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a b s t r a c t

An important characterization of neural spiking is the ratio of the variance to the mean of the spike counts
in a set of intervals—the Fano factor. For a Poisson process, the theoretical Fano factor is exactly one. For
simulated or experimental neural data, the sample Fano factor is never exactly one, but often appears
close to one. In this short communication, we characterize the distribution of the Fano factor for a Poisson
process, allowing us to compute probability bounds and perform hypothesis tests on the distribution
of recorded neural spike counts. We show that for a Poisson process the Fano factor asymptotically
follows a gamma distribution with dependence on the number of observations of spike counts, and that
oisson spiking
pike train analysis
ypothesis testing

convergence to this asymptotic distribution is fast. The analysis provides a simple method to determine
how close to 1 the computed Fano factor should be and to formally test whether the observed variability

arise
in the spiking is likely to

. Introduction

The number of action potentials (or “spikes”) generated by a
euron in an interval often exhibits high variability. For exam-
le, an individual neuron presented multiple times with the same
timulus will typically produce a different number of spikes follow-
ng each presentation. Remarkably, a consistency often emerges in
he count statistics of neural spiking over many stimulus presen-
ations: namely, the ratio between the sample mean and sample
ariance of the spike counts over fixed intervals remains constant.
his ratio of the spike count variance to the mean—the Fano fac-
or (Fano, 1947)—has been found to span a range of values near
ne (Softky and Koch, 1993; de Ruyter van Steveninck et al., 1997;
ara et al., 2000; Maimon and Assad, 2009; Shadlen and Newsome,
998; Tolhurst et al., 1983).

The importance of the Fano factor extends beyond a simple char-
cterization of the spiking data. This statistic can also be used to
raw inferences about how the observed neural variability com-
ares with the expected variability for a Poisson process, the most
ommon statistical model of neural spiking. A central feature of
he Poisson process is that the number of spikes fired in any time
nterval is random, with a Poisson distribution. For a homogeneous
oisson process, for which the rate of spiking is constant in time, the

pike counts in any set of time intervals of fixed size are all inde-
endent identically distributed Poisson random variables. For an

nhomogeneous Poisson process, for which the rate of spiking can
hange as a function of time, the spike counts over multiple inter-
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vals that have the exact same rate function will also be independent
identically distributed Poisson random variables. Since the theo-
retical variance and mean of a Poisson distribution are equal, the
theoretical Fano factor for the spike counts is exactly equal to one.
Yet, we never expect this precision in any sample from a Poisson
process, let alone in noisy neural data or in computational mod-
els of neural activity. Instead, we compute the sample Fano factor
from these data and expect—if the data are Poisson—a value near
one. Typical techniques to perform this estimate include regression
analysis to estimate the linear relationship between the spike count
variance and mean (Tolhurst et al., 1983; Gur et al., 1997; Gershon
et al., 1998) and direct calculation of the Fano factor (spike count
variance over spike count mean) from the data (Teich et al., 1997;
Kara et al., 2000).

The characterization of neural data exhibiting a Fano factor
“close to” one as Poisson (and rejection of this characterization
when the Fano factor is “distant” from one) is unsatisfying. Ideally,
we would prefer to make these claims with an associated measure
of uncertainty. In this short communication, we propose a simple
statistical method to determine how close to 1 the computed Fano
factor should be and to formally test against the null hypothesis
of Poisson spiking based on the observed Fano factor. We describe
this test here, show simulation results, and provide simple routines
in MATLAB to perform this test.

