Scientific Computing – Statistics

Fabian Sinz Dept. Neuroethology, University Tübingen Bernstein Center Tübingen

10/20/2014

Statistics (Scientific Computing)

10/20/2014 1 / 49

my expectations to this course

- interest and participation
- motivation to understand and question concepts
- high scientific standard
- intellectual honesty
- sincere cooperation

Prelude

this week will be no fun piece of cake

Prelude

this week will be no fun piece of cake

Prelude

this week will be no lecture (please!)

What you should learn this week

- What makes good plots?
- What is descriptive/inferential statistics?
- What is the general structure of a statistical test?
- What does a p-value mean?
- How can I build my own tests?
- How large should my *n* be?
- What is maximum likelihood and why is it important?

Day 1 – descriptive statistics and plots

Day 1 – descriptive statistics and plots types of data

statistics what makes a good plot bad examples plotting data

data scales

What data types are distinguished in statistics?

Why are data types important?

data scales

What data types are distinguished in statistics?

Why are data types important?

- selection of statistics
- selection of plots
- selection of correct tests

data scales nominal/categorial scale

- properties like cell type, experimental group (i.e. treatment 1, treatment 2, control)
- each observation/sample is put into one category
- there is no reasonable order among the categories
- example: [rods, cones] vs. [cones, rods]

data scales ordinal scale

- like nominal scale, but there is an order
- but: there is no reasonable measure of distance between the classes
- examples: ranks, ratings

Day 1 – descriptive statistics and plots types of data

data scales interval scale

- quantitative/metric values
- reasonable measure of distance between values but no absolute zero
- examples: temperature in °C

data scales absolut/ratio scale

- like interval scale but with absolute zero
- example: temperature in °K

data scales absolut/ratio scale

- like interval scale but with absolute zero
- example: temperature in °K

relationsships between scales

- scales exhibit increasing information content from nominal to absolute
- conversion ,,downwards" always possible

- treatment group
- stimulus class
- cell type
- ordinal:

• nominal:

- treatment group
- stimulus class
- cell type

• ordinal:

- ratings
- clinical stages of a disease
- states of an ion channel
- Absolut-/Ratioskala:

• nominal:

- treatment group
- stimulus class
- cell type

• ordinal:

- ratings
- clinical stages of a disease
- states of an ion channel

• Absolut-/Ratioskala:

- firing rate
- membrane potential
- ion concentration

Day 1 – descriptive statistics and plots

Day 1 – descriptive statistics and plots types of data statistics

what makes a good plot bad examples plotting data

Statistics (Scientific Computing)

What is "a statistic"?

statistic

A statistic (singular) is a single measure of some attribute of a sample (e.g., its arithmetic mean value). It is calculated by applying a function (statistical algorithm) to the values of the items of the sample, which are known together as a set of data.

http://en.wikipedia.org/wiki/Statistic

- count
- relative frequency/proportion
- ordinal:

- count
- relative frequency/proportion
- ordinal:
 - median
 - quantile/percentile
 - rank correlation
- absolute/ratio:

• nominal:

- count
- relative frequency/proportion
- ordinal:
 - median
 - quantile/percentile
 - rank correlation

• absolute/ratio:

- mean
- variance/ standard deviation
- Pearson correlation

exercise

Spearman rank correlation

- Use randi to generate two vectors x, y with 100 random integers between 0 and 10 each.
- 2. Find out how to compute the Spearman rank correlation

$$\rho = 1 - \frac{6\sum d_i^2}{n(n^2 - 1)}$$

with Matlab. $d_i = x_i - y_i$ is the difference in the rank between the single data points.

- 3. Compute ρ between x and y, between x and y^2 , between $\log(x + 1)$ and y^2 .
- 4. Compute the "standard" (Pearson) correlation coefficient between these values.
- 5. What can you observe and why does it make sense?

solution

Spearman rank correlation

```
1
    >>> x = randi(10, 100, 1);
2
    >>> y = randi(10, 100, 1);
 3
    >>> corr(x,y,'type','Spearman')
4
    ans =
5
        0.1220
6
    >>> corr(x,y.^2,'type','Spearman')
7
    ans =
8
        0.1220
9
    >>> corr(x,y,'type','Pearson')
10
    ans =
11
        0.1074
12
    >>> corr(x,y.^2,'type','Pearson')
13
    ans =
14
        0.0551
```

The rank correlation does not change under a monotone transformation of the data. Therefore, it can be used for ordinal data. The Pearson correlation coefficient does not have that property.

Day 1 – descriptive statistics and plots

Day 1 – descriptive statistics and plots

types of data

statistics

what makes a good plot

bad examples plotting data Day 1 – descriptive statistics and plots what makes a good plot

What makes a good plot?

