import numpy as np import matplotlib.pyplot as plt from plotstyle import * def create_data(): m = 0.75 n= -40 x = np.arange(10.,110., 2.5) y = m * x + n; rng = np.random.RandomState(37281) noise = rng.randn(len(x))*15 y += noise return x, y, m, n def plot_data(ax, x, y): ax.scatter(x, y, marker='o', color=colors['blue'], s=40) ax.set_xlabel('Input x') ax.set_ylabel('Output y') ax.set_xlim(0, 120) ax.set_ylim(-80, 80) ax.set_xticks(np.arange(0,121, 40)) ax.set_yticks(np.arange(-80,81, 40)) def plot_data_slopes(ax, x, y, m, n): ax.scatter(x, y, marker='o', color=colors['blue'], s=40) xx = np.asarray([2, 118]) for i in np.linspace(0.3*m, 2.0*m, 5): ax.plot(xx, i*xx+n, color=colors['red'], lw=2) ax.set_xlabel('Input x') #ax.set_ylabel('Output y') ax.set_xlim(0, 120) ax.set_ylim(-80, 80) ax.set_xticks(np.arange(0,121, 40)) ax.set_yticks(np.arange(-80,81, 40)) def plot_data_intercepts(ax, x, y, m, n): ax.scatter(x, y, marker='o', color=colors['blue'], s=40) xx = np.asarray([2, 118]) for i in np.linspace(n-1*n, n+1*n, 5): ax.plot(xx, m*xx + i, color=colors['red'], lw=2) ax.set_xlabel('Input x') #ax.set_ylabel('Output y') ax.set_xlim(0, 120) ax.set_ylim(-80, 80) ax.set_xticks(np.arange(0,121, 40)) ax.set_yticks(np.arange(-80,81, 40)) if __name__ == "__main__": x, y, m, n = create_data() fig, axs = plt.subplots(1, 3) fig.subplots_adjust(wspace=0.5, **adjust_fs(fig, left=6.0, right=1.5)) plot_data(axs[0], x, y) plot_data_slopes(axs[1], x, y, m, n) plot_data_intercepts(axs[2], x, y, m, n) fig.savefig("lin_regress.pdf") plt.close()