2. Results
Let Ni for i = 1,. . .,n be a collection of independent identically
distributed samples from a Poisson distribution with parameter �.
These samples might arise as counts of the number of spikes fired
over repeated trials of an experiment, as binned spike counts over

http://www.sciencedirect.com/science/journal/01650270
http://www.elsevier.com/locate/jneumeth
mailto:tzvi@bu.edu
dx.doi.org/10.1016/j.jneumeth.2010.04.012
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xed intervals for a homogeneous Poisson process, or any number
f other experimental conditions. The Fano factor for these data is
iven by the ratio of the sample variance to the sample mean:

ˆ =

1
n−1

n∑

i=1

(Ni − N̄)
2

N̄
, where N̄ = 1

n

n∑

i=1

Ni.

efined this way, the Fano factor is a statistic, with a sampling
istribution that defines the probability of F̂ taking on any par-
icular value. By comparing the computed value of the Fano factor
or a given dataset to critical values of this sampling distribution,
e can perform hypothesis tests and compute significance levels

p-values) for the null hypothesis of Poisson spiking.
The sampling distribution of F̂ can depend on two factors, the

oisson parameter, �, which also defines the expected number of
pikes per sample, and the number of samples obtained, n. Pre-
ious analyses (Hoel, 1943; Kathirgamatamby, 1953) have shown
hat as � and n both tend to infinity, the sampling distribution of
n − 1)F̂ tends to a Chi-square distribution with (n − 1) degrees of
reedom, which is equivalent to a gamma distribution with shape
arameter (n − 1)/2 and a scale parameter equal to 2. From there,

t follows from the scaling property of the gamma distribution that
he sampling distribution of the Fano factor itself tends to a gamma
istribution with shape parameter (n − 1)/2 and scale parameter
/(n − 1), F̂∼� ((n − 1)/2, 2/(n − 1)).

This result provides a simple method for constructing bounds
or the Fano factor under the Poisson assumption, and for per-
orming hypothesis tests to reject the Poisson hypothesis and
ompute significance levels. In particular, if the data were gen-
rated by a Poisson process, with 0.95 probability the computed
ano factor would lie in the interval [� 0.025,� 0.975], where � ˛

s the critical value of the � ((n − 1)/2,2/(n − 1)) distribution with
robability mass ˛ to the left of that value. For example, if the
ano factor were computed from n = 50 trials, we would expect
he value to fall in the range [0.64 1.43] with probability 0.95.
herefore, a Fano factor of 1.4 computed over 50 trials should not
e considered exceptionally strong evidence that the increments
re more variable than a Poisson process. These bounds can be
omputed trivially in any statistical computing software. For exam-
le, in MATLAB, the 0.95 bounds are generated by the command
aminv([.025,.975],(n − 1)/2,2/(n − 1)).

This result can also be used to compute a hypothesis test for
hether the data could have arisen from a Poisson process. In this

ase, the null hypothesis H0, that the data are Poisson, is equiva-
ent to the statement that the theoretical Fano factor is equal to
. We can compare this to an upper tailed alternative hypothesis
hat the increments are more variable than the Poisson, a lower
ailed alternative that the increments are less variable, or a two-
ailed alternative that the variability is either larger or smaller than
or a Poisson. The test statistic is just the empirical Fano factor,
nd the approximate p-value for the test is Pr(� > F̂) for an upper
ailed test, Pr(� < F̂) for a lower tailed test, and 2 × min(Pr(� >

ˆ), Pr(� < F̂)) for a two-tailed test, where � is a random variable
ith � ((n − 1)/2,2/(n − 1)) distribution and F̂ is the computed value

f the Fano factor. Once again, these quantities are simple to com-
ute in standard statistical and computing software. For example,
o compute the p-value for the upper tailed test that the incre-

ents are more variable than a Poisson in MATLAB, the command

s 1-gamcdf(F, (n − 1)/2,2/(n − 1)). The power of any of these tests
epends on the specific form of the true alternate hypothesis, that

s, the specific history dependent structure of the neuron. Previ-
us analyses (Kathirgamatamby, 1953) have examined the power
f these tests for a variety of alternatives.
ience Methods 190 (2010) 149–152

All these methods rely on the gamma approximation to the
sampling distribution of the Fano factor. How large do � and n
need to be for the gamma approximation to be accurate? Early
research (Sukhatme, 1938) used random number tables to examine
deviations from the gamma distribution in low rate, small sample
instances. However, it is now possible through simulation to gen-
erate highly accurate empirical estimates of the true distribution
of the Fano factor for any � and n pair.

