%% (a) generate data: n = 200; mx = -40.0; my = -40.5; x = randn(n, 1) + mx; y = randn(n, 1) + my; %% (b) plot histograms: subplot(1, 2, 1); bmin = min([x; y]); bmax = max([x; y]); bins = bmin:(bmax-bmin)/20.0:bmax; hist(x, bins, 'facecolor', 'b'); hold on hist(y, bins, 'facecolor', 'r'); xlabel('x and y') ylabel('counts') hold off % permutation test: [md, ds, dq] = meandiffpermutation(x, y, nperm, alpha); %% (c) difference of means: fprintf('difference of means = %.2fmV\n', md); %% (f) pdf of the differences: [h, b] = hist(ds, 20); h = h/sum(h)/(b(2)-b(1)); % normalization %% (g) significance: fprintf('difference of means at 5%% significance = %.2fmV\n', dq); if md >= dq fprintf('--> difference of means %.2fmV is significant\n', md); else fprintf('--> %.2fmV is not a significant difference of means\n', md); end %% plot: subplot(1, 2, 2) bar(b, h, 'facecolor', 'b'); hold on; bar(b(b>=dq), h(b>=dq), 'facecolor', 'r'); plot([md md], [0 4], 'r', 'linewidth', 2); xlabel('Difference of means'); ylabel('Probability density of H0'); hold off; savefigpdf(gcf, 'meandiffsignificance.pdf', 12, 6);