Statistics (Scientific Computing)

10/20/2014 18 / 49

- A good plot
 - helps the reader to clearly understand your point.

A good plot

- helps the reader to clearly understand your point.
- is not misleading and let's the reader judge the information on her own (different y-axis/length scales in two related plots, "squeezing" via log-plots).

A good plot

- helps the reader to clearly understand your point.
- is not misleading and let's the reader judge the information on her own (different y-axis/length scales in two related plots, "squeezing" via log-plots).
- contains information about the data (a comic might be illustrative, but does not contain information about the data).

A good plot

- helps the reader to clearly understand your point.
- is not misleading and let's the reader judge the information on her own (different y-axis/length scales in two related plots, "squeezing" via log-plots).
- contains information about the data (a comic might be illustrative, but does not contain information about the data).
- adheres to the principle of ink minimization.

features of a good plot design/organization

• Is the display consistent with the model or hypothesis being tested?

features of a good plot design/organization

- Is the display consistent with the model or hypothesis being tested?
- Are there "empty dimensions" in the display that could be removed (A 3D pie chart for 2D categorical data, extraneous colors that do not encode meaningful information)?

features of a good plot design/organization

- Is the display consistent with the model or hypothesis being tested?
- Are there "empty dimensions" in the display that could be removed (A 3D pie chart for 2D categorical data, extraneous colors that do not encode meaningful information)?
- Does the display provide an honest and transparent portrayal of the data (hiding, smoothing, modifying data points should be avoided or explicitly mentioned)?

Allen et al. 2012, Neuron

axes

• Are axes scales defined as linear, log, or radial?
features of a good plot

axes

- Are axes scales defined as linear, log, or radial?
- Does each axis label describe the variable and its units (use "a.u." for arbitrary units)?

features of a good plot

axes

- Are axes scales defined as linear, log, or radial?
- Does each axis label describe the variable and its units (use "a.u." for arbitrary units)?
- Are axes limits appropriate for the data (The graphic should not be bounded at zero if the data can take on both positive and negative values.)?

features of a good plot

axes

- Are axes scales defined as linear, log, or radial?
- Does each axis label describe the variable and its units (use "a.u." for arbitrary units)?
- Are axes limits appropriate for the data (The graphic should not be bounded at zero if the data can take on both positive and negative values.)?
- Is the aspect ratio appropriate for the data (When x and y axes contrast the same variable under different conditions the graphic should be square.)?

Allen et al. 2012, Neuron

features of a good plot $$_{\rm color\ mapping}$$

• Is a color bar provided?

features of a good plot $$_{\rm color\ mapping}$$

- Is a color bar provided?
- Is the color map sensible for the data type (does the data extend to both \pm , does it live in an interval, is it circular)?

features of a good plot $$_{\rm color\ mapping}$$

- Is a color bar provided?
- Is the color map sensible for the data type (does the data extend to both \pm , does it live in an interval, is it circular)?
- Are contrasting colors consistent with a natural interpretation?
- Can features be discriminated when printed in grayscale?
- Has red/green contrast been avoided to accommodate common forms of colorblindness?

Allen et al. 2012, Neuron

• Does the display indicate the uncertainty of estimated parameters?

- Does the display indicate the uncertainty of estimated parameters?
- Is the type of error surface appropriate for the data?
 - Use standard deviations to describe variability in the population.

- Does the display indicate the uncertainty of estimated parameters?
- Is the type of error surface appropriate for the data?
 - Use standard deviations to describe variability in the population.
 - Use standard errors or confidence intervals to make inferences about parameters estimated from a sample.

- Does the display indicate the uncertainty of estimated parameters?
- Is the type of error surface appropriate for the data?
 - Use standard deviations to describe variability in the population.
 - Use standard errors or confidence intervals to make inferences about parameters estimated from a sample.
 - Parametric confidence intervals should only be used if data meet the assumptions of the underlying model.

- Does the display indicate the uncertainty of estimated parameters?
- Is the type of error surface appropriate for the data?
 - Use standard deviations to describe variability in the population.
 - Use standard errors or confidence intervals to make inferences about parameters estimated from a sample.
 - Parametric confidence intervals should only be used if data meet the assumptions of the underlying model.
- Are the units of uncertainty defined (is it standard error, is it 95% confidence interval)?

Allen et al. 2012, Neuron

• Are all symbols defined, preferably by directly labeling objects?

- Are all symbols defined, preferably by directly labeling objects?
- Is the directionality of a contrast between conditions obvious?

- Are all symbols defined, preferably by directly labeling objects?
- Is the directionality of a contrast between conditions obvious?
- Is the number of samples or independent experiments indicated?

- Are all symbols defined, preferably by directly labeling objects?
- Is the directionality of a contrast between conditions obvious?
- Is the number of samples or independent experiments indicated?
- Are statistical procedures and criteria for significance described?

