n = 40; xmin = 2.2; xmax = 3.9; c = 6.0; noise = 50.0; % generate data: x = rand(n, 1) * (xmax-xmin) + xmin; yest = c * x.^3; y = yest + noise*randn(n, 1); % compute mean squared error: mse = mean((y - y_est).^2); fprintf('the mean squared error is %g kg^2\n', mse))