import matplotlib.pyplot as plt import numpy as np from IPython import embed figsize=(6,3) def set_rc(): plt.rcParams['xtick.major.size'] = 5 plt.rcParams['xtick.minor.size'] = 5 plt.rcParams['xtick.major.width'] = 2 plt.rcParams['xtick.minor.width'] = 2 plt.rcParams['ytick.major.size'] = 5 plt.rcParams['ytick.minor.size'] = 5 plt.rcParams['ytick.major.width'] = 2 plt.rcParams['ytick.minor.width'] = 2 plt.rcParams['xtick.direction'] = "out" plt.rcParams['ytick.direction'] = "out" def create_spikes(nspikes=11, duration=0.5, seed=1000): rng = np.random.RandomState(seed) x = np.linspace(0.0, 1.0, nspikes) # double gaussian rate profile: rate = np.exp(-0.5*((x-0.35)/0.25)**2.0) rate += 1.*np.exp(-0.5*((x-0.9)/0.05)**2.0) isis = 1.0/rate isis += rng.randn(len(isis))*0.2 times = np.cumsum(isis) times *= 1.05*duration/times[-1] times += 0.01 return times def gaussian(sigma, dt): x = np.arange(-4*sigma, 4*sigma, dt) y = np.exp(-0.5 * (x / sigma)**2)/np.sqrt(2*np.pi)/sigma; return x, y def setup_axis(spikes_ax, rate_ax): spikes_ax.spines["left"].set_visible(False) spikes_ax.spines["right"].set_visible(False) spikes_ax.spines["top"].set_visible(False) spikes_ax.yaxis.set_ticks_position('left') spikes_ax.xaxis.set_ticks_position('bottom') spikes_ax.set_yticks([]) spikes_ax.set_ylim(-0.2, 1.0) #spikes_ax.set_ylabel("Spikes") spikes_ax.text(-0.1, 0.5, "Spikes", transform=spikes_ax.transAxes, rotation='vertical', va='center') #spikes_ax.text(-0.125, 1.2, "A", transform=spikes_ax.transAxes) spikes_ax.set_xlim(-1, 500) #spikes_ax.set_xticklabels(np.arange(0., 600, 100)) rate_ax.spines["right"].set_visible(False) rate_ax.spines["top"].set_visible(False) rate_ax.yaxis.set_ticks_position('left') rate_ax.xaxis.set_ticks_position('bottom') rate_ax.set_xlabel('Time [ms]') #rate_ax.set_ylabel('Firing rate [Hz]') rate_ax.text(-0.1, 0.5, "Rate [Hz]", transform=rate_ax.transAxes, rotation='vertical', va='center') #rate_ax.text(-0.125, 1.15, "B", transform=rate_ax.transAxes) rate_ax.set_xlim(0, 500) #rate_ax.set_xticklabels(np.arange(0., 600, 100)) rate_ax.set_ylim(0, 60) rate_ax.set_yticks(np.arange(0,65,20)) def plot_bin_method(): dt = 1e-5 duration = 0.5 spike_times = create_spikes() t = np.arange(0., duration, dt) bins = np.arange(0, 0.55, 0.05) count, _ = np.histogram(spike_times, bins) plt.xkcd() set_rc() fig = plt.figure() fig.set_size_inches(*figsize) fig.set_facecolor('white') spikes = plt.subplot2grid((7,1), (0,0), rowspan=3, colspan=1) rate_ax = plt.subplot2grid((7,1), (3,0), rowspan=4, colspan=1) setup_axis(spikes, rate_ax) for ti in spike_times: ti *= 1000.0 spikes.plot([ti, ti], [0., 1.], '-b', lw=2) #spikes.vlines(1000.0*spike_times, 0., 1., color="darkblue", lw=1.25) for tb in 1000.0*bins : spikes.plot([tb, tb], [-2.0, 0.75], '-', color="#777777", lw=1, clip_on=False) #spikes.vlines(1000.0*np.hstack((0,bins)), -2.0, 1.25, color="#777777", lw=1, linestyles='-', clip_on=False) for i,c in enumerate(count): spikes.text(1000.0*(bins[i]+0.5*bins[1]), 1.1, str(c), color='#CC0000', ha='center') rate = count / 0.05 rate_ax.step(1000.0*bins, np.hstack((rate, rate[-1])), color='#FF9900', where='post') fig.tight_layout() fig.savefig("binmethod.pdf") plt.close() def plot_conv_method(): dt = 1e-5 duration = 0.5 spike_times = create_spikes() kernel_time, kernel = gaussian(0.015, dt) t = np.arange(0., duration, dt) rate = np.zeros(t.shape) rate[np.asarray(np.round(spike_times[:-1]/dt), dtype=int)] = 1 rate = np.convolve(rate, kernel, mode='same') rate = np.roll(rate, -1) plt.xkcd() set_rc() fig = plt.figure() fig.set_size_inches(*figsize) fig.set_facecolor('white') spikes = plt.subplot2grid((7,1), (0,0), rowspan=3, colspan=1) rate_ax = plt.subplot2grid((7,1), (3,0), rowspan=4, colspan=1) setup_axis(spikes, rate_ax) #spikes.vlines(1000.0*spike_times, 0., 1., color="darkblue", lw=1.5, zorder=2) for ti in spike_times: ti *= 1000.0 spikes.plot([ti, ti], [0., 1.], '-b', lw=2) spikes.plot(1000*kernel_time + ti, kernel/np.max(kernel), color='#cc0000', lw=1, zorder=1) rate_ax.plot(1000.0*t, rate, color='#FF9900', lw=2, zorder=2) rate_ax.fill_between(1000.0*t, rate, np.zeros(len(rate)), color='#FFFF66') #rate_ax.fill_between(t, rate, np.zeros(len(rate)), color="red", alpha=0.5) #rate_ax.set_ylim([0, 50]) #rate_ax.set_yticks(np.arange(0,75,25)) fig.tight_layout() fig.savefig("convmethod.pdf") def plot_isi_method(): spike_times = create_spikes() plt.xkcd() set_rc() fig = plt.figure() fig.set_size_inches(*figsize) fig.set_facecolor('white') spikes = plt.subplot2grid((7,1), (0,0), rowspan=3, colspan=1) rate = plt.subplot2grid((7,1), (3,0), rowspan=4, colspan=1) setup_axis(spikes, rate) spike_times = np.hstack((0.005, spike_times)) #spikes.vlines(1000*spike_times, 0., 1., color="blue", lw=2) for i in range(1, len(spike_times)): t_start = 1000*spike_times[i-1] t = 1000*spike_times[i] spikes.plot([t_start, t_start], [0., 1.], '-b', lw=2) spikes.annotate(s='', xy=(t_start, 0.5), xytext=(t,0.5), arrowprops=dict(arrowstyle='<->'), color='red') spikes.text(0.5*(t_start+t), 0.75, "{0:.0f}".format((t - t_start)), color='#CC0000', ha='center') #spike_times = np.hstack((0, spike_times)) i_rate = 1./np.diff(spike_times) rate.step(1000*spike_times, np.hstack((i_rate, i_rate[-1])),color='#FF9900', lw=2, where="post") fig.tight_layout() fig.savefig("isimethod.pdf") if __name__ == '__main__': plot_isi_method() plot_conv_method() plot_bin_method()