% Gaussian density from histogram: x = randn( 1000000, 1 ); [ n, c ] = hist( x, 100 ); n = n/sum(n)/(c(2)-c(1)); bar( c, n ); hold on; % equation p(x): xx = -5:0.01:5; p=exp(-xx.^2/2.0)/sqrt(2.0*pi); plot( xx, p, 'r', 'LineWidth', 3 ) % with mean=2 and sigma=0.5: mu = 2.0; sig = 0.5; x = sig*x + mu; [ n, c ] = hist( x, 100 ); n = n/sum(n)/(c(2)-c(1)); bar( c, n ); % equation: p=exp(-(xx-mu).^2/2.0/sig^2)/sqrt(2.0*pi*sig^2); plot( xx, p, 'r', 'LineWidth', 3 ) hold off; xlabel( 'x' ); ylabel( 'p(x)' ); title( 'Gaussian distribution' );