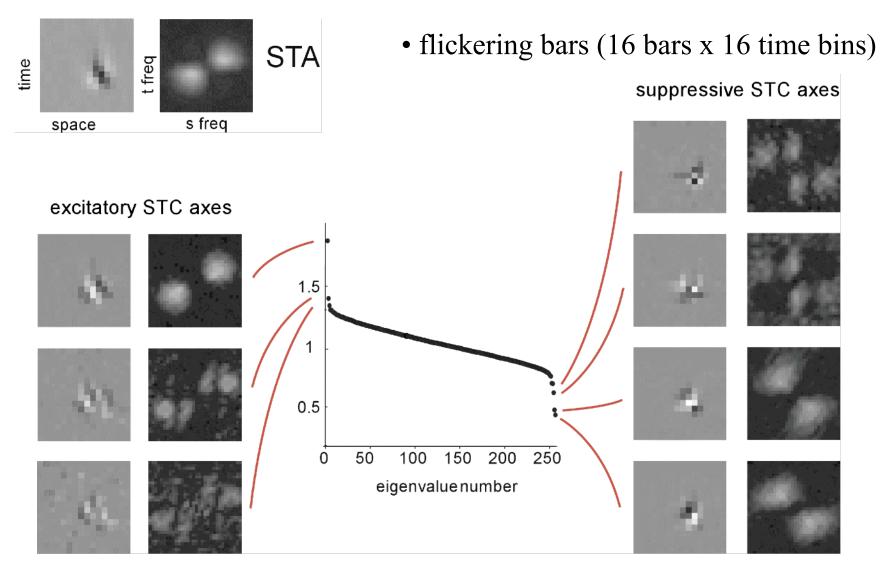


• flickering bars (16 bars x 16 time bins)



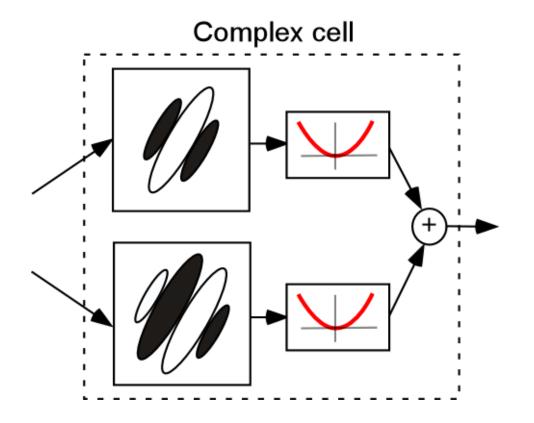
Rust, Schwartz, Movshon, Simoncelli (Neuron 2005)

V1 simple cell



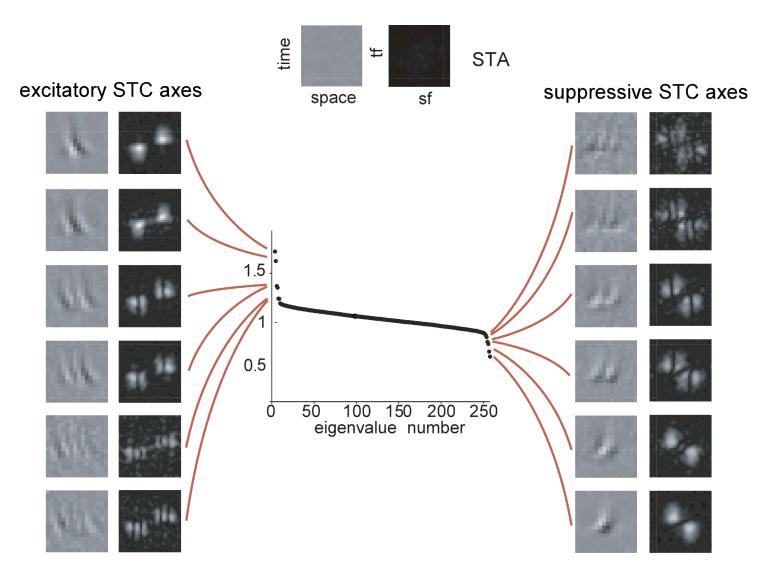
Rust, Schwartz, Movshon, Simoncelli (Neuron 2005)

V1 complex cell, standard model



Adelson & Bergen 1985

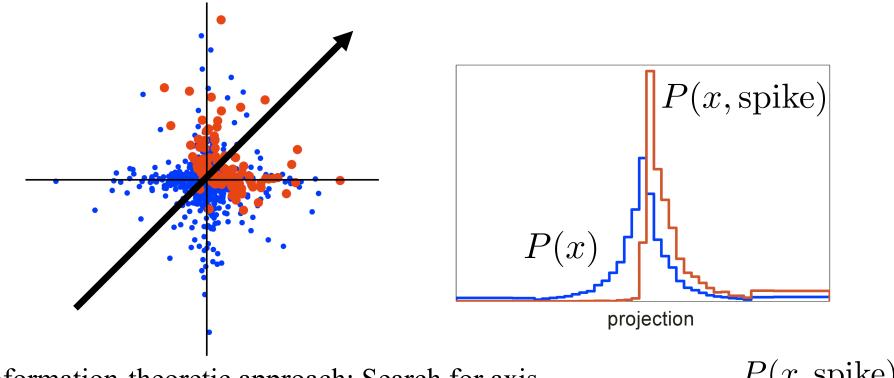
V1 complex cell



Rust et al 05

conclusion:

Standard models of neural response may underestimate the number of dimensions in which neurons compute their responses. Beyond mean and variance: other techniques for finding stimulus features that affect response

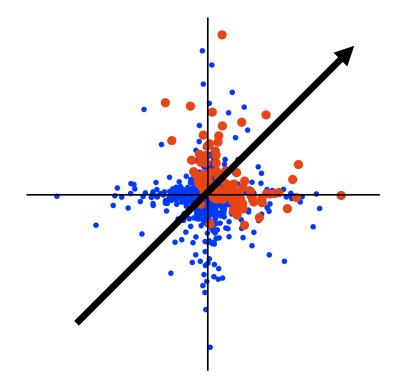


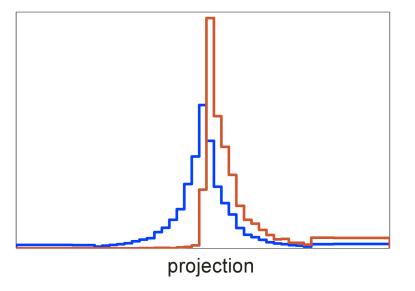
<u>Information-theoretic approach</u>: Search for axis maximizing the diff. between the two distributions

rate = $\frac{P(x, \text{spike})}{P(x)}$

maximize $KL[P(k \cdot x, spike) | P(k \cdot x)]$

Beyond mean and variance: other techniques for finding stimulus features that affect response





<u>Information-theoretic approach</u>: Search for axis maximizing the diff. between the two distributions

- computationally intensive, but
- doesn't require spherical symmetry

- Paninski '03
- Sharpee, Rust & Bialek '03

Summary (last 2 lectures):

- 1. Neural encoding problem: P(y|x)
- 2. Classical approach: parametric stimuli
- 3. Wiener Kernels: polynomial models
- Linear-Nonlinear-Poisson cascade models: fit using dimensionality-reduction techniques (STA, STC)

Open problems:

- 1. Better models of the nonlinearity.
- 2. Characterizing neurons deeper in sensory processing pathway
- 3. Incorporating adaptative effects