\documentclass[12pt,a4paper,pdftex]{exam} \usepackage[german]{babel} \usepackage{natbib} \usepackage{xcolor} \usepackage{graphicx} \usepackage[small]{caption} \usepackage{sidecap} \usepackage{pslatex} \usepackage{amsmath} \usepackage{amssymb} \setlength{\marginparwidth}{2cm} \usepackage[breaklinks=true,bookmarks=true,bookmarksopen=true,pdfpagemode=UseNone,pdfstartview=FitH,colorlinks=true,citecolor=blue]{hyperref} %%%%% text size %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \usepackage[left=20mm,right=20mm,top=25mm,bottom=25mm]{geometry} \pagestyle{headandfoot} \ifprintanswers \newcommand{\stitle}{: Solutions} \else \newcommand{\stitle}{} \fi \header{{\bfseries\large Exercise 10\stitle}}{{\bfseries\large Gradient descent}}{{\bfseries\large December 17th, 2018}} \firstpagefooter{Dr. Jan Grewe}{Phone: 29 74588}{Email: jan.grewe@uni-tuebingen.de} \runningfooter{}{\thepage}{} \setlength{\baselineskip}{15pt} \setlength{\parindent}{0.0cm} \setlength{\parskip}{0.3cm} \renewcommand{\baselinestretch}{1.15} \newcommand{\code}[1]{\texttt{#1}} \renewcommand{\solutiontitle}{\noindent\textbf{Solution:}\par\noindent} %%%%% listings %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \usepackage{listings} \lstset{ language=Matlab, basicstyle=\ttfamily\footnotesize, numbers=left, numberstyle=\tiny, title=\lstname, showstringspaces=false, commentstyle=\itshape\color{darkgray}, breaklines=true, breakautoindent=true, columns=flexible, frame=single, xleftmargin=1em, xrightmargin=1em, aboveskip=10pt } %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \begin{document} \input{instructions} \begin{questions} \question Implement the gradient descent for finding the parameters of a straigth line \[ y = mx+b \] that we want to fit to the data in the file \emph{lin\_regression.mat}. In the lecture we already prepared most of the necessary functions: 1. the cost function (\code{lsqError()}), and 2. the gradient (\code{lsqGradient()}). Read chapter 8 ``Optimization and gradient descent'' in the script, in particular section 8.4 and exercise 8.4! The algorithm for the descent towards the minimum of the cost function is as follows: \begin{enumerate} \item Start with some arbitrary parameter values (intercept $b_0$ and slope $m_0$, $\vec p_0 = (b_0, m_0)$ for the slope and the intercept of the straight line. \item \label{computegradient} Compute the gradient of the cost function at the current values of the parameters $\vec p_i$. \item If the magnitude (length) of the gradient is smaller than some small number, the algorithm converged close to the minimum of the cost function and we abort the descent. Right at the minimum the magnitude of the gradient is zero. However, since we determine the gradient numerically, it will never be exactly zero. This is why we just require the gradient to be sufficiently small (e.g. \code{norm(gradient) < 0.1}). \item \label{gradientstep} Move against the gradient by a small step ($\epsilon = 0.01$): \[\vec p_{i+1} = \vec p_i - \epsilon \cdot \nabla f_{cost}(m_i, b_i)\] \item Repeat steps \ref{computegradient} -- \ref{gradientstep}. \end{enumerate} \begin{parts} \part Implement the gradient descent in a function that returns the parameter values at the minimum of the cost function and a vector with the value of the cost function at each step of the algorithm. \begin{solution} \lstinputlisting{../code/descent.m} \end{solution} \part Plot the data and the straight line with the parameter values that you found with the gradient descent method. \part Plot the development of the costs as a function of the iteration step. \begin{solution} \lstinputlisting{../code/descentfit.m} \end{solution} \part Find the position of the minimum of the cost function by means of the \code{min()} function. Compare with the result of the gradient descent method. Vary the value of $\epsilon$ and the minimum gradient. What are good values such that the gradient descent gets closest to the true minimum of the cost function? \begin{solution} \lstinputlisting{../code/checkdescent.m} \end{solution} \part Use the functions \code{polyfit()} and \code{lsqcurvefit()} provided by matlab to find the slope and intercept of a straight line that fits the data. \begin{solution} \lstinputlisting{../code/linefit.m} \end{solution} \end{parts} \end{questions} \end{document}