For values of � ranging from 0.1 to 100 expected spikes per sam-
ple (in steps of 0.1) and values of n ranging from 2 to 100 samples,
we simulated 100,000 sets of n samples from a Poisson distribution
with parameter �, and computed the resulting Fano factor from
each set. This provided an empirical estimate of the distribution
of the Fano factor for every � and n. The top panel of Fig. 1 shows
a scaled histogram of the resulting empirical distribution for the
case where � = 10 and n = 50. In comparison, the probability den-
sity for the � (49/2,2/49) distribution is shown with the solid black
line. 95% bounds for the value of the Fano factor under the Poisson
condition are shown as the transition from white to gray bars and
back for the empirical distribution and as vertical black lines for the
approximate gamma distribution. From the empirical distribution,
95% of the computed Fano factors ranged between 0.63 and 1.4. This
suggests that with as many as 50 samples from a neuron firing as a
Poisson process with physiological firing rates, it is not surprising
to get sample Fano factor values notably larger or smaller than 1.

From Fig. 1, it is clear that the empirical and approximate gamma
distribution deviate only slightly from one another. In particu-
lar, the empirical distribution has a slightly smaller variance, and
a slightly larger skewness than the gamma approximation. The
bounds on the Fano factor based on the empirical and approximate
distributions are also in close agreement, with the lower bounds
nearly identical, and the upper bound for the gamma approxima-
tion providing a slightly conservative estimate.

The bottom panels of Fig. 1 show raster plot realizations of two
distinct point processes. The data in the left panel was generated
from 50 trials of a Poisson process with rate � = 10 spikes/trial. The
Fano factor of the number of spikes/trial for this data was 1.32, a
value far from 1 but still within the 95% bounds for the empirical
distribution of such Poisson processes. The data in the right panel
was generated not as a Poisson process, but as a renewal process
with � (0.5,12) interspike intervals. This process has an expected
Fano factor larger than 1, suggesting more variability in the num-
ber of spikes per trial. The computed Fano factor for this data is
1.63, outside the 95% bounds for the empirical distribution for a
Poisson. Visually, it is very difficult to distinguish which dataset is
compatible or incompatible with a Poisson process. However, by
comparing the computed Fano factors to the computed bounds, or
by performing an explicit test, it is possible to differentiate these
processes and express degrees of confidence.

Fig. 2 shows 0.025 and 0.975 quantiles of the empirical distribu-
tions of Fano factors for the simulated range of values for � and n, as
well as the 0.025 and 0.975 critical values for the gamma approx-
imation. The empirical upper and lower bounds as a function of
number of samples are shown as the lines above and below the
value 1, respectively, with different line styles indicating differ-
ent expected numbers of spikes. Clearly, as the number of samples
increases, the bounds about the expected value of 1 for the Fano
factor narrows. However, even at relatively large values of n, there
is still a great deal of variability in the observed values of the
Fano factor. In comparison, the 0.025 and 0.975 critical values of
the � ((n − 1)/2,2/(n − 1)) distribution are shown with thick dashed

lines.

For large values of n and �, the empirical and approximate
gamma bounds are in close agreement. For small values of n and
�, the approximate gamma bounds are overly conservative. This is
most noticeable in the upper bound when n < 10. Previous analy-
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Fig. 1. Upper: The empirical (white and gray bars) and approximate (gamma, black curve) distributions of the Fano factor are in close agreement. The empirical distribution
was generated for Poisson data with � = 10 and n = 50. The 95% bounds for the Fano factor occur at the transition from the white to gray bars in the empirical distribution and
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etween the vertical black lines in the approximate gamma distribution. Lower: Ex
heoretical Fano factor greater than 1 (right).