- Are all symbols defined, preferably by directly labeling objects?
- Is the directionality of a contrast between conditions obvious?
- Is the number of samples or independent experiments indicated?
- Are statistical procedures and criteria for significance described?
- Are uncommon abbreviations avoided or clearly defined?

- Are all symbols defined, preferably by directly labeling objects?
- Is the directionality of a contrast between conditions obvious?
- Is the number of samples or independent experiments indicated?
- Are statistical procedures and criteria for significance described?
- Are uncommon abbreviations avoided or clearly defined?
- Are abbreviations consistent with those used in the text?

Allen et al. 2012, Neuron

Day 1 – descriptive statistics and plots

Day 1 – descriptive statistics and plots

types of data statistics what makes a good plo bad examples

Statistics (Scientific Computing)

Hafting et al. 2005, nature

Statistics (Scientific Computing)

10/20/2014 26 / 49

http://en.wikipedia.org/wiki/Misleading_graph

http://en.wikipedia.org/wiki/Misleading_graph

http://en.wikipedia.org/wiki/Misleading_graph

www.enfovis.com

Day 1 – descriptive statistics and plots

Day 1 – descriptive statistics and plots

types of data statistics what makes a good plot bad examples plotting data

plotting nominal data

bar plot for count and relative frequency

Statistics (Scientific Computing)

plotting nominal data

bar plot for count and relative frequency

```
1
    % plot
2
    bar([1,2], [50, 90], 'facecolor', 'k')
 3
4
    % labels axes
5
    ylabel('cell count')
6
    xlabel('cell type')
7
8
    % cosmetics
9
    xlim([0.5,2.5])
10
    vlim([0, 100])
11
    box('off')
12
    set(gca,'XTick',1:2,'XTickLabel',{'pyramidal','interneuron'},'FontSize',20)
13
14
    % settings for saving the figure
15
    set(gcf, 'PaperUnits', 'centimeters');
16
    set(gcf, 'PaperSize', [11.7 9.0]);
    set(gcf, 'PaperPosition',[0.0 0.0 11.7 9.0]);
17
```

plotting nominal data bie chart for count and relative frequency

cell count

plotting nominal data

exercise

pie chart

Plot the same data $(n_{py} = 50, n_{in} = 90)$ as a pie chart in Matlab.

Statistics (Scientific Computing)

plotting nominal data pie chart for relative frequency

```
1
    data = [50, 90];
    h = pie(data, [1,0], {'pyramidal (n=50)', 'interneuron (n=90)'})
 2
3
    hText = findobj(h, 'Type', 'text') % text object handles
4
5
    set(h(1), 'FaceColor', [.2,.2,.2]);
6
    set(h(2), 'Rotation', 45);
7
    set(h(3), 'FaceColor', [.8,.8,.8]);
8
    set(h(4), 'Rotation', 45);
9
10
    title('cell count')
11
    set(gca,'XTick',1:2,'XTickLabel',{'pyramidal', 'interneuron'})
12
    box('off')
    set(gcf, 'PaperUnits', 'centimeters');
13
14
    set(gcf, 'PaperSize', [11.7 9.0]);
15
    set(gcf, 'PaperPosition', [0.0 0.0 11.7 9.0]);
```

Statistics (Scientific Computing)

plotting interval/ratio/absolute data histogram

Statistics (Scientific Computing)

10/20/2014 37 / 49

Day 1 – descriptive statistics and plots plotting data

plotting interval/ratio/absolute data bad choice of bins

Rule of thumb

Choose the bins $b \approx n/20$.

Statistics (Scientific Computing)

plotting interval/ratio/absolute data how to do in Matlab

```
1
    x = randn(2000,1); % generate Gaussian data
 2
 3
    hist(x, 50); % generate histogram
4
5
    % set facecolor to gray
6
    h = findobj(gca, 'Type', 'patch');
7
    set(h(1), 'FaceColor',[.2,.2,.2], 'EdgeColor','w', 'linewidth',2)
8
9
    % plot a white grid over it
    h = gridxy([],get(gca,'ytick'),'color','w','linewidth',2)
10
11
    uistack(h, 'top')
12
13
    % cosmetics
14
    box('off'):
    xlabel('Data')
15
16
    ylabel('Count')
```

plotting interval/ratio/absolute data bar plot

There are several ways to plot a sample $x_1, ..., x_n$ of interval/ratio/absolute scale with a bar plot

