meansquarederrorline; % generate data p0 = [2.0, 1.0]; eps = 0.00001; thresh = 1.0; [pest, ps, mses] = gradientDescent(x, y, @powerLaw, p0, eps, thresh); pest subplot(2, 2, 1); % top left panel hold on; plot(ps(1,:), ps(2,:), '.'); plot(ps(1,end), ps(2,end), 'og'); plot(c, 3.0, 'or'); % dot indicating true parameter values hold off; xlabel('Iteration'); ylabel('C'); subplot(2, 2, 3); % bottom left panel plot(mses, '-o'); xlabel('Iteration steps'); ylabel('MSE'); subplot(1, 2, 2); % right panel hold on; % generate x-values for plottig the fit: xx = min(x):0.01:max(x); yy = powerLaw(xx, pest); plot(xx, yy); plot(x, y, 'o'); % plot original data xlabel('Size [m]'); ylabel('Weight [kg]'); legend('fit', 'data', 'location', 'northwest');