import numpy as np import matplotlib.pyplot as plt # normal distribution: rng = np.random.RandomState(6281) x = np.arange( -4.0, 4.0, 0.01 ) g = np.exp(-0.5*x*x)/np.sqrt(2.0*np.pi) r = rng.randn(100) def kerneldensity(data, xmin, xmax, sigma=1.0) : dx = 0.05*sigma xg = np.arange(-4.0*sigma, 4.0*sigma + 0.5*dx, dx) gauss = np.exp(-0.5*xg*xg/sigma/sigma)/np.sqrt(2.0*np.pi)/sigma ng = len(gauss)//2 x = np.arange(xmin, xmax+0.5*dx, dx) kd = np.zeros(len(x)) for xd in data: inx = int((xd-xmin)/dx) k0 = inx-ng k1 = inx+ng+1 g0 = 0 g1 = len(gauss) if inx < ng: k0 = 0 g0 = ng-inx if inx >= len(kd)-ng: k1 = len(kd) g1 = len(gauss)-(inx+ng-len(kd)+1) kd[k0:k1] += gauss[g0:g1] kd /= len(data) return kd, x plt.xkcd() fig = plt.figure( figsize=(6,3) ) ax = fig.add_subplot(2, 2, 1) ax.spines['right'].set_visible(False) ax.spines['top'].set_visible(False) ax.yaxis.set_ticks_position('left') ax.xaxis.set_ticks_position('bottom') ax.set_xlabel( 'x' ) ax.set_xlim(-3.2, 3.2) ax.set_xticks( np.arange( -3.0, 3.1, 1.0 ) ) ax.set_ylabel( 'p(x)' ) ax.set_ylim(0.0, 0.49) ax.set_yticks( np.arange( 0.0, 0.41, 0.1 ) ) #ax.plot(x, g, '-b', lw=2, zorder=-1) ax.hist(r, np.arange(-4.1, 4, 0.4), normed=True, color='#FFCC00', zorder=-5) ax = fig.add_subplot(2, 2, 3) ax.spines['right'].set_visible(False) ax.spines['top'].set_visible(False) ax.yaxis.set_ticks_position('left') ax.xaxis.set_ticks_position('bottom') ax.set_xlabel( 'x' ) ax.set_xlim(-3.2, 3.2) ax.set_xticks( np.arange( -3.0, 3.1, 1.0 ) ) ax.set_ylabel( 'p(x)' ) ax.set_ylim(0.0, 0.49) ax.set_yticks( np.arange( 0.0, 0.41, 0.1 ) ) #ax.plot(x, g, '-b', lw=2, zorder=-1) ax.hist(r, np.arange(-4.3, 4, 0.4), normed=True, color='#FFCC00', zorder=-5) ax = fig.add_subplot(1, 2, 2) ax.spines['right'].set_visible(False) ax.spines['top'].set_visible(False) ax.yaxis.set_ticks_position('left') ax.xaxis.set_ticks_position('bottom') ax.set_xlabel( 'x' ) ax.set_xlim(-3.2, 3.2) ax.set_xticks( np.arange( -3.0, 3.1, 1.0 ) ) ax.set_ylabel( 'Probab. density p(x)' ) ax.set_ylim(0.0, 0.49) ax.set_yticks( np.arange( 0.0, 0.41, 0.1 ) ) kd, xx = kerneldensity(r, -3.2, 3.2, 0.2) ax.fill_between(xx, 0.0, kd, color='#FF9900', zorder=-5) ax.plot(xx, kd, '-', lw=3, color='#CC0000', zorder=-1) plt.subplots_adjust(left=0.1, right=0.98, bottom=0.15, top=0.98, wspace=0.35, hspace=0.3) fig.savefig( 'kerneldensity.pdf' ) #plt.show()