Statistics (Scientific Computing)

plotting interval/ratio/absolute data _{bar plot}

```
% bar plot
1
2
    x = rand(10, 1);
3
    gray = [.5, .5, .5];
4
5
    bar(1, mean(x), 'EdgeColor', 'w', 'FaceColor', gray);
6
    hold on
7
8
    bar(2, mean(x), 'EdgeColor', 'w', 'FaceColor', gray);
9
    plot(0*x + 2, x, 'ok');
10
11
    bar(3, mean(x), 'EdgeColor', 'w', 'FaceColor', gray);
12
    errorbar(3, mean(x), std(x), 'ok');
13
14
    bar(4, mean(x), 'EdgeColor', 'w', 'FaceColor', gray);
15
    errorbar(4, mean(x), std(x)/sqrt(length(x)), 'ok');
16
    set(gca, 'xtick',[])
17
    ylabel('uniformly distributed random data in [0,1]')
    box('off')
18
19
    title('different forms of bar plots')
20
    hold off
```

plotting interval/ratio/absolute data bar plot and measure of central tendency and spread

• A bar plot collapses real data onto a single number and some measure of spread. This number is usually a <u>measure of central tendency</u>, i.e. a typical/central value for the probability distribution of the data.

plotting interval/ratio/absolute data bar plot and measure of central tendency and spread

- A bar plot collapses real data onto a single number and some measure of spread. This number is usually a <u>measure of central tendency</u>, i.e. a typical/central value for the probability distribution of the data.
- What measures of central tendency can you think of?
plotting interval/ratio/absolute data bar plot and measure of central tendency and spread

- A bar plot collapses real data onto a single number and some measure of spread. This number is usually a <u>measure of central tendency</u>, i.e. a typical/central value for the probability distribution of the data.
- What measures of central tendency can you think of?
 - mean
 - median
 - geometric mean (the nth root of the product of the data values)
 - weighted mean
 - midrange (mean of the maximum and minimum values of a data set)

plotting interval/ratio/absolute data bar plot and measure of central tendency and spread

- A bar plot collapses real data onto a single number and some measure of spread. This number is usually a <u>measure of central tendency</u>, i.e. a typical/central value for the probability distribution of the data.
- What measures of central tendency can you think of?
 - mean
 - median
 - geometric mean (the nth root of the product of the data values)
 - weighted mean
 - midrange (mean of the maximum and minimum values of a data set)
- Additionally, the bar plot is equipped with a measure of <u>spread</u> or dispersion. What measure of spread can you think of?

plotting interval/ratio/absolute data bar plot and measure of central tendency and spread

- A bar plot collapses real data onto a single number and some measure of spread. This number is usually a <u>measure of central tendency</u>, i.e. a typical/central value for the probability distribution of the data.
- What measures of central tendency can you think of?
 - mean
 - median
 - geometric mean (the nth root of the product of the data values)
 - weighted mean
 - midrange (mean of the maximum and minimum values of a data set)
- Additionally, the bar plot is equipped with a measure of <u>spread</u> or dispersion. What measure of spread can you think of?
 - standard deviation
 - range (maximum minus minimum of a dataset)
 - inter-quartile range

Day 1 – descriptive statistics and plots plotting data

plotting interval/ratio/absolute data measure of central tendency and spread

The part of statistics that summarizes data in a small number of values is called <u>descriptive</u> statistics.

robust statistics

When is statistic called robust (leave-one-out)?

- Generate an array with 20 random numbers using randn.
- Compute 20 means: the *i*th mean is computed from the data set without the *i*th example.
- Repeat this with the median.
- Make a bar plot that depicts the means of the computed means and medians along with an appropriate measure of dispersion.
- What can you observe? Do you understand why?

plotting interval/ratio/absolute data

boxplot

Who knows what the elements mean?

plotting interval/ratio/absolute data

boxplot

Who knows what the elements mean?

- the box depicts the inter-quartile range
- the line denotes the median
- the whiskers denote the extreme value of the data not considered outliers
- outliers are plotted separately

Outliers

- Find out how an outlier is defined in a matlab boxplot.
- Can you remove an outlier from the dataset?

plotting interval/ratio/absolute data violinplot

- Violinplots depict the distribution of the data by a smoothed histogram.
- Additional information (data points, median, inter-quartile range) are plotted inside.

Statistics (Scientific Computing)

What could we use for a combination of categorial/nominal and interval/ratio/absolute?

What could we use for a combination of categorial/nominal and interval/ratio/absolute?

Each category is a single bar.

Statistics (Scientific Computing)

What could we use for a combination of interval/ratio/absolute and interval/ratio/absolute, e.g. $(x_1, y_1), ..., (x_n, y_n)$?

What could we use for a combination of interval/ratio/absolute and interval/ratio/absolute, e.g. $(x_1, y_1), ..., (x_n, y_n)$?

Scatter plot or paired bar chart. Scatter plot can also be used for ordinal vs. ordinal data (why not the bar chart?).

Statistics (Scientific Computing)

10/20/2014 48 / 49

Day 1 – descriptive statistics and plots plotting data

That's it.

Statistics (Scientific Computing)

10/20/2014 49 / 49