es (Hoel, 1943) have shown that the ratio of the variance of the
rue distribution of a scaled version of the Fano factor to its gamma
pproximation is less than 1. This suggests that p-values computed
sing the gamma approximation will be slightly larger than using
he empirical distribution, and the chance of incorrectly rejecting a
ull hypothesis that the data is Poisson will not increase. However,
he power of such a test may decrease for very small sample sizes.
n this case, a test based on the empirical distribution, which can

ow be easily calculated, would be preferable. However, in most
ealistic neural data analyses such that n ≥ 20 and � ≥ 1, tests based
n the gamma approximation and empirical distribution will be
early identical.

ig. 2. Comparison of the empircal and approximate (dashed) bounds of the Fano
actor for different values of � and n. The approximate bounds are overly conserva-
ive for small values of n.
s of data generated from a Poisson process (left) and from a renewal process with

3. Discussion

The Fano factor provides one method to describe the variabil-
ity in spiking activity and to relate it to the variability associated
with a Poisson process. Multiple other procedures, both exact
(Amarasingham et al., 2006) and approximate (Jackson and Redish,
2007; Nawrot et al., 2008), exist to determine whether the observed
variability of spike counts agrees with that expected for a Poisson
process. The measure proposed here differs from these measures
in the following ways. First, the statistical test acts directly on the
Fano factor (and does not require the computation of any additional
measures). Second, the analytic procedure allows a simple compu-
tation (or tabulation) of probability bounds and p-values for specific
hypothesis tests.

Another natural approach for characterizing the variability of
the Fano factor is the bootstrap. An implementation of this tech-
nique could involve resampling with replacement the observed Ni
to create a large number of surrogate data sets, each with the same
number of data points as the original data set. The Fano factor is
then computed for each surrogate data set to create an empirical
distribution of Fano factors. If the 95% confidence bounds based on
this distribution do not include 1, then we reject the null hypothe-
sis of Poisson spiking. We note that generating the surrogate data
for the bootstrap procedure may be computationally expensive.
Additionally, further statistical analysis is required to determine
the number of original data points required for the bootstrap
distribution to be accurate.

It is important to note that variability of spike counts is only one
of a multitude of features that can be used to determine whether

spike train data is Poisson in nature (Baddeley et al., 1997). Exami-
nation of these other features can be particularly important in some
cases. For example, a non-Poisson renewal process can produce
of Fano factor near or exactly equal to 1. In this case, any proce-
dure based on the Fano factor alone would not be able to reject a
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oisson model, but tests based on other statistics could. For exam-
le, the increments of a Poisson processes should be independent,
nd testing methods based on the autocorrelation of the observed
ncrements can be used to identify non-Poisson dependence struc-
ure. Additionally, the spectrum of a Poisson process should be flat,
nd testing methods related to spectral estimators can be used
o identify frequency-dependent variation. As with any statistical
haracterization, examining the data through multiple measures
rovides a more complete view of the structure present therein.

One attractive feature of the Fano factor is that by varying the
ength of the time intervals over which the spike counts are col-
ected, we can investigate the variability of the spiking over any
ime scale (Teich et al., 1997). Typically, the choice of an interval
ength is made based on the time scale over which one believes
he variability of the process to differ most from Poisson variability.
owever, the analysis presented here suggests that by changing the

nterval size, one can also adjust the quality of the gamma approx-
mation and the power of the test based on the Fano factor. For
xample, for a collection of 10 intervals from a homogeneous Pois-
on process averaging 20 spikes per interval, we can choose to break
ach interval in half, providing 20 intervals averaging 10 spikes per
nterval, where the gamma approximation is very good. It is impor-
ant to note, however, that no matter how the data is divided, the
roduct of � × n is preserved. Hoel’s (1943) work suggests that the
atio of the second moment of the sampling distribution of the Fano
actor to the gamma approximation only depends on this product,
o up to second order, choice of interval length has no effect.

Overall, the Fano factor is one of the most ubiquitously com-
uted descriptive statistics of spike train variability. The result we
escribe provides a simple and powerful approach to express the
tatistical confidence for inferences based on the Fano factor.
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